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Some material from Tom Dietterich, E Roberto, M Botta, R Schapire
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Motivation

= If 1 learner is good
= produces 1 effective classifier

maybe many would be better

= Eg, why not learn { h;, h,, h; }, then
= h7(x) = majority{ h;(x), hy(x), h5(x) }

= If h's make INDEPENDENT mistakes,
h* is more accurate!

« Eg: If err(h,) =¢, then err( h*) = 3¢?
(0.01 — 0.0003)

= If use majority of 2k~1 hyp, then | err( h ) = (2 1)




Learn then Combine Many




i Challenges

1. How to generate the base classifiers?
= hy, h, ...

= Different learners, Boostrap samples, ...

2. How to integrate/combine them?
= h(X) = F( hy(x), hy(x), ...)

= Average, Weighted Average, Instance-specific decisions, ...



i Types of Ensemble Methods

%A Subsample Training Sample

= Bagging
= Boosting

Manipulate Input Features
Manipulate Output Targets

2.

T~

ECOC
. Injecting Randomness
= Data
= Algorithm

5. Algorithm Specific methods
= Other combinations
= Why do Ensembles work?
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‘L Types of Ensemble Methods
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3.

i Types of Ensemble Methods

Manipulate Output
Targets
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‘L Types of Ensemble Methods

Training

_\
-

.
(D

. 'o‘\

(1N

Y (—

_ E‘

)
~
(P

.

Lo D)

—_—

~
=
(D

(1)
C

| S—
—

Inotre

N
©

11
(L

o (1~ —
(—
/.
(D

U (o

—

=
(D

OutoLr

II—/
i
)
Iﬂ
(DO
- =

(—
@)

Q)
/0
G

Injecting Randomness

Algoritrirm Spac
rrecnodds

\

7o N

(

P A

/T \

)I‘*

‘



‘L Types of Ensemble Methods
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1. Subsample Training Sample

Defn: Learner is UNSTABLE if
its output classifier undergoes major changes

in response to Small changes in training data

= Unstable: Decision-tree, neural network, rule learning alg's

= Stable: Linear regression, nearest neighbor, linear threshold
algorithms, ...

= Subsampling is best for unstable learners

= Techniques:
= (Cross-Validated Committees)

= Bagging
= Boosting

11



1a: Bagging:

Bootstrap AGgregating

= Forb=1,.. T do
= S, = bootstrap replicate of S
= Apply learning algorithm to S, to learn A,

= 10 classify new point X,
using unweighted vote:

hA(x) = Sign (%ZT: hi(x)j

N

A(x)

= argmax, { [h(x) =r| }

12



Original Data

S

Form S, by drawing IS instances from S,
with replacement

‘L Boostrap Replicates

Bootstrap Replicate Classifier

S

.
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Boostrap Replicates

Original Data Bootstrap Replicate Classifier

] — @D

\
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= Each S, is bootstrap replicate
= h, =classifier based on S,
m O = l/T 14




‘L CART vs Boosted-CART

Q 100 bagged trees |

= shades of blue/red indicate strength of vote for
particular classification
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Regression Results
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‘L Classification Results

Misclassification Rate

A -

CART
Bagged CART

Diabetes

Breast

lonosphere

Heart

Soybean

Glass

Waveform
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i Expected Error o = L3 a0

= Assume h(x) = y(x) + &(x)

= E[ (hi(x) —y(x) )* ] = E,[ &(x)*]

= ... SO average MSError (over T regressors) is
Eav = 1T 2 E [ &(x)? ]

= What is average error of about h(x) ?
= Assume ¢(x) each 0-mean and uncorrelated

El e =
@f% e-;Ex; e;-ix)_l= 0 forizj—

Eq = E[ y(X) — 1/T 2. hi(x) 12
=E[1/T2e(x)]? =1/TEy I
= Ingeneral: E; <E,, 18




Estimated Bias, Variance
i of Bagging

= Estimating bias and variance using same L
bootstrap samples,
= Bias = E[ h(x) -y ] (same as before)
= Variance = ¥, (hi(x) = h(x) )2/ (T-1) ...=0!

