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Ensemble Methods

Some material from Tom Dietterich, E Roberto, M Botta, R Schapire

HTF: 8.7, 10, 16
B: 14 – 14.3

R Greiner
Cmput 466 / 551
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Motivation
� If 1 learner is good

� produces 1 effective classifier
maybe many would be better

� Eg, why not learn { h1, h2, h3 }, then
� h*(x) = majority{ h1(x), h2(x), h3(x) }

� If hi’s make INDEPENDENT mistakes,
h* is more accurate!
� Eg: If   err( hi ) = ε, then   err( h* ) = 3ε2

(0.01 → 0.0003)
� If use majority of 2k–1 hyp, then
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Learn then Combine Many 
Classifiers

S

Original Data Classifier

Learner1 h1(.)

h*(.)Combiner

h2(.)Learner2

hT(.)LearnerT

⋮⋮
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Challenges

1. How to generate the base classifiers?
� h1, h2, …
� Different learners, Boostrap samples, …

2. How to integrate/combine them?
� h*(x) = F( h1(x), h2(x), …)
� Average, Weighted Average, Instance-specific decisions, …
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Types of Ensemble Methods
1. Subsample Training Sample

� Bagging
� Boosting

2. Manipulate Input Features
3. Manipulate Output Targets 

� ECOC

4. Injecting Randomness
� Data
� Algorithm

5. Algorithm Specific methods
� Other combinations
� Why do Ensembles work?
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1. Subsample Training Sample

� Unstable: Decision-tree, neural network, rule learning alg's
� Stable: Linear regression, nearest neighbor, linear threshold 

algorithms, …
� Subsampling is best for unstable learners

� Techniques:
� (Cross-Validated Committees)
� Bagging
� Boosting

Defn: Learner is UNSTABLE if

its output classifier undergoes major changes

in response to small changes in training data
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1a: Bagging: 
Bootstrap AGgregating

� For b = 1, …, T  do
� Sb = bootstrap replicate of S
� Apply learning algorithm to Sb to learn hb

� To classify new point x, 
using unweighted vote:
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ĥ(x)   =  argmaxr { |hi(x) = r| }
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Boostrap Replicates

S

S1

Original Data Bootstrap Replicate

Learning
Alg h1(.)

Classifier

Form S1 by drawing |S| instances from S, 

with replacement

S S1

:
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Boostrap Replicates

S

S1

� Each Si is bootstrap replicate
� hi = classifier based on Si
� αi = 1/T

Original Data Bootstrap Replicate Classifier

Learning
Alg h1(.)

Learning
Alg hT(.)ST

⋮ ⋮ h*(x) = ∑iαihi(x)
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CART vs Boosted-CART

� 100 bagged trees
� shades of blue/red indicate strength of vote for 

particular classification
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Regression Results
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Classification Results
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Expected Error
� Assume hi(x) = y(x) + εi(x)
� Ex[ (hi(x) – y(x) )2 ] = Ex[ εi(x)2 ]
� … so average MSError (over T regressors) is

EAV = 1/T ∑i Ex[ εi(x)2 ]
� What is average error of about ĥ(x) ?

� Assume εi(x) each 0-mean and uncorrelated
Ex[ εi(x) ] = 0
Ex[ εi(x) εj(x) ] = 0   for i≠j

Eĥ = Ex[ y(x) – 1/T ∑i hi(x) ]2 

= Ex[ 1/T ∑i εi(x) ]2  = 1/T EAV !!
� In general:   Eĥ ≤≤≤≤ EAV
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Estimated Bias, Variance 
of Bagging

� Estimating bias and variance using same L 
bootstrap samples,
� Bias  =  Ex[ h(x) – y ] (same as before)
� Variance = Σi (hi(x) – ĥ(x) )2 / (T–1)  … = 0 !

