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Learning Decision Trees
 Def'n: Decision Trees
 Algorithm for Learning Decision Trees

 Entropy, Inductive Bias (Occam's Razor)

 Overfitting
 Def’n, MDL, 2, PostPruning

 Topics:
 k-ary attribute values
 Real attribute values
 Other splitting criteria
 Attribute Cost
 Missing Values
 ...
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DecisionTree Hypothesis Space
 Internal nodes labeled with some feature xj

 Arc (from xj) labeled with results of test xj

 Leaf nodes specify class h(x)

 Instance:

classified as “No”
 (Temperature, Wind: irrelevant)

 Easy to use in Classification
 Answer short series of questions…

Outlook         = Sunny
Temperature  = Hot
Humidity        = High
Wind             = Strong
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Decision Trees

Hypothesis space is. . .
 Variable Size: Can represent any boolean function
 Deterministic
 Discrete and Continuous Parameters
Learning algorithm is. . .
 Constructive Search: Build tree by adding nodes
 Eager
 Batch (although  online algorithms)
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Continuous Features

 If feature is continuous:
internal nodes may test value against threshold
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DecisionTree Decision Boundaries
 Decision trees divide feature space into

axis-parallel rectangles,
labeling each rectangle with one class
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Using Decision Trees
 Instances represented by Attribute-Value pairs

 “Bar = Yes”, “Size = Large”, “Type = French”, “Temp = 82.6”, ...
 (Boolean, Discrete, Nominal, Continuous)

 Can handle:
 Arbitrary DNF
 Disjunctive descriptions

 Our focus:
 Target function output is discrete
 (DT also work for continuous outputs [regression])

 Easy to EXPLAIN
 Uses: 

 Credit risk analysis
 Modeling calendar scheduling preferences
 Equipment or medical diagnosis
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Learned  Decision Tree
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Meaning

 Concentration of 
-catenin in nucleus is very important: 

 If >0, probably relapse
 If =0, then #lymph_nodes is important: 

 If >0, probably relaps
 If =0, then concentration of pten is important:

 If <2, probably relapse
 If >2, probably NO relapse

 If =2, then concentration of -catenin in nucleus is important:
 If =0, probably relapse
 If >0, probably NO relapse
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Can Represent Any Boolean Fn
 v,  &, , MofN

(A v B) & (C v D v E)
. . . but may require exponentially many nodes. . .

 Variable-Size Hypothesis Space
 Can “grow" hypothesis space by increasing number of nodes
 depth 1 (“decision stump"):

represent any boolean function of one feature

 depth 2: Any boolean function of two features;
+ some boolean functions involving three features
(x1 v x2) & ( x1 v  x3)

 …
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May require >2-ary splits

 Cannot represent
using Binary Splits
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Regression (Constant) Tree

 Represent each region as CONSTANT
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Learning Decision Tree

as false
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Training Examples

 4 discrete-valued attributes
 “Yes/No” classification
Want: Decision Tree

DTPT (Out, Temp, Humid, Wind)  { Yes, No }
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Learning Decision Trees – Easy?

 Learn: Data  DecisionTree

 But ...



 Option 1: Just store training data
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Learn ?Any? Decision Tree
 Just produce “path” for each example

 May produce large tree
 Any generalization? (what of other instances?)

 –,++ ?
 Noise in data

  +, –, – , 0 
mis-recorded as

  +, +, – , 0 
  +, –, – ,  1 

 Intuition:
Want SMALL tree
... to capture “regularities” in data ...
... easier to understand, faster to execute, ...
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First Split?  

??
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First Split: Outlook
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Onto NOC ...
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What about NSunny ?
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(Simplified) Algorithm for
Learning Decision Tree

 Many fields independently discovered this learning alg...
 Issues

 no more attributes
 > 2 labels
 continuous values
 oblique splits
 pruning
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Alg for Learning Decision Trees
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Search for Good Decision Tree

 Local search
 expanding one leaf at-a-time
 no backtracking

 Trivial to find tree that 
perfectly “fits” training data*

 but... this is NOT necessarily 
best tree

 Prefer small tree
 NP-hard to find smallest tree 

that fits data

* noise-free data
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Issues in Design of
Decision Tree Learner

 What attribute to split on?