= (Given this estimate of variance) Bagging ...
= Femoves variance
= leaves bias unchanged

= Actually...
= bagging only reguces variance
= tends to slightly increase bias




Bias/Variance Heuristics

= Models that fit data poorf/y have high bias:
= inflexible models”,
= eg, linear regression, regression stumps

= Models that can fit data very wel// have
low bias but often high variance:
= flexible” models
= €g, nearest neighbor regression, regression trees

— bagging of flexible models can
reduce variance while
benefiting from low bias

20



i Types of Ensemble Methods

1. Subsample Training Sample

\ = Bagging

= Boosting
2. Manipulate Input Features

3. Manipulate Output Targets
« ECOC

4. Injecting Randomness

5. Algorithm Specific methods
= Other combinations

=  Why do Ensembles work?
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i 1b: Boosting

= Boosting = general method of using...

= 'weak” learning algorithm L(...)

= can reliably produce classifiers (at least) slightly
better than random,
= Say, accuracy > 55% (in two-class setting)

to produce highly accurate predictor

= Ssingle classifier with very high accuracy,
= say, 99%

... given sufficient data...

22



Strong vs Weak Learnability

oosting’s roots are in "PAC" learning model (valiant)

Given random examples from unknown, arbitrary
distribution...
s Strong PAC learning algorithm:

» for any distribution, with high probability,
given poly # of examples, polynomial time,

= can always find classifier with
arbitrarily small generalization error

s weak PAC learning algorithm

= Same... but generalization error only needs to be
slightly better than random guessing (V2 — v)

= [Kearns & Valiant ‘88]:
= does weak learnability imply strong learnability? 2




i Early Boosting Algorithms

= [Kearns & Valiant ‘88]:

= does weak learnability imply strong learnability?
= YES! [Schapire ‘89]:

= provable boosting algorithm
= [Freund 90]:

= optimal” algorithm that “boosts by majority”

= [Drucker, Schapire & Simard 92]:

= first experiments using boosting
= limited by practical drawbacks

24



AdaBoost

o [Freund & Schapire '95]:
introduced “AdaBoost” algorithm
strong practical advantages over previous boosting

algorithms
e experiments and applications using AdaBoost:
Drrucker & Cortes '96) Abney, Schapire & Singsr '09] Tieu & Viola '00]
Jackson & Craven '96] Harunz, Shirai & Ooyama '99] [Walker, Rambow & Rogati '01]
Freund & Schapire "06] Cohen & Singer' 99] Rochery, Schapire, Rahim & Gupta '01]
Quinlan "96) Dietterich '00] Merler, Furlanelle, Larcher & Shoner '01]
Breiman '96] Schapire & Singer '00] D Fabbrizio, Dutton, Gupta et al. '02]
Maclin & Opitz '97) Collins "00] Qu, Adam, Yasui et al. '02]
[Bauer & Kohavi '07] [Escuders, Marquez & Rigau '00] [Tur, Schapire & Hakkani-Tir '03]
Schwenk & Bengio '08] lyar, Lewis, Schapire et al. "00] [Vicla & Jones '04]
Schapire, Singer & Singhal '98] Onoda, Ratsch & Miller "00] Middendorf, Kundaje, Wiggins =t al. '04]

e continuing development of theory and algorithms:

Breiman '98, '99] Duffy & Helmbald '99, '02] Kaltchinskii, Panchenko & Lozano '01]
Schapire, Freund, Bartlett & Lee '08] [Freund & Mason '00] Collins, Schapire & Singer '02]

Grove & Schuurmans '08] Ridgeway, Madigan & Richardson '99) [Demiriz, Bennett & Shawe-Taylor '02]
Mason, Bartlett & Baxter '08] Kivinen & Warmuth '00] Lebanon & Lafferty '02]

[Schapire & Singer '090] [Friedman, Hastie & Tibshirani "00] [Wyner '02]

Cohan & Singer '99] Fatsch, Onoda & Moller 'EID] Fudin, Daubechies & Schapire 'CIS]
Freund & Mason '09] Ratsch, Warmuth, Mika =t al. '00] Jiang '04]

Domingo & Watanabe '09] Allwein, Schapire & Singer "00] Lugosi & Wayatis '04]

[Mason, Bascter, Bartlett & Frean '00] [Friedman '01] [Zhang '04]



