
1

Ensemble Methods

Some material from Tom Dietterich, E Roberto, M Botta, R Schapire

HTF: 8.7, 10, 16
B: 14 – 14.3

R Greiner
Cmput 466 / 551

2

Motivation
� If 1 learner is good

� produces 1 effective classifier
maybe many would be better

� Eg, why not learn { h1, h2, h3 }, then
� h*(x) = majority{ h1(x), h2(x), h3(x) }

� If hi’s make INDEPENDENT mistakes,
h* is more accurate!
� Eg: If err(hi) = ε, then err(h*) = 3ε2

(0.01 → 0.0003)
� If use majority of 2k–1 hyp, then

3

Learn then Combine Many
Classifiers

S

Original Data Classifier

Learner1 h1(.)

h*(.)Combiner

h2(.)Learner2

hT(.)LearnerT

⋮⋮

4

Challenges

1. How to generate the base classifiers?
� h1, h2, …
� Different learners, Boostrap samples, …

2. How to integrate/combine them?
� h*(x) = F(h1(x), h2(x), …)
� Average, Weighted Average, Instance-specific decisions, …

5

Types of Ensemble Methods
1. Subsample Training Sample

� Bagging
� Boosting

2. Manipulate Input Features
3. Manipulate Output Targets

� ECOC

4. Injecting Randomness
� Data
� Algorithm

5. Algorithm Specific methods
� Other combinations
� Why do Ensembles work?

6

Types of Ensemble Methods

1. Subsample Training
Sample

2.2.2. Manipulate Input Manipulate Input Manipulate Input
FeaturesFeaturesFeatures

3.3.3. Manipulate Output Manipulate Output Manipulate Output
Targets Targets Targets

4.4.4. Injecting RandomnessInjecting RandomnessInjecting Randomness
5.5.5. Algorithm Specific Algorithm Specific Algorithm Specific

methodsmethodsmethods

⋮

L

L

7

Types of Ensemble Methods

1.1.1. Subsample Training Subsample Training Subsample Training
SampleSampleSample

2. Manipulate Input
Features

3.3.3. Manipulate Output Manipulate Output Manipulate Output
Targets Targets Targets

4.4.4. Injecting RandomnessInjecting RandomnessInjecting Randomness
5.5.5. Algorithm Specific Algorithm Specific Algorithm Specific

methodsmethodsmethods

⋮

L

L

8

Types of Ensemble Methods

1.1.1. Subsample Training Subsample Training Subsample Training
SampleSampleSample

2.2.2. Manipulate Input Manipulate Input Manipulate Input
FeaturesFeaturesFeatures

3. Manipulate Output
Targets

4.4.4. Injecting RandomnessInjecting RandomnessInjecting Randomness
5.5.5. Algorithm Specific Algorithm Specific Algorithm Specific

methodsmethodsmethods

⋮

L

L

9

Types of Ensemble Methods

1.1.1. Subsample Training Subsample Training Subsample Training
SampleSampleSample

2.2.2. Manipulate Input Manipulate Input Manipulate Input
FeaturesFeaturesFeatures

3.3.3. Manipulate Output Manipulate Output Manipulate Output
Targets Targets Targets

4. Injecting Randomness
5.5.5. Algorithm Specific Algorithm Specific Algorithm Specific

methodsmethodsmethods

⋮

L

L

10

Types of Ensemble Methods

1.1.1. Subsample Training Subsample Training Subsample Training
SampleSampleSample

2.2.2. Manipulate Input Manipulate Input Manipulate Input
FeaturesFeaturesFeatures

3.3.3. Manipulate Output Manipulate Output Manipulate Output
Targets Targets Targets

4. Injecting Randomness
5.5.5. Algorithm Specific Algorithm Specific Algorithm Specific

methodsmethodsmethods

⋮

L

L

11

1. Subsample Training Sample

� Unstable: Decision-tree, neural network, rule learning alg's
� Stable: Linear regression, nearest neighbor, linear threshold

algorithms, …
� Subsampling is best for unstable learners

� Techniques:
� (Cross-Validated Committees)
� Bagging
� Boosting

Defn: Learner is UNSTABLE if

its output classifier undergoes major changes

in response to small changes in training data

12

1a: Bagging:
Bootstrap AGgregating

� For b = 1, …, T do
� Sb = bootstrap replicate of S
� Apply learning algorithm to Sb to learn hb

� To classify new point x,
using unweighted vote:









= ∑

=

)(
1

)(ˆ

1

xh
T

signxh
T

i

i

ĥ(x) = argmaxr { |hi(x) = r| }

13

Boostrap Replicates

S

S1

Original Data Bootstrap Replicate

Learning
Alg h1(.)