 Avoid Overfitting
 When to stop?
 Should tree by pruned?

 How to evaluate classifier (decision tree) ?
... learner?
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Choosing Best Splitting Test
 How to choose best feature to split?

 After Gender split, still some uncertainty
After Smoke split, no more Uncertainty

 NO MORE QUESTIONS!
(Here, Smoke is a great predictor for Cancer)

 Want a “measure” that prefers
Smoke over Gender



27

Statistics …

If split on xi, produce 2 children:
 #(xi = t) follow TRUE branch

 data: [ #(xi = t, Y = +),
#(xi = t, Y =  –) ]

 #(xi = f) follow FALSE branch
 data: [ #(xi = f, Y = +),

#(xi = t, Y =  –) ]

xi

#(xi = t, Y = +),
#(xi = t, Y = –)

#(xi = f, Y = +),
#(xi = f, Y =  –)
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Desired Properties

 Score for split M(S, xi ) related to

 Score S(.) should be
 Score is BEST for [+0, –200]
 Score is WORST for [+100, –100]
 Score is “symmetric"

Same for [+19, –5] and [+5, –19]
 Deals with any number of values

v1   7
v2 19
:   :
vk 2 
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Play 20 Questions

 I'm thinking of integer  {1, …, 100 }
 Questions

 Is it 22?
 More than 90?
 More than 50?

 Why?
 Q(r) = # of additional questions wrt set of size r

 = 22?       1/100  Q(1)   +  99/100   Q(99)
  90?     11/100  Q(11)  +  89/100   Q(89)
  50?     50/100  Q(50)  +  50/100   Q(50)

Want this to be small. . .
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Desired Measure: Entropy
 Entropy of V = [ p(V = 1), p(V = 0) ] :

H(V)  =  – vi
P( V = vi ) log2 P( V = vi )

 # of bits needed to obtain full info
…average surprise of result of one “trial” of V

 Entropy  measure of uncertainty

+200,  – 0 +100,  – 100
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Examples of Entropy
 Fair coin:

 H(½, ½) =  – ½ log2(½) – ½ log2(½) = 1 bit
 ie, need 1 bit to convey the outcome of coin flip)

 Biased coin:
H( 1/100, 99/100) =

– 1/100 log2(1/100) – 99/100 log2(99/100) = 0.08 bit

 As P( heads )  1, info of actual outcome  0
H(0, 1) = H(1, 0) = 0 bits
ie, no uncertainty left in source

(0  log2(0) = 0)
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Entropy in a Nut-shell

Low Entropy High Entropy

...the values 
(locations of soup) 

unpredictable... almost 
uniformly sampled throughout 
Andrew’s dining room

...the values 
(locations of soup) 

sampled entirely from within 
the soup bowl
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Prefer Low Entropy Leaves
 Use decision tree h(.) to classify (unlabeled) test 

example x
… Follow path down to leaf r
… What classification?

 Consider training examples that reached r:
 If all have same class c  

 label x as c (ie, entropy is 0)

 If  ½ are +; ½ are –
 label x as ??? (ie, entropy is 1)

 On reaching leaf r with entropy Hr,
uncertainty w/label is Hr

(ie, need Hr more bits to decide on class)
 prefer leaf with LOW entropy

+200, – 0

+100, – 100
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Entropy of Set of Examples
 Don't have exact probabilities…

… but training data provides estimates of probabilities:

 Given training set with                       examples:

2 2, log logp n p p n nH
p n p n p n p n p n p n

 
         