⇒ (Given this estimate of variance) Bagging …
� removes variance 
� leaves bias unchanged 

� Actually…
� bagging only reduces variance
� tends to slightly increase bias
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Bias/Variance Heuristics
� Models that fit data poorly have high bias:

� “inflexible models”,
� eg, linear regression, regression stumps

� Models that can fit data very well have 
low bias but often high variance: 
� “flexible” models
� eg, nearest neighbor regression, regression trees 

⇒ bagging of flexible models can 
reduce variance while 
benefiting from low bias
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Types of Ensemble Methods

1. Subsample Training Sample
� Bagging
� Boosting

2. Manipulate Input Features
3. Manipulate Output Targets 

� ECOC

4. Injecting Randomness
5. Algorithm Specific methods
� Other combinations
� Why do Ensembles work?
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1b: Boosting

� Boosting = general method of using…
� “weak” learning algorithm L(…)

� can reliably produce classifiers (at least) slightly 
better than random, 

� say, accuracy ≥ 55% (in two-class setting)

to produce highly accurate predictor
� single classifier with very high accuracy, 

� say, 99%

… given sufficient data…
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Strong vs Weak Learnability
� boosting’s roots are in “PAC” learning model (Valiant)

� Given random examples from unknown, arbitrary 
distribution…

� strong PAC learning algorithm:
� for any distribution, with high probability, 

given poly # of examples, polynomial time,
� can always find classifier with 

arbitrarily small generalization error
� weak PAC learning algorithm

� same… but generalization error only needs to be 
slightly better than random guessing (½ − γ)

� [Kearns & Valiant ’88]:
� does weak learnability imply strong learnability?
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Early Boosting Algorithms
� [Kearns & Valiant ’88]:

� does weak learnability imply strong learnability?

� YES!  [Schapire ’89]:
� provable boosting algorithm

� [Freund ’90]:
� “optimal” algorithm that “boosts by majority”

� [Drucker, Schapire & Simard ’92]:
� first experiments using boosting
� limited by practical drawbacks
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Boosting Overview

Distribution: D1

Learner

h1(x) 

h*(x) = sign( ∑t αt ht(x) )

D2

Learner

h2(x) 

DT

Learner

hT(x) 

. . . .

. . . .
∑i Dt(i) = 1
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A Formal Description of Boosting

� Training set  S = {(x1, y1), ... , (xm, ym) }
� yi∈ {−1, +1} correct label of instance xi ∈ X

� for t = 1, ... ,T:
� construct distribution Dt on {1, ... ,m}
� find weak classifier  ht : X → {−1, +1}

with small error εt on Dt :
εt = Pri∈Dt [ ht (xi) ≠ yi ] =

� output final classifier  h* based on { ht(x) }
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AdaBoost

� constructing Dt:
� D1(i) = 1/m
� given Dt and ht :

[Schapire, Freund]

where

� final classifier:

Zt = normalization constant

εεεεt =

h*(x) = sign( ∑t αt ht(x) )

ε < ½, so α > 0, so e-α <1, so …

if correct, Dt+1(i) < Dt(i) … if wrong, Dt+1(i) > Dt(i)
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Toy Example

here: each weak classifiers = a vertical or horizontal half-planes
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Round 1
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Round 2
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Round 3
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Final Classifier

h*

=
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Learn from weighted instances?

� How can a learning alg use distribution D ?

1. Reweighting

� Can modify many learning algorithms to deal with 
weighted instances:
� ID3: 

� entropy, information-gain equations use COUNTs #(X=3, C=+)
… assumes all weights=1

� Modify to use weight of each instance

� Naïve Bayes: ditto
� k-NN: multiple vote from an instance by its weight
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Learn from weighted instances?

Resampling

� Given dataset S and distribution D,
produce new dataset S’ that embodies D
� Stochastically

� Using weight ratio …

� How many?