Classifier

Form S1 by drawing |S| instances from S,

with replacement

S S1

:

14

Boostrap Replicates

S

S1

� Each Si is bootstrap replicate
� hi = classifier based on Si
� αi = 1/T

Original Data Bootstrap Replicate Classifier

Learning
Alg h1(.)

Learning
Alg hT(.)ST

⋮ ⋮ h*(x) = ∑iαihi(x)

15

CART vs Boosted-CART

� 100 bagged trees
� shades of blue/red indicate strength of vote for

particular classification

16

Regression Results
S

q
u

a
re

d
 E

rr
o
r

L
o
ss

17

Classification Results
M

is
cl

a
ss

if
ic

a
ti

o
n

 R
a
te

18

Expected Error
� Assume hi(x) = y(x) + εi(x)
� Ex[(hi(x) – y(x))2] = Ex[εi(x)2]
� … so average MSError (over T regressors) is

EAV = 1/T ∑i Ex[εi(x)2]
� What is average error of about ĥ(x) ?

� Assume εi(x) each 0-mean and uncorrelated
Ex[εi(x)] = 0
Ex[εi(x) εj(x)] = 0 for i≠j

Eĥ = Ex[y(x) – 1/T ∑i hi(x)]2

= Ex[1/T ∑i εi(x)]2 = 1/T EAV !!
� In general: Eĥ ≤≤≤≤ EAV

)(
1

)(ˆ

1

xh
T

xh
T

i

i∑
=

=

19

Estimated Bias, Variance
of Bagging

� Estimating bias and variance using same L
bootstrap samples,
� Bias = Ex[h(x) – y] (same as before)
� Variance = Σi (hi(x) – ĥ(x))2 / (T–1) … = 0 !

⇒ (Given this estimate of variance) Bagging …
� removes variance
� leaves bias unchanged

� Actually…
� bagging only reduces variance
� tends to slightly increase bias

20

Bias/Variance Heuristics
� Models that fit data poorly have high bias:

� “inflexible models”,
� eg, linear regression, regression stumps

� Models that can fit data very well have
low bias but often high variance:
� “flexible” models
� eg, nearest neighbor regression, regression trees

⇒ bagging of flexible models can
reduce variance while
benefiting from low bias

21

Types of Ensemble Methods

1. Subsample Training Sample
� Bagging
� Boosting

2. Manipulate Input Features
3. Manipulate Output Targets

� ECOC

4. Injecting Randomness
5. Algorithm Specific methods
� Other combinations
� Why do Ensembles work?

22

1b: Boosting

� Boosting = general method of using…
� “weak” learning algorithm L(…)

� can reliably produce classifiers (at least) slightly
better than random,

� say, accuracy ≥ 55% (in two-class setting)

to produce highly accurate predictor
� single classifier with very high accuracy,

� say, 99%

… given sufficient data…

23

Strong vs Weak Learnability
� boosting’s roots are in “PAC” learning model (Valiant)

� Given random examples from unknown, arbitrary
distribution…

� strong PAC learning algorithm:
� for any distribution, with high probability,

given poly # of examples, polynomial time,
� can always find classifier with

arbitrarily small generalization error
� weak PAC learning algorithm

� same… but generalization error only needs to be
slightly better than random guessing (½ − γ)

� [Kearns & Valiant ’88]:
� does weak learnability imply strong learnability?

24

Early Boosting Algorithms
� [Kearns & Valiant ’88]:

� does weak learnability imply strong learnability?

� YES! [Schapire ’89]:
� provable boosting algorithm

� [Freund ’90]:
� “optimal” algorithm that “boosts by majority”

� [Drucker, Schapire & Simard ’92]:
� first experiments using boosting
� limited by practical drawbacks

25

26

Boosting Overview

Distribution: D1

Learner

h1(x)

h*(x) = sign(∑t αt ht(x))

D2

Learner

h2(x)

DT

Learner

hT(x)

. . . .