‘L Boosting Overview

Distribution:
Zi Dt(i) =1

D, D, . D;
} } }
h;(x) h,(x) o h(x)

~N

h*(x) = sign( 2. 0, h(x) )

26



i A Formal Description of Boosting

s [raining set S = {(X, V1), ---, (X, Vo)
= Vie {—1, +1} correct label of instance x; € X
s fort = 1, ...,T:
= construct distribution D, on {1, ... ,m}
= find weak classifier h,: X — {-1, +1}
with small error ¢, on D :

& = Pricp. [ he (X)) #Y; ] = Z D¢ (i)

ityizhe(x;)

= output final classifier h* based on { h.(x) }

27



‘L AdaBoost

= constructing D;:
0 Dl(l) — 1/m

= given D, and h, : Deia(i)

where g = >

ivi=he (x;)

D¢ (7)

[Schapire, Freund]

_ D) f e iy = he(x)
7, et if yi # he(x;)
D.(i
— tZ( ) E‘XP(_CH Vi hr(xf))
r

Z. = normalization constant

e<l2,so0>0,s0e*<l,so...
if correct, D ,(1) < D,(1) ... if wrong, D (1) > D,(1)

= final classifier:

h*(x) = sign( 2, o, hy(X) ) 2



here: each weak classifiers = a vertical or horizontal half-planes
29
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£1=0.30
0,=0.42

€5=0.21

015=0.65
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Round 3

£1=0.30
0,=0.42

€5=0.21

015=0.65

€3=0.14
015=0.92
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{ Final Classifier

®
h™ =sign| 0.42

+0.92
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i Learn from weighted instances?

= How can a learning alg use distribution D ?
1. Reweighting

= Can modify many learning algorithms to deal with
weighted instances:
« ID3:

= entropy, information-gain equations use COUNTs #(X=3, C=+)
... assumes all weights=1

= Modify to use weight of each instance
= Nailve Bayes: ditto
= k-NN: multiple vote from an instance by its weight

34



i Learn from weighted instances?

Resampling

= Given dataset S and distribution D,
produce new dataset S’ that embodies D

= Stochastically

\

= Using weight ratio ... { y |
A [N P 1 1
= How many? (5]
L = (e, .. we WA
= More 1S gOOd. .. Ap=1o.. { ur

= Typically IS’ = IS| |

Pripe A;) = w;

n If possible, use Re-weighting N J
= Re-sampling 1s only an approximation

35



i Stochastic Resampling...

= Let S’ be the empty set

s LetD =(w,, ..., w,) be the weights of
examples in S

= w, = D(i) corresponds to example x.

= While not-enough-samples
= Draw e /0..1]according to U(0,1) |
» S'—S" U {x} where kis such that ZW <7 <ZW'

s return S’

36



‘L Comparison

CART
AdaBoost CART
o LogitBoost CART
S
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Friedman, Hastie, Tibshirani [1998]

Glass

Sonar

Waveform
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‘L Analyzing the Training Error

Theorem:
= training_error(h*) < exp(-2 X, 72)

O If\V/t:’YtZ’Y> 0
then training_error( h*) < exp(—2y%T)
= AdaBoost is adaptive:

= does not need to know yor T a priori
= can exploit y, >> vy

38



‘L Proof

s f(X) = 2., . h(X) = h*(x) = sign( f(x) )

= Step 1: unwrapping recurrence:

Dia(i) = Drz(;) exp(—a yi he(x;))
De (i @em (y;Zath ) 1 exp(—yif(x))
hal(f) - | o
m J_H_Zr m Hzt



‘-L Proof (II) S

= Step 2: training_error(h*) < [T, Z,

if vi: & h*(X
= Proof: training_error(h™) = %Z{l ity #°00

0 else
1 1 if yif(xi) <0
- Z 0 else
\
\ < Y exp(-yif(x)
I

~ . = Z Dfinar(/ )H Zt
1ﬁw j |
];[ Zy 40




‘L Proof (III)

e Step 3. Z; = 2\/6,;(1 — €)
Z De(1) exp(—ar yvi he(xi))

> D+ 3 Dlie

’J’ﬂ#hf X,
€r e+ (1 —€)e ™

2v/€:(1 — €;)

e Proof: Z,

> Di(i)

iyi7he(x;)