� More is good…

� Typically |S’| = |S|

� If possible, use Re-weighting

� Re-sampling is only an approximation 
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Stochastic Resampling…
� Let S’ be the empty set
� Let D = (w1, ..., wn) be the weights of 

examples in S
� wi = D(i) corresponds to example xi

� While not-enough-samples
� Draw n∈[0..1] according to U(0,1)
� S’←S’ ∪ {xk} where k is such that

� return S’

∑∑
=

−

=

≤<
k

i

i

k

i

i wnw
1

1

1



37

Comparison
M

is
cl

a
ss

if
ic

a
ti

o
n

 R
a
te

Friedman, Hastie, Tibshirani [1998]
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Analyzing the Training Error

Theorem:
� Let γt = ½ – εt
� training_error(h*) ≤ exp(−2 ∑t γt

2)

� If ∀t : γt ≥ γ > 0
then training_error( h*) ≤ exp(−2γ2T)

� AdaBoost is adaptive:
� does not need to know γ or T a priori
� can exploit γt >> γ
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Proof

� f(x) = ∑t αt ht(x)   ⇒ h*(x) = sign( f(x) )

� Step 1: unwrapping recurrence:

D1
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Proof (II)
� Step 2: training_error(h*) ≤ ∏t Zt

� Proof: training_error(h*)
h*(xi)     
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Proof (III)

εεεεt =
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Proof (IV)
� Step 4:

�

� Suffices to show

� True if, for all   a ∈ [0, ¼]
g(a) = (1 – 4a) – e-4a   ≤ 0

� g(0) = 1 – 0 – e0 = 0
g’(a) = –4 – (–4) e-4a = 4 (e-4a – 1)  ≤≤≤≤ 0

a
eaa
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How Will Test Error Behave? 
(A First Guess)

Expect…
� training error to continue to drop (or reach 0)
� test error to increase when h* becomes

“too complex”
� “Occam’s razor”
� overfitting

� hard to know when to stop training
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Actual Typical Run
(boosting C4.5 on “letter” dataset)

� test error does not increase, 
even after 1000 rounds
� (total size > 2,000,000 nodes)

� test error continues to drop,
even after training error is 0!

� Occam’s razor: “simpler rule is better”... 
appears to not apply!
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A Better Story: … using Margins
� key idea:

� training error only measures whether classifications are 
right or wrong

� should also consider confidence of classifications

� h* is weighted majority vote of weak classifiers
� measure confidence by margin

= strength of the vote
= (weighted fraction voting correctly)

− (weighted fraction voting incorrectly)

[Schapire, Freund, Bartlett & Lee]

h* h*
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Empirical: Margin Distribution
� margin distribution

= cumulative distribution of margins of training ex’s
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Theoretical Evidence: Analyzing 
Boosting Using Margins

� Theorem: 
Large margins ⇒ better bound on generalization error

� (independent of   # of rounds ≈ complexity of h*)
� proof idea: if all margins are large, then can approximate

final classifier h* by a much smaller classifier 
(just as polls can predict not-too-close election)

� Theorem: 
Boosting tends to increase margins of training examples 

� (given weak learning assumption)
� proof idea: similar to training error proof

� so:
although final classifier h* is getting larger,
margins are likely to be increasing,
so final classifier h* actually getting close to a simpler classifier,
driving down the test error
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More Technically...
� with high probability,  ∀θ > 0 :

(Pr[ ] = empirical probability)
� bound depends on

� m = # training examples
� d = “complexity” of weak classifiers
� entire distribution of margins of training examples

� Pr[margin ≤ θ] → 0 exponentially fast (in T)
if (error of ht on Dt) < ½ − θ (∀t)
� so: if weak learning assumption holds, 

then all examples will quickly have “large” margins
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UCI Experiments
� tested AdaBoost on UCI benchmarks
� used:

� C4.5 (Quinlan’s decision tree algorithm)
� “decision stumps”: very simple rules of thumb that 

test on single attributes
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UCI Results
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Multiclass Problems
[Schapire, Freund]