. . . .
∑i Dt(i) = 1

27

A Formal Description of Boosting

� Training set S = {(x1, y1), ... , (xm, ym) }
� yi∈ {−1, +1} correct label of instance xi ∈ X

� for t = 1, ... ,T:
� construct distribution Dt on {1, ... ,m}
� find weak classifier ht : X → {−1, +1}

with small error εt on Dt :
εt = Pri∈Dt [ht (xi) ≠ yi] =

� output final classifier h* based on { ht(x) }

28

AdaBoost

� constructing Dt:
� D1(i) = 1/m
� given Dt and ht :

[Schapire, Freund]

where

� final classifier:

Zt = normalization constant

εεεεt =

h*(x) = sign(∑t αt ht(x))

ε < ½, so α > 0, so e-α <1, so …

if correct, Dt+1(i) < Dt(i) … if wrong, Dt+1(i) > Dt(i)

29

Toy Example

here: each weak classifiers = a vertical or horizontal half-planes

30

Round 1

31

Round 2

32

Round 3

33

Final Classifier

h*

=

34

Learn from weighted instances?

� How can a learning alg use distribution D ?

1. Reweighting

� Can modify many learning algorithms to deal with
weighted instances:
� ID3:

� entropy, information-gain equations use COUNTs #(X=3, C=+)
… assumes all weights=1

� Modify to use weight of each instance

� Naïve Bayes: ditto
� k-NN: multiple vote from an instance by its weight

35

Learn from weighted instances?

Resampling

� Given dataset S and distribution D,
produce new dataset S’ that embodies D
� Stochastically

� Using weight ratio …

� How many?

� More is good…

� Typically |S’| = |S|

� If possible, use Re-weighting

� Re-sampling is only an approximation

36

Stochastic Resampling…
� Let S’ be the empty set
� Let D = (w1, ..., wn) be the weights of

examples in S
� wi = D(i) corresponds to example xi

� While not-enough-samples
� Draw n∈[0..1] according to U(0,1)
� S’←S’ ∪ {xk} where k is such that

� return S’

∑∑
=

−

=

≤<
k

i

i

k

i

i wnw
1

1

1

37

Comparison
M

is
cl

a
ss

if
ic

a
ti

o
n

 R
a
te

Friedman, Hastie, Tibshirani [1998]

38

Analyzing the Training Error

Theorem:
� Let γt = ½ – εt
� training_error(h*) ≤ exp(−2 ∑t γt

2)

� If ∀t : γt ≥ γ > 0
then training_error(h*) ≤ exp(−2γ2T)

� AdaBoost is adaptive:
� does not need to know γ or T a priori
� can exploit γt >> γ

39

Proof

� f(x) = ∑t αt ht(x) ⇒ h*(x) = sign(f(x))

� Step 1: unwrapping recurrence:

D1

40

Proof (II)
� Step 2: training_error(h*) ≤ ∏t Zt

� Proof: training_error(h*)
h*(xi)

41

Proof (III)

εεεεt =

42

Proof (IV)
� Step 4:

�

� Suffices to show

� True if, for all a ∈ [0, ¼]
g(a) = (1 – 4a) – e-4a ≤ 0

� g(0) = 1 – 0 – e0 = 0
g’(a) = –4 – (–4) e-4a = 4 (e-4a – 1) ≤≤≤≤ 0

a
eaa

241
4

1
0 −≤−≤≤∀

241)
2

1
(1

2

1
41(2 γγγεε −=








−−








−=−

()22exp1(2 γεε −≤−

43

How Will Test Error Behave?
(A First Guess)

Expect…
� training error to continue to drop (or reach 0)
� test error to increase when h* becomes

“too complex”
� “Occam’s razor”
� overfitting

� hard to know when to stop training

44

Actual Typical Run
(boosting C4.5 on “letter” dataset)

� test error does not increase,
even after 1000 rounds
� (total size > 2,000,000 nodes)

� test error continues to drop,
even after training error is 0!

� Occam’s razor: “simpler rule is better”...
appears to not apply!