1l — e
€t

41



Proof (IV)

= Step 4. 2\/8(1—8 < exp(—27’2)
- zm—J(— [1-G-n]=si-ar

s Suffices to show vomsi 1—4aq

= Trueif, forall ae [0, Va]
g@)=(1-4a)—-e% <0

m §)= —-0-e% =0
g@Q)=—-4-(-4)e* =4 (e*-1) <0

42



How Will Test Error Behave?

i (A First Guess)

train

200 40 60 80 100
Expect... # of rounds (/)
= training error to continue to drop (or reach 0)

s test error to increase when h* becomes
“too complex”
= '‘Occam’s razor”

= overfitting

= hard to know when to stop training
43



Actual Typical Run

: (boosting C4.5 on “letter” dataset)
7 rounds 15/\ C4.5 test error
5 100 | 1000
train error | 0.0 | 0.0 0.0 °
test error | 8.4 | 3.3 3.1

test

| \ train
1_0 100 1000
# of rounds (7)

0:

= test error does not increase,
even after 1000 rounds

= (total size > 2,000,000 nodes)

= test error continues to drop,
even after training error is 0!

= Occam’s razor: “simpler rule is better”...
appears to not apply!

44



[Schapire, Freund, Bartlett & Lee]

| A Better Story: ... using Margins

= key idea:
= training error only measures whether classifications are
right or wrong

= Should also consider confidence of classifications
= h™ is weighted majority vote of weak classifiers

= measure confidence by margin
= strength of the vote

= (weighted fraction voting correctly)
— (weighted fraction voting incorrectly)

high conft. ‘ high contf.
11'1j‘mrrect low cont. CDI'|1‘I:‘CT
|
L h* - h* e

-1 incorrect 0 correct +1 45



argin distribution

Empirical: Margin Distribution

= cumulative distribution of margins of training ex’s

: = 1.0-
E

S .
test = ] i;
10 100 1000 S
# of rounds (7) -1 05 arein 05

# rounds

5 100 | 1000

train error 0.0 0.0 0.0

test error 8.4 3.3 3.1

% margins <05 | 7.7 0.0| 0.0

minimum margin | 0.14 | 0.52 | 0.55

46



Theoretical Evidence: Analyzing
Boosting Using Margins

= [heorem:
on generalization error
= (independent of # of rounds = complexity of h*)
= proof idea: if all margins are large, then can approximate
final classifier h* by a much smaller classifier
(just as polls can predict not-too-close election)
= [heorem:
of training examples
= (given weak learning assumption)
= proof idea: similar to training error proof

m SO.
although final classifier h* is getting ,
are likely to be ,
so final classifier h* actually getting close to a classifier,

driving the test error 47



i More Technically...
= With high probability, v6 > 0 :

generalization error < Pr[margin < 8] + O (

v d/m
7
(Pr[ ] = empirical probability)
= bound depends on
= M = # training examples
= d = “complexity” of weak classifiers
= entire distribution of margins of training examples

= Pr[margin < 6] — 0 exponentially fast (in T)
if (error of h,on D) < 2 — 6 (Vi)

= SO: if weak learning assumption holds,
then all examples will quickly have “large” margins

48



UCI Experiments

s tested AdaBoost on UCI benchmarks

= used:
5 (Quinlan’s decision tree algorithm)
s " " very simple rules of thumb that

test on single attributes

eye color = brown ? J [height > 5 feet ?]

yes m A ¢

49



i UCI Results

0 5 10 15 20 25 30 0 5 10 15 20 25 30

boosting Stumps boosting C4.5

JU



[Schapire, Freund]

i Multiclass Problems

IYEY={1,...,k} he: X — Y
’60\\ ", N D) f em if yi = he(x)
GQQ(O 6‘§l\\'\ Dy ya(i) = 7, { et if yi % he(x;)
6 408
kP\ h*(x) = arg E‘Ieaé Z Xt

t:he(x)=y

= can prove same bound on error if Vt: e < 2

= in practice, not usually a problem for “strong” weak
learners (e.g., C4.5)

= significant problem for “weak” weak learners
(e.g., decision stumps)

= instead, reduce to binary...