� can prove same bound on error if ∀t : εt ≤ ½
� in practice, not usually a problem for “strong” weak 

learners (e.g., C4.5)
� significant problem for “weak” weak learners

(e.g., decision stumps)

� instead, reduce to binary…

dire
ct a

ppr
oac

h 

(Ad
aBo

ost.
M1):

� y ∈ Y = {1, . . . , k}

h*(x)
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Reducing Multiclass to Binary
� If labels = {a, b, c, d, e}
� replace each training example by five 

{−1,+1}-labeled examples:

[Schapire, Singer]

� predict with label receiving most (weighted) votes
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AdaBoost.MH
� can prove:

� reflects fact that small number of errors in 
binary predictors can cause overall prediction 
to be incorrect

� extends immediately to multi-label case
� (more than one correct label per example)

h*
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Other Uses of Boosting
� Output code

� [Schapire, Allwein & Singer] [Dietterich & Bakiri]

� Ranking problems
� [Schapire, Freund, Iyer & Singer]

� Confidence-rated predictions
� [Schapire & Singer]

� Face Detection
� [Viola & Jones]

� Active Learning
� [Lewis & Gale] [Abe & Mamitsuka]

� Applications:
� Text Categorization [Schapire & Singer]
� Human-computer Spoken Dialogue

[Schapire,Rahim, Di Fabbrizio, Dutton, Gupta, Hollister & 
Riccardi]
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Application: Detecting Faces
� problem: find faces in photograph or movie
� weak classifiers: detect light/dark rectangles in image

� many clever tricks to make extremely fast and 
accurate

[Viola & Jones]
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Practical Advantages of AdaBoost
� fast
� simple and easy to program
� no parameters to tune (except T, sometimes)
� flexible — can combine with any learning algorithm
� no prior knowledge needed about weak learner
� provably effective, given weak classifier

� → shift in mind set — goal now is merely to find classifiers 
barely better than random guessing

� versatile
� can use with data that is textual, numeric, discrete, etc.
� has been extended to learning problems well beyond binary 

classification
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Caveats
� performance of AdaBoost depends on 

data and weak learner
� consistent with theory, AdaBoost can fail if…

� weak classifiers too complex
→ overfitting

� weak classifiers too weak (γt → 0 too quickly)
→ underfitting
→ low margins → overfitting

� empirically, AdaBoost seems especially 
susceptible to uniform noise
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Conclusions wrt Boosting
� boosting is a practical tool for classification and 

other learning problems
� grounded in rich theory
� performs well experimentally
� often (but not always!) resistant to overfitting
� many applications and extensions

� many ways to think about boosting
� none is entirely satisfactory by itself,

but each useful in its own way
� considerable room for further theoretical and

experimental work
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Conclusions wrt Boosting
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Effect of Boosting
� In the early iterations, 

boosting primarily reduces bias
� In later iterations, 

boosting primarily reduces variance
(apparently) 
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Exponential Loss
� AdaBoost minimizes “exponential loss”…

where f(x) = ∑t αt ht (x)
� exponential loss is an 

upper bound on 0-1 
(classification) loss

� On each round, 
AdaBoost greedily chooses
αt and ht to minimize loss
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Coordinate Descent
� {g1, . . . , gN} = all weak classifiers
� want to find λ1, ..., λN to minimize

[Breiman]

� AdaBoost uses coordinate descent: 
� initialize all λj = 0
� each round: 

� choose one coordinate λt (corresponding to ht) and
� update (increment by αt )

� choose update causing biggest decrease in loss
� (powerful technique for minimizing over huge space of 

functions)
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Types of Ensemble Methods

1. Subsample Training Sample
2. Manipulate Input Features
3. Manipulate Output Targets 
4. Injecting Randomness
5. Algorithm Specific methods
� Other combinations
� Why do Ensembles work?
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2: Manipulate INPUT FEATURES

� Different learners see different subsets of features
(of each of the training instances)