45

A Better Story: … using Margins
� key idea:

� training error only measures whether classifications are
right or wrong

� should also consider confidence of classifications

� h* is weighted majority vote of weak classifiers
� measure confidence by margin

= strength of the vote
= (weighted fraction voting correctly)

− (weighted fraction voting incorrectly)

[Schapire, Freund, Bartlett & Lee]

h* h*

46

Empirical: Margin Distribution
� margin distribution

= cumulative distribution of margins of training ex’s

47

Theoretical Evidence: Analyzing
Boosting Using Margins

� Theorem:
Large margins ⇒ better bound on generalization error

� (independent of # of rounds ≈ complexity of h*)
� proof idea: if all margins are large, then can approximate

final classifier h* by a much smaller classifier
(just as polls can predict not-too-close election)

� Theorem:
Boosting tends to increase margins of training examples

� (given weak learning assumption)
� proof idea: similar to training error proof

� so:
although final classifier h* is getting larger,
margins are likely to be increasing,
so final classifier h* actually getting close to a simpler classifier,
driving down the test error

48

More Technically...
� with high probability, ∀θ > 0 :

(Pr[] = empirical probability)
� bound depends on

� m = # training examples
� d = “complexity” of weak classifiers
� entire distribution of margins of training examples

� Pr[margin ≤ θ] → 0 exponentially fast (in T)
if (error of ht on Dt) < ½ − θ (∀t)
� so: if weak learning assumption holds,

then all examples will quickly have “large” margins

49

UCI Experiments
� tested AdaBoost on UCI benchmarks
� used:

� C4.5 (Quinlan’s decision tree algorithm)
� “decision stumps”: very simple rules of thumb that

test on single attributes

50

UCI Results

51

Multiclass Problems
[Schapire, Freund]

� can prove same bound on error if ∀t : εt ≤ ½
� in practice, not usually a problem for “strong” weak

learners (e.g., C4.5)
� significant problem for “weak” weak learners

(e.g., decision stumps)

� instead, reduce to binary…

dire
ct a

ppr
oac

h

(Ad
aBo

ost.
M1):

� y ∈ Y = {1, . . . , k}

h*(x)

52

Reducing Multiclass to Binary
� If labels = {a, b, c, d, e}
� replace each training example by five

{−1,+1}-labeled examples:

[Schapire, Singer]

� predict with label receiving most (weighted) votes

53

AdaBoost.MH
� can prove:

� reflects fact that small number of errors in
binary predictors can cause overall prediction
to be incorrect

� extends immediately to multi-label case
� (more than one correct label per example)

h*

54

Other Uses of Boosting
� Output code

� [Schapire, Allwein & Singer] [Dietterich & Bakiri]

� Ranking problems
� [Schapire, Freund, Iyer & Singer]

� Confidence-rated predictions
� [Schapire & Singer]

� Face Detection
� [Viola & Jones]

� Active Learning
� [Lewis & Gale] [Abe & Mamitsuka]

� Applications:
� Text Categorization [Schapire & Singer]
� Human-computer Spoken Dialogue

[Schapire,Rahim, Di Fabbrizio, Dutton, Gupta, Hollister &
Riccardi]

55

Application: Detecting Faces
� problem: find faces in photograph or movie
� weak classifiers: detect light/dark rectangles in image

� many clever tricks to make extremely fast and
accurate

[Viola & Jones]

56

Practical Advantages of AdaBoost
� fast
� simple and easy to program
� no parameters to tune (except T, sometimes)
� flexible — can combine with any learning algorithm
� no prior knowledge needed about weak learner
� provably effective, given weak classifier

� → shift in mind set — goal now is merely to find classifiers
barely better than random guessing

� versatile
� can use with data that is textual, numeric, discrete, etc.
� has been extended to learning problems well beyond binary

classification

57

Caveats
� performance of AdaBoost depends on

data and weak learner
� consistent with theory, AdaBoost can fail if…

� weak classifiers too complex
→ overfitting

� weak classifiers too weak (γt → 0 too quickly)
→ underfitting
→ low margins → overfitting

� empirically, AdaBoost seems especially
susceptible to uniform noise

58

Conclusions wrt Boosting
� boosting is a practical tool for classification and

other learning problems
� grounded in rich theory
� performs well experimentally
� often (but not always!) resistant to overfitting
� many applications and extensions