 Eg: wrt 12 instances, S:
p = n = 6    H( ½, ½ ) =  1 bit
… so need 1 bit of info to classify example 

randomly picked from S

p positive
n negative
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Remaining Uncertainty
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... as tree is built ...
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A

p=60+
n=40–

A3
p3 =10+
n3 =  3–

A=1 A=3

A1
p1 =22+
n1 =25–

A=2

A2

p2 =28+
n2 =12–

 Assume [p,n] reach node
 Feature A splits into A1, …, Av

 Ai has { pi
(A) positive, ni

(A) negative }

 Entropy of each is …
( ) ( )

( ) ( ) ( ) ( ),
A A

i i
A A A A

i i i i

p nH
p n p n

 
   

So for A2:   
H(  28/40, 12/40 )

Entropy wrt Feature
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Minimize Remaining Uncertainty
 Greedy: Split on attribute that leaves least entropy wrt class

… over training examples that reach there
 Assume A divides training set E into E1, …, Ev

 Ei has { pi
(A) positive, ni

(A) negative } examples

 Entropy of each Ei is

 Uncert(A) = expected information content
 weighted contribution of each Ei

 Often worded as Information Gain

( ) ( )

( ) ( ) ( ) ( ),
A A

i i
A A A A

i i i i

p nH
p n p n

 
   

( ) , ( )p nGain A H Uncert A
p n p n

 
    
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Notes on Decision Tree Learner
 Hypothesis space is complete!

 contains target function...

 No back tracking
 Local minima...

 Statistically-based search choices
 Robust to noisy data...

 Inductive bias:  “prefer shortest tree”
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Inductive Bias in C4.5
 H = DecisionTreeClassifiers

 power set of instances X
 Unbiased?

 Not really...
 Preference for short trees,

[trees w/ high info gain attributes near root]
 Here: Bias is preference for some hypotheses,

rather than restriction of hypothesis space H
 Occam's razor:

Prefer shortest hypothesis that fits data
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Occam's Razor
 Q: Why prefer short hypotheses?
 Argument in favor:

 Fewer short hyps. than long hyps.
 a short hyp that fits data unlikely to be coincidence
 a long hyp that fits data might be coincidence

 Argument opposed:
  many ways to define small sets of hyps

Eg, all trees with prime number of nodes
whose attributes all begin with “Z"

 What's so special about small sets based on size of 
hypothesis??
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Perceptron vs Decision Tree
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Learning Decision Trees
 Defn: Decision Tree
 Algorithm for Learning Decision Trees

 Overfitting
 Def’n
 MDL, 2

 PostPruning
 Topics:
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Example of Overfitting
 25% have butterfly-itis
 ½ of patients have F1 = 1

 Eg: “odd birthday”

 ½ of patients have F2 = 1
 Eg: “even SSN”

 … for 10 features
 Decision Tree results

 over 1000 patients (using these silly features) …
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Decision Tree Results
 Standard decision tree 

learner:

 Error Rate:
 Train data:   0%

 New data:  37%

 Optimal decision tree:

 Error Rate:
 Train data:  25%

 New data: 25%

No
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Overfitting
 Often “meaningless regularity” in data

due to coincidences in the noise
 bad generalization behavior
“Overfitting”

 Consider error in hypothesis h over ...
 training data S: errS(h)
 entire distribution D of data: errD,f( h )

 Hypothesis h  H overfits training data if
 alternative hypothesis h’  H s.t.
errS(h) < errS(h')

but
errD,f( h ) > errD,f( h' )
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Fit-to-Data  Generalization

 hk = hyp after k updates
errS(h20000) < errS(h10000)

but
errD,f(h20000 ) > errD,f(h10000)

 “Overfitting"
Best “fit-to-data" will often find meaningless regularity in data

(coincidences in the noise)
 bad generalization behavior
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Example of Overfitting
 Spse 10 binary attributes (uniform),

but class is random:

 C4.5 builds nonsensical tree w/ 119 nodes!
 Should be SINGLE NODE!