� Eg: 119 features for classing volcanoes on Venus
� Divide into 8 disjoint subsets (by hand)...
� and use 4 networks for each
� … 32 NN classifiers

Did VERY well [Cherkauer'96]

� Tried w/sonar dataset – 25 input features
Did NOT work [Tumer/Ghost'96]

� Technique works best when
input features highly redundant

⋮
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3: Manipulate OUTPUT Targets
Spse K outputs Y = { y1, … yK }

a. Could learn 1 classifier, into Y (|Y| values)

b. Or could learn K binary classifiers:
� y1 vs Y – y1

� y2 vs Y – y2

� . . .

then vote.

c. Build   ln K binary classifiers
� hi specifies ith bit of index ∈ {1, 2, …, K }
� Each hi sub-classifier splits output-values into 2 subsets

� h0(x) is  1   if   “y1, …,  y8”;    else 0
� h1(x) is  1   if   “y1 – y4; y9 – y12”; else 0
� h2(x) is  1   if   “y1, y2; y5, y6; y9, y10; y13, y14”; else 0
� ... 
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Error Correcting Output Code
� Why not > ln K binary classifiers . . .

� “Error-Correcting Codes” (some redundancy)
� [Dietterich/Bakiri'95]

� View [ h1(x), …, hm(x) ] as code-word;
return label yi with nearest codeword

� Better: can combine with AdaBoost
� [Schapire'97]
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Recognizing Handwritten Number 

� “Obvious” approach: learn    F: Scribble → {0,1,2,…,9}
� …doesn’t work very well (too hard!)

� Or… “decompose” the learning task into 6 “subproblems”

1. learn 6 classifiers, one for each “sub-problem ”
2. to classify a new scribble:

� Run each classifier
� Predict the class whose code-word is closest (Hamming 

distance) to the predicted code
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Error-correcting Codes
� Spse we want to send n-bit messages through a noisy channel
� To ensure robustness to noise, 

map each n-bit message into an m-bit code (m>n) 
� note |codes| >> |messages|

� To “decode” a msg, 
translate it to message corresponding to the “nearest” code
� (Hamming distance)

� Key to robustness: assign the codes so that …
� each n-bit “clean” message is surrounded by a “buffer zone” of similar m-bit codes…
� to which no other n-bit message is mapped

blue = message (n bits)

yellow = code (m bits)

white = intended message

red = received code
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Error Correcting Code

� Use 3 bits to encode 2 
possible messages

� Codewords {000, 111}
� As differ in >2 places, 

can detect and correct 
any “single digit” error!
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Code-words for ECOC learning

� Coding: k labels → m bit codewords
� Good coding:

� 1. row separation:
want “assigned” codes
separated by lots of
“unassigned” codes

� 2. column separation:
each bit i of the codes 
should be uncorrelated
with all other bits j

rows correlated: BAD!

columns correlated: BAD!



71

Finding Good Codes

� Lots of tricks…

� Simple approach:
select the codewords at random.

� if 2m>>k,  then obtain a “good” code with 
high probability 
� such codes work well in practice
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Results

% decrease in error of ECOC over an ID3-like learning algorithm

(% decrease in error of ECOC over a neural network learner
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Types of Ensemble Methods

1. Subsample Training Sample
2. Manipulate Input Features
3. Manipulate Output Targets 
4. Injecting Randomness

� Data
� Learner

5. Algorithm Specific methods
� Other combinations
� Why do Ensembles work?
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4a: Injecting Randomness to Data

Add 0-mean Gaussian noise to input features 
Draw w/replacement from original data, 
but add noise

� For Neural Nets:
� Large improvement on 

+ synthetic benchmark;
+ medical Dx

� [Raviv/Intrator'96]

⋮

L

L
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4b: Injecting Randomness to Learner

� For Neural Nets:
… Different random initial values of weights
But really independent?
Empirical test: [Pamanto, Munro, Doyle 1996]