51



[Schapire, Singer]

i Reducing Multiclass to Binary

= If labels = {a, b, ¢, d, e}

= replace each training example by five
{—1,+1}-labeled examples:

r

X , ¢ —X

— A —
>

o 0o T w

— e e
—

x
™

\

= predict with label receiving most (weighted) votes

52



i AdaBoost.MH

= Can prove:

K
training error( h™ ) < —- H Zy
‘ 2

=« reflects fact that small number of errors in
binary predictors can cause overall prediction
to be incorrect
= extends immediately to multi-label case

= (more than one correct label per example)

53



Other Uses of Boosting

Output code
= [Schapire, Allwein & Singer] [Dietterich & Bakiri]

Ranking problems

= [Schapire, Freund, Iyer & Singer]
Confidence-rated predictions
= [Schapire & Singer]

Face Detection

= [Viola & Jones]

Active Learning
= [Lewis & Gale] [Abe & Mamitsuka]

Applications:
= Text Categorization [Schapire & Singer]

= Human-computer Spoken Dialogue
[ Schapire,Rahim, Di Fabbrizio, Dutton, Gupta, Hollister &
Riccardi]

54



[Viola & Jones]

Application: Detecting Faces

= problem: find faces in photograph or movie
= weak classifiers: detect light/dark rectangles in image

= many clever tricks to make extremely fast and
accurate

55



Practical Advantages of AdaBoost

fast

simple and easy to program

no parameters to tune (except T, sometimes)
flexible — can combine with any learning algorithm
no prior knowledge needed about weak learner

provably effective, given weak classifier

= — shift in mind set — goal now is merely to find classifiers
barely better than random guessing

versatile

= Can use with data that is textual, numeric, discrete, etc.

= has been extended to learning problems well beyond binary
classification

56



Caveats

= performance of AdaBoost depends on
data and weak learner

= consistent with theory, AdaBoost can fall if...

= weak classifiers too complex
— overfitting

= weak classifiers too weak (y, — 0 too quickly)
— underfitting
— low margins — overfitting

= empirically, AdaBoost seems especially
susceptible to uniform noise

57



Conclusions wrt Boosting

= boosting is a practical tool for classification and
other learning problems
= grounded in rich theory
= performs well experimentally
= Often (but not always!) resistant to overfitting
= many applications and extensions

= many ways to think about boosting
= none is entirely satisfactory by itself,
but each useful in its own way
= considerable room for further theoretical and

experimental work

58



i Conclusions wrt Boosting

Boosting is a practical tool for classification
and other learning problems

= grounded in rich theory
= performs well experimentally

= often (but not always!) resistant to
overfitting

= many applications and extensions

59



i Effect of Boosting

= In the early iterations,
boosting primarily reduces bias

= In later iterations,
boosting primarily reduces variance

(apparently)

60



i Exponential Loss

s AdaBoost minimizes “exponential loss”...

HZ‘F' _ %Z exp(—yif(xi))

where f(x) = 3, o h, (X)
= exponential loss is an

upper bound on 0-1
(classification) loss

= On each round,
AdaBoost greedily chooses - )
o, and h, to minimize loss 61




[Breiman]

i Coordinate Descent

= {gy, ..., 0y = all weak classifiers
= want to find 4, ..., A, to minimize

L(}q, e }\N) = Z eXp (,Vf Z }\jg}'(xf))

J

« AdaBoost uses coordinate descent:
= initialize all A, = 0
= each round:
= choose one coordinate A, (corresponding to h,) and
= update (increment by o )
= choose update causing biggest decrease in loss

m §powerfu| technique for minimizing over huge space of
unctions)
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i Types of Ensemble Methods

Subsample Training Sample
Manipulate Input Features
Manipulate Output Targets
Injecting Randomness
Algorithm Specific methods
Other combinations

Why do Ensembles work?
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i 2: Manipulate INPUT FEATURES

= Different learners see different subsets of features
(of each of the training instances)

= EQg: 119 features for classing volcanoes on Venus
= Divide into 8 disjoint subsets (by hand)... I

= and use 4 networks for each
= ... 32 NN classifiers /

Did VERY well [Cherkauer'96] I

= [ried w/sonar dataset — 25 input features \
Did NOT work [Tumer/Ghost'96]