 Error rate (hold-out): 35%
 Should be 25% (just say “No”)

 Why? Tree assigns leaf “N” w/prob 1–p, “Y” w/prob p
 Tree sends instances to arbitrary leaves
 Mistake if

 Y-instance reaches N-leaf: p x (1–p)
 N-instance reaches Y-leaf: (1–p) x p

 Total prob of mistake = 2 x p x (1–p) = 0.375

 Overfitting happens for EVERY learner … not just DecTree !!

N w/prob p = 0.75
Y w/prob 1–p = 0.25
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How to Avoid Overfitting
(Decision Trees)

 When to act
 Use more stringent STOPPING criterion while 

growing tree
. . . only allow statistically significant splits ...

 Grow full tree, then post-prune
 To evaluate tree, measure performance over ...

 training data
 separate validation data set

 How to represent classifier?
 as Decision Tree
 as Rule Set
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Avoid Overfitting #1
( StopEARLY, Training-Data, DecTree )
 Add more stringent STOPPING criterion while 

growing tree
 At leaf nr (w/ instances Sr)

spse optimal proposed split is based on attribute A
A. Use 2 test, on data Sr

 Apply statistical test to compare
 T0: leaf at r (majority label)   vs
 TA: split using A

 Is error of TA statistically better than T0?
B. MDL: minimize

size(tree) + size( misclassifications(tree) )
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 Spse A is irrelevant
 [pi, ni]  [p, n] 
 So if [p,n] = 3:2, 

then [pi, ni] = 3:2

 Not always so clear-cut:
 Is this significant?
 Or this??

Test for Significance

A

p=60+
n=40–

A3
p3 = 15+
n3 = 10–

A=1 A=3

A1
p1 =27+
n1 =18–

A=2

A2

p2 =18+
n2 =12–

p3 = 16+
n3 =  9–

p1 =25+
n1 =20–

p2 =20+
n2 =10–

p3 = 20+
n3 = 10–

p1 =10+
n1 =20–

p2 =30+
n2 =10–
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2 Test for Significance
 Null hypothesis H0:

Attribute A is irrelevant in context of r
Ie, distr of class labels at node nr  distr after splitting on A

 Observe some difference between these distr's.
What is prob (under H0) of observing this difference,
given m = |Sr| iid samples?

 Defn:            of Sr are

After splitting on A, get k subsets
wrt A = i : pi positives, ni negatives

 If H0 (A irrelevant), would have
 pi

~ = p  (pi+ni)/p+n positives
 ni

~ = n  (pi+ni)/p+n negatives

p
n

positive
negative
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2 Test – con't

Don’t add  iff D < T,d

 (exp – obs)2 / exp
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2 Table
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Minimum Description Length
A wants to transmit to B classification function c()
 simplified to:

 A and B agree on instances  x1, …, xM 
 What should A send, to allow B to determine M bits:

 c(x1), …, c(xM) 
 Option#1: A can send M “bits”
 Option#2: A sends “perfect” decision tree d

s.t. c(xi) = d(xi) for each xi
 Option#3: A sends "imperfect" decision tree d’

+ set of indices of K exceptions B = { xi1 , …, xiK }

c(xi) = 

 So... Increase tree-size
IF (significant) reduction in #exceptions

d(xi) if xi  B
d(xi) otherwise
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Avoid overfitting#2:
PostPruning

 Grow tree, to “purity”, then PRUNE it back!
Build “complete” decision tree h, from train
For each penultimate node: ni
Let hi be tree formed by “collapsing” subtree under ni, into single node
If hi better than h
Reset h ← hi, . . .

 How to decide if hi better than h?
1. Test on Hold-Out data?

 3 sets: training, VALIDATION, testing
Problematic if small total # of samples

2. Pessimistic Pruning
. . . re-use training samples . . .

Test

Validate

Train
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Using Validation Set

Test

Validate

Train

1,000

800

Learn

A

B C

E DF DW

G D

A

B C

E DF DW

G D

A

B C

E DF DW

D

Eval?