Cross-validated committees BEST,
then Bagging, then Random initial weights

⋮

L

L
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Randomness – w/ C4.5
� C4.5 uses Info Gain to decide which attribute to 

split on
� Why not consider top 20 attributes; 

choose one at random?
⇒ Produce 200 classifiers (same data)

� To classify new instance: Vote
� Empirical test: [Dietterich/Kong 1995]

Random better than bagging, than single C4.5
� FOIL (for learning Prolog-like rules)

� Chose any test whose info gain within 80% of top
� Ensemble of 11 

STATISTICALLY BETTER
than 1 run of FOIL [Ali/Pazzani'96]
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5: Algorithm Specific (NNs)
Seek “diverse” population of NNs
� Simultaneously train several NN's with penalty for correlations.

Backprop minimizes error function =
sum of MSE and correlations [Rosen'96]

� Use operators to build new structures; keep R “best”
� DIVERSITY + ACCURACY

(like GA [Opitz/Shavlik'96] )
� Give different NNs different auxiliary tasks

� (eg, predict one input feature)
in addition to primary task
Backprop use BOTH in error, so produces different nets
[Abu-Mostafa'90; Caruana'96]

� For each [xi, yi] , re-train NNj with
� [xi, [yi, 1]] if NNj(xi) closest to yi
� [xi, [yi, 0]] otherwise

(So diff NNs get different training values, to help NN learn where it 
performs best) [Munro/Parmanto'97]
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Algorithm Specific (NN #2)
� Person identifies which region of input space

� (Highway, 2lane-road, dirt-road, ...)
Train NNi for regioni … eg, to steer, . . .

� Each NNi also learns to reconstruct image
� Same intermediate layer!

� When “running”, each NNi
� proposes steering direction,
� reconstructs of image
Take direction from NNi with best reconstruction
[Pomerleau]

� Also: train on “bad” situation,
by distorting image, and defining correct label
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Algorithm Specific (DTs, ...)

� “Option tree”:
Decision Tree whose internal nodes have > 1 splits,
each producing own sub-decision-tree
� (Eval: go down each, then vote) [Buntine'90]

� Empirical: accuracy ≈ bagged C4.5 trees
but MUCH more understandable

� Can try different modalities,
but not clear how DIVERSE they will be
� Use cross-validation to check for both accuracy and 

diversity
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Combining Classifier: Linear
Linear Combination

� Unweighted: Bagging, ErrorCorrecting, Boosted (weighted)

� Bayesian Model
If each ht produces class prob. estimates
P( f(x) = y | ht )
should use:
P( f(x) = y ) = ∑t P( f(x) = y | ht ) P(ht)
� Forecasting lit. suggests this is very robust [Clemen'89]

� Variance-based
� Use least squares regression to find weights that max 

accuracy on training data
� Uncorrelated  ⇒ ht 's weight ∝ 1/Var(ht)

Can also deal w/ less correlated subset
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Combining Classifiers: Linear, II
Linear Combination (con’t)

� Gating [Jordan/Jacobs'94]

� Learn classifier's { h1, …,  hT }

� output(x) = ∑t wt ht(x)

� wt(x) = exp( vt x ) / ∑u exp( vu x )
� Problem: lot of parameters to learn:

{vu}, as well as params for all ht`s

� Cross-Validation [Ali/Pazzani'96; Buntine'90]

� Obtain weights from performance on hold-out set
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Combining Classifiers: NonLinear

Stacking [Wolper'92; Breiman'96]
� Given learners { Li(.) },  obtain hi = Li( S )
� Want classifier h*(x) = F( h1(x), …, hT(x) )
� Let ht

(-i) = Lt(S – xi) be classifier learned 
using Lt, on all but instance xi
… so T ×××× |S| classifiers

� Let ýi
(t) = ht

(-i) (xi )
� Now learn F(…) from { [ [ýi

(1), ýi
(2), …, ýi

(T)], yi ] }i
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Stacking

Learner h1(.)

hT(.)