= Technique works best when
input features highly redundant

64



3: Manipulate OUTPUT Targets

Spse K outputs Y = { vy, ... V¢ }
a. Could learn 1 classifier, into Y (]Y| values)

b. Or could learn K binary classifiers:
= Y1 VS Y -,
= Y, Vs Y -y,

then vote.

c. Build In K binary classifiers
= h. specifies it" bit of index € {1, 2, ..., K}
= Each h, sub-classifier splits output-values into 2 subsets
hox)is 1 if %y, .., yg", else0
h,(xX)is 1 if %y, =Y. Yo=Yy, €lse 0

hy(x)is 1 if Yy, Yoi Yo Yei Yor Yioi Yizr Y14+ €ls€ O
65



i Error Correcting Output Code

= Why not > In K binary classifiers . . .

= Error-Correcting Codes” (some redundancy)
= [Dietterich/Bakiri'95]

s View [ h,(Xx), ..., h_(x) ] as code-word;
return label y; with nearest codeword

s Better: can combine with AdaBoost
= [Schapire'97]
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Recognizing Handwritten Number
7 /3 %2 — 7,435,2

= Obvious” approach: learn F: Scribble — {0,1,2,...,9}

= ...doesn’t work very well (too hard!)
= Or... “"decompose” the learning task into 6 “subproblems”

{lass ¥l il a Ll i i
! | T o Tl =TT
I ! I L I . % bhreviatio Bl eaning
I I i I-I il L I-I L containg vertical line
2 | | | il | i hl eonlaing horzontal line
.'I ,'I I:l ,'I I |:| d contains -|i.-||;|: al line
e - L Lipsendd e
1 L a ) .
. . ol copbalng curve open b el
| i o 1 [l o contains curve apen to right
il ] | | ] |
o f L af{dafmn
i | 1 a0
q 1| 0 ] | |

1. learn 6 classifiers, one for each “sub-problem "

2. to classify a new scribble:
= Run each classifier

= Predict the class whose code-word is closest (Hamming

distance) to the predicted code >



i Error-correcting Codes

Spse we want to send n-bit messages through a noisy channel
= T0 ensure robustness to noise,
map each n-bit message into an m-bit code (m>n)
= note |codes| >> |messages|

= T0 “decode” a msg,
translate it to message corresponding to the “nearest” code

= (Hamming distance)
= Key to robustness: assign the codes so that ...

= each n-bit “clean” message is surrounded by a “buffer zone” of similar m-bit codes...

= to which no other n-bit message is mapped

O ©
: ; N .
S . S *” v U\ blue = message (n bits)
(./, Y yellow = code (m bits)
OO\ Y L
R white = intended message
- @ LE g red = received code
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i Error Correcting Code

= Use 3 bits to encode 2
possible messages

= Codewords {000, 111} (g

= As differ in >2 places,
can detect and correct
any “single digit” error!

A
(110
i
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i Code-words for ECOC learning

= Coding: k labels — m bit codewords
= Good coding:

class 3 4 = 6 7 8
- : Monday fO0 O\ 1 0 O 0 1 O
want “assigned” codes | mwesdy [0 o)1 1 1 0 0
Wednesday | 0 0 1 0 0 0 1 0
S“epa rated by"|0ts Of Thursday 0 0 0 1 0 1 1 0
unassigned” codes Friday T T o
Saturd 1 1 1 1 0 0 0 1

" Sunday 1 1/ 1 1 0 0 1

each bit i of the codes

rows correlated: BAD!

should be uncorrelated
Wlth a” Othel" bItSJ columns correlated: BAD!
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i Finding Good Codes

s Lots of tricks...

= Simple approach:
select the codewords at random.

= if 2™>>K, then obtain a "good” code with
high probability

= such codes work well in practice

/1



Performance relative to Multiclass
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i Types of Ensemble Methods

Subsample Training Sample
Manipulate Input Features
Manipulate Output Targets

Injecting Randomness
= Data
= Learner

5. Algorithm Specific methods
= Other combinations
= Why do Ensembles work?

~al SO A

~~

73



i 4a: Injecting Randomness to Data

Add 0-mean Gaussian noise to input features

Draw w/replacement from original data,
but add noise
= For Neural Nets:

=« Large improvement on
+ synthetic benchmark; )
+ medical Dx N

= [Raviv/Intrator'96] J—il" @

i B




i 4b: Injecting Randomness to Learner

or Neural Nets:
... Different random initial values of weights

But really independent?