Compare



58

Avoid Overfitting#2.1
“Reduced-Error Pruning"

 Split data into training and validation set

Alg: Do until further pruning is harmful:
1. Evaluate impact on validation set…

of pruning each possible node
(plus those below it)

2. Greedily remove the node that most 
improves accuracy on validation set

 Produces small version of accurate subtree
 What if data is limited?

Test

Validate

Train
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Avoid Overfitting#2.2
“Pessimistic Pruning"

 Assume N training samples reach leaf r; … which makes E mistakes
so (resubstitution) error is E/N

 For confidence level (eg, 1-sided   = 0.25),
can estimate upper bound on # of errors:

Number Of Errors = N  [E/N  EB(N,E) ]

 Let    U(N,E) = E/N + EB(N, E)
EB(E;N) based on binomial distribution

~ Normal distribution: z  √p(1-p)/N
p  E/N

 Laplacian correction… to avoid "divide by 0" problems: 

Use   p = (E+1)/(N+2)  not   E/N

 For  = 0.25, use z0.25 = 1.53
(recall 1-sided)
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Pessimistic Pruning (example)
 Eg, spse A has 3 values:  { v1 v2 v3 }
 If split on A, get

 A= v1 – return Y   (6 cases, 0 errors)

 A= v2 – return Y   (9 cases, 0 errors)

 A= v3 – return N   (1 cases, 0 errors)
So 0 errors if split on A

 For =0.25:
#errors  6  U0.25(6,0) + 9  U0.25(9,0) + 1  U0.25(1,0) 

= 6  0.206    + 9  0.143   + 1  0.75      = 3.273
 If replace A-subtree w/ simple “Y”-leaf:  (16 cases, 1 error)

#errors   16  U0.25(16,1)  = 16  0.1827 = 2.923
 As 2.923 < 3.273, prune A-subtree to single “Y” leaf

Then recur – going up to higher node

U
 (N,E) = E/N + EB

 (N, E)



61

Pessimistic Pruning: Notes
 Results: Pruned trees tend to be

 more accurate
 smaller
 easier to understand than original tree

 Notes:
 Goal: to remove irrelevant attributes
 Seems inefficient to grow subtree, only to remove it
 This is VERY ad hoc, and WRONG statistically

but works SO WELL in practice it seems essential
 Resubstitution error goes UP; but generalization error, down...
 Could replace ni with single node,

or with most-frequently used branch
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Avoid Overfitting #3
Using Rule Post-Pruning

1. Grow decision tree. 
Fit data as well as possible.
Allow overfitting.

2. Convert tree to equivalent set of rules:
 One rule for each path from root to leaf.

3. Prune each rule independently of others.
 ie, delete preconditions that improve its accuracy

4. Sort final rules into desired sequence for use 
depending on accuracy.

5. Use ordered sequence for classification.
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Converting Trees to Rules
 Every decision tree corresponds to set of rules:

 IF (Patrons = None)
THEN WillWait = No

 IF (Patrons = Full) 
& (Hungry = No) 
&(Type = French)

THEN WillWait = Yes
 ...

 Why? (Small) RuleSet MORE expressive
small DecTree  small RuleSet
(DecTree is subclass of ORTHOGONAL DNF)
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Learning Decision Trees
 Def’n: Decision Trees
 Algorithm for Learning Decision Trees
 Overfitting

 Topics:
 k-ary attribute values
 Real attribute values
 Other splitting criteria
 Attribute Cost
 Missing Values
 ...
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Attributes with Many Values
 Problem: Gain prefers attribute with many values.