� many ways to think about boosting
� none is entirely satisfactory by itself,

but each useful in its own way
� considerable room for further theoretical and

experimental work

59

Conclusions wrt Boosting
Boosting is a practical tool for classification

and other learning problems
� grounded in rich theory
� performs well experimentally
� often (but not always!) resistant to

overfitting
� many applications and extensions

60

Effect of Boosting
� In the early iterations,

boosting primarily reduces bias
� In later iterations,

boosting primarily reduces variance
(apparently)

61

Exponential Loss
� AdaBoost minimizes “exponential loss”…

where f(x) = ∑t αt ht (x)
� exponential loss is an

upper bound on 0-1
(classification) loss

� On each round,
AdaBoost greedily chooses
αt and ht to minimize loss

62

Coordinate Descent
� {g1, . . . , gN} = all weak classifiers
� want to find λ1, ..., λN to minimize

[Breiman]

� AdaBoost uses coordinate descent:
� initialize all λj = 0
� each round:

� choose one coordinate λt (corresponding to ht) and
� update (increment by αt)

� choose update causing biggest decrease in loss
� (powerful technique for minimizing over huge space of

functions)

63

Types of Ensemble Methods

1. Subsample Training Sample
2. Manipulate Input Features
3. Manipulate Output Targets
4. Injecting Randomness
5. Algorithm Specific methods
� Other combinations
� Why do Ensembles work?

64

2: Manipulate INPUT FEATURES

� Different learners see different subsets of features
(of each of the training instances)

� Eg: 119 features for classing volcanoes on Venus
� Divide into 8 disjoint subsets (by hand)...
� and use 4 networks for each
� … 32 NN classifiers

Did VERY well [Cherkauer'96]

� Tried w/sonar dataset – 25 input features
Did NOT work [Tumer/Ghost'96]

� Technique works best when
input features highly redundant

⋮

65

3: Manipulate OUTPUT Targets
Spse K outputs Y = { y1, … yK }

a. Could learn 1 classifier, into Y (|Y| values)

b. Or could learn K binary classifiers:
� y1 vs Y – y1

� y2 vs Y – y2

� . . .

then vote.

c. Build ln K binary classifiers
� hi specifies ith bit of index ∈ {1, 2, …, K }
� Each hi sub-classifier splits output-values into 2 subsets

� h0(x) is 1 if “y1, …, y8”; else 0
� h1(x) is 1 if “y1 – y4; y9 – y12”; else 0
� h2(x) is 1 if “y1, y2; y5, y6; y9, y10; y13, y14”; else 0
� ...

66

Error Correcting Output Code
� Why not > ln K binary classifiers . . .

� “Error-Correcting Codes” (some redundancy)
� [Dietterich/Bakiri'95]

� View [h1(x), …, hm(x)] as code-word;
return label yi with nearest codeword

� Better: can combine with AdaBoost
� [Schapire'97]

67

Recognizing Handwritten Number

� “Obvious” approach: learn F: Scribble → {0,1,2,…,9}
� …doesn’t work very well (too hard!)

� Or… “decompose” the learning task into 6 “subproblems”

1. learn 6 classifiers, one for each “sub-problem ”
2. to classify a new scribble:

� Run each classifier
� Predict the class whose code-word is closest (Hamming

distance) to the predicted code

68

Error-correcting Codes
� Spse we want to send n-bit messages through a noisy channel
� To ensure robustness to noise,

map each n-bit message into an m-bit code (m>n)
� note |codes| >> |messages|

� To “decode” a msg,
translate it to message corresponding to the “nearest” code
� (Hamming distance)

� Key to robustness: assign the codes so that …
� each n-bit “clean” message is surrounded by a “buffer zone” of similar m-bit codes…
� to which no other n-bit message is mapped

blue = message (n bits)

yellow = code (m bits)

white = intended message

red = received code

69

Error Correcting Code

� Use 3 bits to encode 2
possible messages

� Codewords {000, 111}
� As differ in >2 places,

can detect and correct
any “single digit” error!

70

Code-words for ECOC learning

� Coding: k labels → m bit codewords
� Good coding:

� 1. row separation:
want “assigned” codes
separated by lots of
“unassigned” codes

� 2. column separation:
each bit i of the codes
should be uncorrelated
with all other bits j

rows correlated: BAD!

columns correlated: BAD!

71

Finding Good Codes

� Lots of tricks…

� Simple approach:
select the codewords at random.