Empirical test: [Pamanto, Munro, Doyle 1996]
Cross-validated committees BEST,

then Bagging, then Random initial weights

/
I\

S \....

1.




Randomness — w/ C4.5

m C4.5 uses Info Gain to decide which attribute to
split on
= Why not consider top 20 attributes;
choose one at random?
= Produce 200 classifiers (same data)
= T0 classify new instance: Vote
= Empirical test: [Dietterich/Kong 1995]
Random better than bagging, than single C4.5

= FOIL (for learning Prolog-like rules)

= Chose any test whose info gain within 80% of top

= Ensemble of 11
STATISTICALLY BETTER
than 1 run of FOIL [Ali/Pazzani'96]
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5: Algorithm Specific (NNs)

Seek “diverse” population of NNs
= Simultaneously train several NN's with penalty for correlations.
Backprop minimizes error function =
sum of MSE and correlations [Rosen'96]
= Use operators to build new structures; keep R “best”
= DIVERSITY + ACCURACY
(like GA [Opitz/Shavlik'96] )
= Give different NNs different auxiliary tasks
= (eg, predict one input feature)
in addition to primary task

Backprop use BOTH in error, so produces different nets
[Abu-Mostafa'90; Caruana'o6]

= For each [x; vy, re-train NN; with
=[x, [y, 1111 NN;(x;) closest to y,
= [x, [y, 0]] otherwise
(So diff NNs get different training values, to help NN learn where it
performs best) [Munro/Parmanto'97]
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Algorithm Specific (NN #2)

= Person identifies which region of input space
« (Highway, 2lane-road, dirt-road, ...)
Train NN, for region; ... eg, to steer, . ..

= Each NN, also learns to reconstruct image
= Same intermediate layer!

= When “running”, each NN,
= proposes steering direction,
= reconstructs of image

Take direction from NN, with best reconstruction
[Pomerleau]

= Also: train on “bad” situation,
by distorting image, and defining correct label

/8



i Algorithm Specific (DTs, ...)

= Option tree”:
Decision Tree whose internal nodes have > 1 splits

each producing own sub-decision-tree
= (Eval: go down each, then vote) [Buntine'90]

= Empirical: accuracy = bagged C4.5 trees
but MUCH more understandable
= Can try different modalities,

but not clear how DIVERSE they will be

= Use cross-validation to check for both accuracy and
diversity

/4
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i Combining Classifier: Linear

Linear Combination

=« Unweighted: Bagging, ErrorCorrecting, Boosted (weighted)

Bayesian Model
If each h, produces class prob. estimates

P(f(x) =y | hy)
should use:

P(f(x) =y)=2P(f(x) =y | hy) P(hy)

» Forecasting lit. suggests this is very robust [Clemen'89]

Variance-based
= Use least squares regression to find weights that max
accuracy on training data

= Uncorrelated = h,'s weight « 1/Var(h,)

Can also deal w/ less correlated subset w0



Combining Classifiers: Linear, II

Linear Combination (con’t)
= Gating [Jordan/Jacobs'94]
= Learn classifier's { h, ..., h:}
« output(x) = 2. w, h(x)

= W(X) = exp( v, X) / 2., exp( v, X)
= Problem: lot of parameters to learn:
{v_ }, as well as params for all h,"s

= Cross-Validation [ai/pazzani9s; Buntine'90]
= Obtain weights from performance on hold-out set
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i Combining Classifiers: NonLinear

Stacking [Wolper'92; Breiman'96]
= Given learners { L(.) }, obtainh =L(S)
s Want classifier h*(x) = F( h,(x), ..., h+(x) )

s Let h() = L(S — x;) be classifier learned
using L, on all but instance Xx;

... SO0 T x |S| classifiers
. Let v = h{ (x;)
= Now learn F(...) from { [ [y{¥), v{&, ..., y(D], y; 1 }
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i Why do ensemble work?