⋮

Learner

Learner

⋮

h2(.)

Learner

F ( h1(x), …, hT(x) )
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Why do ensemble work?

Many reasons justify ensemble approach:
� Bias/Variance decomposition
� A(nother) statistical motivation
� Representational issues
� Computational issues
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Why do ensembles work? 
(AdaBoost)

� Empirical evidence suggests that 
AdaBoost reduces both 
bias and variance part of the error
� bias is mostly reduced in early iterations
� while variance in later ones
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Lesson learned?
� Use Bagging with low bias and high 
variance classifiers 

� e.g., decision trees, 1-nn, ...

� Always try AdaBoost

� Typically produces excellent results. 
� Works especially well with very simple learners 

� eg, decision stumps
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Other explanations?

[T. G. Dietterich. Ensemble methods in machine learning.
Lecture Notes in Computer Science, 1857:1–15, 2000.]
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1. Statistical

� Given a finite amount of data, many hypothesis 
are typically equally good. How can the learning 
algorithm select among them?

� Optimal Bayes classifier recipe:
� take a weighted majority vote of all hypotheses,
� weighted by their posterior probability
� …provably the best possible classifier

� Ensemble learning ≈ approximation of the 
Optimal Bayes rule
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2. Representational
� Optimal target function may not 

be ANY individual classifier, 
but may be (approximated by) 
ensemble averaging

� Eg… a decision trees 
� boundaries are axis-parallel 

hyperplanes
� By averaging a large number of 

such “staircases”, can approximate 
diagonal decision boundary with 
arbitrarily good accuracy
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Representational (example 2)
� Space: [0,1] x [0,1]
� Hypothesis space H of “discs”

h1, h2, h3 ∈∈∈∈ H

hensemble cannot be return by “base” learner,

but hensemble can be returned by ensemble
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3. Computational

� Essentially all learning alg’s search 
through some space of hypotheses
to find one that is 
“good enough” for the given training data

� As many interesting hypothesis spaces are 
huge/infinite, heuristic search is essential 
� (eg ID3 greedily search in space of decision trees)

� Learner might get stuck in a local minimum
� One strategy for avoiding local minima: 

repeat the search many times with random 
restarts
→ bagging
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Effect of Bagging
� If bootstrap replicate approx’n is correct, 

then bagging would reduce variance 
without changing bias

� In practice, bagging can reduce 
both bias and variance

� For high-bias classifiers, it can reduce bias
(but may increase Vu)

� For high-variance classifiers, 
it can reduce variance classifiers, 
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Summary of Ensembles
� Ensembles: basic motivation 

creating a committee of experts is typically more 
effective than creating a single supergenius

� Key issues:
� Generating base models
� Integrating responses from base models

� Popular ensemble techniques
� manipulate training data: bagging and boosting

(ensemble of “experts”, each specializing on different portions 
of the instance space)

� manipulate output values: error-correcting output coding 
(ensemble of “experts”, each predicting 1 bit of the {multibit} 
full class label)

� Why does ensemble learning work?
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Comparison of Ensemble Methods
Pairwise comparison of 4 ensemble methods (W-L-T)

… added 20% synthetic class label noise

[T. G. Dietterich. Ensemble methods in machine learning.
Lecture Notes in Computer Science, 1857:1–15, 2000.]
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Specific Problems
� AdaBoost is good way to construct ensemble of DTs

� But if data noisy: AdaBoost places high weight on incorrectly-
labeled data

� ⇒ constructs bad classifier
� ErrorCorrected Output does not work well with local 

algs (like nearest neighbor)
� ? Combination of Ensemble methods

Ensemble

Methods

Learning

Algorithms××××

� General Problem:
� lots of memory to store ensemble 200 DTs: 59M !
� how to interpret

� (one DT easy to understand; but 200 of them?)
� CPU time