� if 2m>>k, then obtain a “good” code with
high probability
� such codes work well in practice

72

Results

% decrease in error of ECOC over an ID3-like learning algorithm

(% decrease in error of ECOC over a neural network learner

73

Types of Ensemble Methods

1. Subsample Training Sample
2. Manipulate Input Features
3. Manipulate Output Targets
4. Injecting Randomness

� Data
� Learner

5. Algorithm Specific methods
� Other combinations
� Why do Ensembles work?

74

4a: Injecting Randomness to Data

Add 0-mean Gaussian noise to input features
Draw w/replacement from original data,
but add noise

� For Neural Nets:
� Large improvement on

+ synthetic benchmark;
+ medical Dx

� [Raviv/Intrator'96]

⋮

L

L

75

4b: Injecting Randomness to Learner

� For Neural Nets:
… Different random initial values of weights
But really independent?
Empirical test: [Pamanto, Munro, Doyle 1996]

Cross-validated committees BEST,
then Bagging, then Random initial weights

⋮

L

L

76

Randomness – w/ C4.5
� C4.5 uses Info Gain to decide which attribute to

split on
� Why not consider top 20 attributes;

choose one at random?
⇒ Produce 200 classifiers (same data)

� To classify new instance: Vote
� Empirical test: [Dietterich/Kong 1995]

Random better than bagging, than single C4.5
� FOIL (for learning Prolog-like rules)

� Chose any test whose info gain within 80% of top
� Ensemble of 11

STATISTICALLY BETTER
than 1 run of FOIL [Ali/Pazzani'96]

77

5: Algorithm Specific (NNs)
Seek “diverse” population of NNs
� Simultaneously train several NN's with penalty for correlations.

Backprop minimizes error function =
sum of MSE and correlations [Rosen'96]

� Use operators to build new structures; keep R “best”
� DIVERSITY + ACCURACY

(like GA [Opitz/Shavlik'96])
� Give different NNs different auxiliary tasks

� (eg, predict one input feature)
in addition to primary task
Backprop use BOTH in error, so produces different nets
[Abu-Mostafa'90; Caruana'96]

� For each [xi, yi] , re-train NNj with
� [xi, [yi, 1]] if NNj(xi) closest to yi
� [xi, [yi, 0]] otherwise

(So diff NNs get different training values, to help NN learn where it
performs best) [Munro/Parmanto'97]

78

Algorithm Specific (NN #2)
� Person identifies which region of input space

� (Highway, 2lane-road, dirt-road, ...)
Train NNi for regioni … eg, to steer, . . .

� Each NNi also learns to reconstruct image
� Same intermediate layer!

� When “running”, each NNi
� proposes steering direction,
� reconstructs of image
Take direction from NNi with best reconstruction
[Pomerleau]

� Also: train on “bad” situation,
by distorting image, and defining correct label

79

Algorithm Specific (DTs, ...)

� “Option tree”:
Decision Tree whose internal nodes have > 1 splits,
each producing own sub-decision-tree
� (Eval: go down each, then vote) [Buntine'90]

� Empirical: accuracy ≈ bagged C4.5 trees
but MUCH more understandable

� Can try different modalities,
but not clear how DIVERSE they will be
� Use cross-validation to check for both accuracy and

diversity

80

Combining Classifier: Linear
Linear Combination

� Unweighted: Bagging, ErrorCorrecting, Boosted (weighted)

� Bayesian Model
If each ht produces class prob. estimates
P(f(x) = y | ht)
should use:
P(f(x) = y) = ∑t P(f(x) = y | ht) P(ht)
� Forecasting lit. suggests this is very robust [Clemen'89]

� Variance-based
� Use least squares regression to find weights that max

accuracy on training data
� Uncorrelated ⇒ ht 's weight ∝ 1/Var(ht)

Can also deal w/ less correlated subset

81

Combining Classifiers: Linear, II
Linear Combination (con’t)

� Gating [Jordan/Jacobs'94]

� Learn classifier's { h1, …, hT }

� output(x) = ∑t wt ht(x)

� wt(x) = exp(vt x) / ∑u exp(vu x)
� Problem: lot of parameters to learn:

{vu}, as well as params for all ht`s

� Cross-Validation [Ali/Pazzani'96; Buntine'90]

� Obtain weights from performance on hold-out set

82

Combining Classifiers: NonLinear

Stacking [Wolper'92; Breiman'96]
� Given learners { Li(.) }, obtain hi = Li(S)
� Want classifier h*(x) = F(h1(x), …, hT(x))
� Let ht

(-i) = Lt(S – xi) be classifier learned
using Lt, on all but instance xi
… so T ×××× |S| classifiers

� Let ýi
(t) = ht

(-i) (xi)
� Now learn F(…) from { [[ýi

(1), ýi
(2), …, ýi

(T)], yi] }i

83

Stacking

Learner h1(.)

hT(.)