Many reasons justify ensemble approach:
= Bias/Variance decomposition

= A(nother) statistical motivation

= Representational issues

= Computational issues
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Why do ensembles work?

i (AdaBoost)

= Empirical evidence suggests that
AdaBoost reduces both
bias and variance part of the error

= bias is mostly reduced in early iterations
= While variance in later ones
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L esson learned?

= Use Bagging with low bias and high
variance classifiers

= €.g., decision trees, 1-nn, ...

= Always try AdaBoost
= Typically produces excellent results.

= Works especially well with very simple learners
= €g, decision stumps
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Other explanations?

Statistical Computational

Representational
H

[T. G. Dietterich. Ensemble methods in machine learning.
Lecture Notes in Computer Science, 1857:1-15, 2000.]
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i 1. Statistical

= Given a finite amount of data, many hypothesis
are typically equally good. How can the learning
algorithm select among them?

= Optimal Bayes classifier recipe:
« take a weighted majority vote of a// hypotheses,
= weighted by their posterior probability
= ...provably the best possible classifier

= Ensemble learning = approximation of the
Optimal Bayes rule
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Representational

H

2. Representational

= Optimal target function may not
be ANY individual classifier,

but may be (approximated by)
ensemble averaging .
= Eg... a decision trees
= boundaries are axis-parallel
hyperplanes

=« By averaging a large number of
such “staircases”, can approximate

diagonal decision boundary with
arbitrarily good accuracy

Class 2

89




i Representational (example 2)

= Space: [0,1] x [0,1]
= Hypothesis space H of “discs”

h,, h,, h,e H
/ - : *ﬁl |~ hens:emhle ¢ H
X4 }" \& /

hensemble

but h

cannot be return by ‘base” learner,
can be returned by ensemble

ensemble



Computational

3. Computational

= Essentially all learning alg’s search
through some space of hypotheses
to find one that is

“good enough” for the given training aata

= As many interesting hypothesis spaces are
huge/infinite, heuristic search is essential

= (eg ID3 greedily search in space of decision trees)
o Learner might get stuck in a local minimum

= One strategy for avoiding local minima:
repeat the search many times with random
restarts

— bagging
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i Effect of Bagging

= If bootstrap replicate approx’n is correct,
then bagging would reduce variance
without changing bias

= In practice, bagging can reduce
both bias and variance

= For high-bias classifiers, it can reduce bias
(but may increase Vu)

= For high-variance classifiers,
it can reduce variance classifiers,
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Summary of Ensembles

Ensembles: basic motivation
creating a committee of experts is typically more
effective than creating a single supergenius

Key issues:
= Generating base models
= Integrating responses from base models

Popular ensemble techniques

= manipulate training data: bagging and boosting
(ensemble of “experts”, each specializing on different portions
of the instance space)

= manipulate output values: error-correcting output codin%
gensemble of “experts”, each predicting 1 bit of the {multibit}
ull class label)

Why does ensemble learning work?
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Comparison of Ensemble Methods

Pairwise comparison of 4 ensemble methods (W-L-T)

4.5 AnaBoosT C4.5 Bagped C4.5
Random C4.5] 14 -0 - 19 7 — 25 b-3-24

Bagped C4.5) 11 — 0 — 22 'E-I

AnaBoost C4.5] 17 — 00— 16 T

C4.5  AnaBoost C4.5 Bagged C4.5

Random C4.5] 5 -2 - 2 5-0-4 h-2-7
Bagged C4.5] 70 - 2 6—0-3

AnaBoost C4.5] 34— 61

... added 20% synthetic class label noise

[T. G. Dietterich. Ensemble methods in machine learning.
Lecture Notes in Computer Science, 1857:1-15, 2000.] 94



Specific Problems

AdaBoost is good way to construct ensemble of DTs

= But if data noisy: AdaBoost places high weight on incorrectly-
labeled data

s — constructs bad classifier

= ErrorCorrected Output does not work well with local
algs (like nearest neighbor)

= ? Combination of Ensemble methods

Ensemble Learning
Methods X | Algorithms

= General Problem:
= lots of memory to store ensemble 200 DTs: 59M !
= how to interpret

= (one DT easy to understand; but 200 of them?)
= CPU time