Entropy  ln(k) . . .
Eg, imagine using

Date = Jun 3 1996 
Name = Russ

 One approach: use GainRatio instead
Gain(S,A)GainRatio(S,A)  = 

SplitInformation(S,A)
k

i i
2

i=1

|S | |S |SplitInformation(S,A) - log
| | | |S S

 
where Si is subset of S for which A has value vi

 Issues:
 Construct a multiway split?
 Test one value versus all of the others?
 Group values into two disjoint subsets?
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Continuous Valued Attributes
Create a discrete attribute to test 

continuous
 Temperature = 82.5
 (Temperature > 72.3)  { t, f }

 Note: need only consider splits between
"class boundaries"

Eg, between 48 / 60; 80 / 90
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Finding Split for Real-Valued 
Features
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Desired Properties

 Score for split M(D, xi ) related to

 Score S(.) should be
 Score is BEST for [+0, –200]
 Score is WORST for [+100, – 100]
 Score is “symmetric"

Same for [+19, – 5] and [+5, –19]
 Deals with any number of values

v1   7
v2 19
:   :
vk 2

Repeat!
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Other Splitting Criteria
 Why use Gain as splitting criterion?
Want: Large "use me" value if split is

 85, 0, 0, …,  0 
Small "avoid me" value if split is
 5, 5, 5, …, 5 

 True of Gain, GainRatio… also for. . .
 Statistical tests: 2

For each attr A, compute deviation:

 Others: “Marshall Correction”
“G” statistic
Probabilities (rather than statistic)

 GINI index:  GINI(A) = i j  i pi pj =  1 – i pi
2
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Node Impurity Measures

 Node impurity measures for 2-class 
classification
 function of the proportion p in class 2.
 Scaled coss-entropy has been scaled to pass 

through (0.5, 0.5).
HTF 2009
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Example of 2

 Attributes T1, T2 class c

 As 4.29 (T1) > 0.533 (T2), … use T1

(less likely to be irrelevant)
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Example of GINI
 Attributes T1, T2 class c
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Cost-Sensitive Classification …
Learning

 So far, only considered ACCURACY
In gen'l, may want to consider COST as well
 medical diagnosis: BloodTest costs $150
 robotics: Width_from_1ft costs 23 sec

 Learn a consistent tree with low expected cost?
. . . perhaps replace InfoGain(S,A) by
 Gain2(S,A) / Cost(A) [Tan/Schlimmer'90]

 [ 2Gain(S,A) – 1] / [Cost(A)+1]w

where w  [0, 1] determines importance of cost [Nunez'88]

 General utility (arb rep'n)
E[ i cost(Ai) +Misclass penalty ]     [Greiner/Grove/Roth'96]
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Dealing with Missing Information

*

*
* *

*

* *

*   *
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Formal Model

 Default Concept returns
Categorical Label {T, F } even when given partial instance
 . . . even  *,*, …, *  !

 Blocker   : { 0, 1}n → Stoch {0, 1, * }
 N.b., 

 does NOT map 0 to 1
 does NOT change class label
 may reveal different attributes on different instances

(on same instance, different times)
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Unknown Attribute Values
 Q: What if some examples are incomplete

. . . missing values of some attributes?
When learning:
A1: Throw out all incomplete examples?

… May throw out too many. . .
A2: Fill in most common value ("imputation")

 May miss correlations with other values
 If impute wrt attributes: may require high order statistics

A3: Follow all paths, w/ appropriate weights
 Huge computational cost if missing MANY values

When classifying
 Similar ideas . . .
 ISSUE: Why are values missing?

 Transmission Noise
 "Bald men wear hats"
 "You don't care"
See [Schuurmans/Greiner'94]
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Handling Missing Values:
Proportional Distribution
 Associate weight wi with example  xi, yi 

At root, each example has weight 1.0
 Modify mutual information computations:

use weights instead of counts
 When considering test on attribute j,

only consider examples that include xij
 When splitting examples on attribute j:

 pL = prob. non-missing example sent left
pR = prob. non-missing example sent right

 For each example  xi, yi  missing attribute j:
send it to both children;
 to left w/   wi := wi  pL
 to right w/ wi := wi  pR