⋮

Learner

Learner

⋮

h2(.)

Learner

F (h1(x), …, hT(x))

84

Why do ensemble work?

Many reasons justify ensemble approach:
� Bias/Variance decomposition
� A(nother) statistical motivation
� Representational issues
� Computational issues

85

Why do ensembles work?
(AdaBoost)

� Empirical evidence suggests that
AdaBoost reduces both
bias and variance part of the error
� bias is mostly reduced in early iterations
� while variance in later ones

86

Lesson learned?
� Use Bagging with low bias and high
variance classifiers

� e.g., decision trees, 1-nn, ...

� Always try AdaBoost

� Typically produces excellent results.
� Works especially well with very simple learners

� eg, decision stumps

87

Other explanations?

[T. G. Dietterich. Ensemble methods in machine learning.
Lecture Notes in Computer Science, 1857:1–15, 2000.]

88

1. Statistical

� Given a finite amount of data, many hypothesis
are typically equally good. How can the learning
algorithm select among them?

� Optimal Bayes classifier recipe:
� take a weighted majority vote of all hypotheses,
� weighted by their posterior probability
� …provably the best possible classifier

� Ensemble learning ≈ approximation of the
Optimal Bayes rule

89

2. Representational
� Optimal target function may not

be ANY individual classifier,
but may be (approximated by)
ensemble averaging

� Eg… a decision trees
� boundaries are axis-parallel

hyperplanes
� By averaging a large number of

such “staircases”, can approximate
diagonal decision boundary with
arbitrarily good accuracy

90

Representational (example 2)
� Space: [0,1] x [0,1]
� Hypothesis space H of “discs”

h1, h2, h3 ∈∈∈∈ H

hensemble cannot be return by “base” learner,

but hensemble can be returned by ensemble

91

3. Computational

� Essentially all learning alg’s search
through some space of hypotheses
to find one that is
“good enough” for the given training data

� As many interesting hypothesis spaces are
huge/infinite, heuristic search is essential
� (eg ID3 greedily search in space of decision trees)

� Learner might get stuck in a local minimum
� One strategy for avoiding local minima:

repeat the search many times with random
restarts
→ bagging

92

Effect of Bagging
� If bootstrap replicate approx’n is correct,

then bagging would reduce variance
without changing bias

� In practice, bagging can reduce
both bias and variance

� For high-bias classifiers, it can reduce bias
(but may increase Vu)

� For high-variance classifiers,
it can reduce variance classifiers,

93

Summary of Ensembles
� Ensembles: basic motivation

creating a committee of experts is typically more
effective than creating a single supergenius

� Key issues:
� Generating base models
� Integrating responses from base models

� Popular ensemble techniques
� manipulate training data: bagging and boosting

(ensemble of “experts”, each specializing on different portions
of the instance space)

� manipulate output values: error-correcting output coding
(ensemble of “experts”, each predicting 1 bit of the {multibit}
full class label)

� Why does ensemble learning work?

94

Comparison of Ensemble Methods
Pairwise comparison of 4 ensemble methods (W-L-T)

… added 20% synthetic class label noise

[T. G. Dietterich. Ensemble methods in machine learning.
Lecture Notes in Computer Science, 1857:1–15, 2000.]

95

Specific Problems
� AdaBoost is good way to construct ensemble of DTs

� But if data noisy: AdaBoost places high weight on incorrectly-
labeled data

� ⇒ constructs bad classifier
� ErrorCorrected Output does not work well with local

algs (like nearest neighbor)
� ? Combination of Ensemble methods

Ensemble

Methods

Learning

Algorithms××××

� General Problem:
� lots of memory to store ensemble 200 DTs: 59M !
� how to interpret

� (one DT easy to understand; but 200 of them?)
� CPU time