 To classify example missing attribute j:
 Send it down left subtree;  P( y~

L | x ) = resulting prediction
 Send it down left subtree;  P( y~

R | x ) = resulting prediction
 Return   pL  P( y~

L | x ) + pR  P( y~
R | x ) 
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Handling Missing Values:
Surrogate Splits
 Choose attribute j and splitting threshold j

using all examples that include j

ui =

 For each other attribute q, find splitting threshold q
that best predicts ui
Sort q by predictive power
Called "surrogate splits"

 Sort via "surrogate splits"
To handle  xi, yi  where xij = * :
 go thru surrogate splits q until finding one NOT missing
 Use q, q to decide which child gets xi

L if  xi, yi  sent to LEFT   subtree
R if  xi, yi  sent to RIGHT subtree
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Questions

1. How to represent default concept?
2. When is best default concept learnable?
3. If so, how many samples are required?
4. Is it better to learn from …

 Complete Samples, or
 Incomplete Samples?
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Learning Task
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Learning Decision Trees ...
with “You Don't Care” Omissions
 No known algorithm for PAC-learning 

gen'l Decision Trees
given all attribute values

 … but Decision Trees are TRIVIAL to learn,
if superfluous values are omitted:

Algorithm GrowDT
Collect "enough" labeled (blocked) instances
Let root = never-blocked instance xi
Split instances by xi = 1 vs xi = 0,

and recur (until purity)
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Motivation
 Most learning systems work best when

 few attribute values are missing
 missing values randomly distributed

 but. . . [Porter,Bareiss,Holte'90]
 many datasets missing > ½ values!
 not randomly missing but . . .

"[missing] when they are known to be irrelevant for 
classication or redundant with features already present in 
the case description"

 Our Situation!!
 Why Learn?  . . . when experts 

 not available, or
 unable to articulate classification process
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Decision Tree Evaluation
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Comments on Decision Trees
 "Decision Stumps" (1-level DT)

seem to work surprisingly well
 Efficient algorithms for learning optimal “depth-k decision trees”

… even if continuous variables
 Oblique Decision Trees

Not just "x3 > 5", but "x4 +x8 > 91"
 Use of prior knowledge

 Incremental Learners ("Theory Revision")
 "Relevance" info

 Software Systems:
 C5.0 (from ID3, C4.5) [Quinlan'93]
 CART
 ...

 Applications:
 Gasoil  2500 rules
 designing gas-oil separation for offshore oil platforms
 Learning to fly Cessna plane
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What we haven’t discussed…

 Real-valued outputs – Regression Trees
 Bayesian Decision Trees

 a different approach to preventing overfitting

 How to choose MaxPchance automatically 
 Boosting: a simple way to improve 

accuracy
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What you should know
 Information gain:

 What is it?   Why use it?
 Recursive algorithm for building 

an unpruned decision tree
 Why pruning can reduce test set error
 How to exploit real-valued inputs
 Computational complexity 

 straightforward, cheap
 Coping with Missing Data
 Alternatives to Information Gain for splitting nodes
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For more information
 Two nice books

 Classification and Regression Trees. L. Breiman, J. H. Friedman, 
R. A. Olshen, and C. J. Stone. Wadsworth, Belmont, CA, 1984.

 C4.5: Programs for Machine Learning (Morgan Kaufmann Series in 
Machine Learning) by J. Ross Quinlan

 Dozens of nice papers, including
 Learning Classification Trees, Wray Buntine, Statistics and 

Computation (1992), Vol 2, pages 63-73
 On the Boosting Ability of Top-Down Decision Tree Learning 

Algorithms. Kearns and Mansour,,  STOC: ACM Symposium on 
Theory of Computing, 1996“

 Dozens of software implementations available on the web for free and 
commercially for prices ranging between $50 - $300,000

Both started  1983, in Bay Area…done independently -- CS vs Stat
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Conclusions
 Classification: predict a categorical output 

from categorical and/or real inputs
 Decision trees are the single 

most popular data mining tool
 Easy to understand
 Easy to implement
 Easy to use
 Computationally cheap

 Need to avoid overfitting


