Introduction to Machine Learning

Machine Perception

An Example

Pattern Recognition Systems

The Design Cycle

Learning and Adaptation

• What is learning ?

Questions

- Is learning really possible? Can an algorithm really predict the future?
- Why learn?
- Is learning \subset ? statistics ?

What is Machine Learning?

- "Machine learning is programming computers to optimize a performance criterion using example data or past experience."
 - Alpaydin
- "The field of machine learning is concerned with the question of how to construct computer programs that automatically improve with experience."
 - Mitchell
- "...the subfield of AI concerned with programs that learn from experience."
 - Russell & Norvig

What else is Machine Learning?

- Data Mining
 - "The nontrivial extraction of implicit, previously unknown, and potentially useful information from data."
 - W. Frawley, G. Piatetsky-Shapiro, C. Matheus
 - "..the science of extracting useful information from large data sets or databases."
 - D. Hand, H. Mannila, P. Smyth
 - "Data-driven discovery of models and patterns from massive observational data sets."
 - P. Smyth

What is learning ?

• A₁: Improved performance ?

Performance System solves "Performance Task" (Eg, Medical dx; Control plant; Retrieve webDocs; ...)

Learner makes Performance System "better" More accurate; Faster; More complete; ...

(Eg, learn Dx/classification function, parameter setting, ...)

What is learning ? ... con't

What is learning ? ... con't

A₂: Improved performance ?
 based on some "experience"
 but ... simple memo-izing

What is learning ? ... con't

- A₃: Improved performance based on partial "experience"
- Generalization (aka Guessing) deal with situations BEYOND training data

Learning Associations

- What things go together?
 - ?? Chips and beer?
- What is P(chips | beer) ? "The probability a particular customer will buy chips, given that s/he has bought beer."
- Estimate from data:
 - P(chips | beer) ≈ #(chips & beer) / #beer
 - Just count the people who bought beer and chips, and divide by the number of people who bought beer
- Not glamorous but... counting / dividing is learning!

Is that all???

Learning to Perceive

Build a system that can recognize patterns:

- Speech recognition
- Fingerprint identification
- OCR (Optical Character Recognition)
- DNA sequence identification
- Fish identification

Fish Classifier Sort Fish **Sea bass** into Species Salmon using optical sensing

Problem Analysis

- Extract *features* from sample images:
 - Length
 - Width
 - Average pixel brightness
 - Number and shape of fins
 - Position of mouth

[L=50, W=10, PB=2.8, #fins=4, MP=(5,53), …]

Preprocessing

- Use *segmentation* to isolate
 - fish from background
 - fish from one another
- Send info about each single fish to *feature extractor*,
 - ... compresses data, into small set of features
- Classifier sees these features

Use "Length"?

• Problematic... many incorrect classifications

Use "Lightness"?

- Better... fewer incorrect classifications
- Still not perfect

Where to place boundary?

- Salmon Region intersects SeaBass Region
 - ⇒ So no "boundary" is perfect
 - Smaller boundary \Rightarrow fewer SeaBass classified as Salmon
 - Larger boundary \Rightarrow fewer Salmon classified as SeaBass
- Which is best... depends on misclassification costs

Why not 2 features?

• Use *lightness* and *width* of fish

Much better...
 very few incorrect classifications !

19

How to produce Better Classifier?

- Perhaps add other features?
 - Best: not correlated with current features
 - Warning: "noisy features" will *reduce* performance
- Best decision boundary = one that provides optimal performance
 - Not necessarily LINE
 - For example ...

Simple (non-line) Boundary

"Optimal Performance" ??

Comparison... wrt NOVEL Fish

Objective: Handle Novel Data

- Goal:
 - Optimal performance on NOVEL data
 - Performance on TRAINING DATA
 ≠

Performance on NOVEL data

Issue of generalization!

Pattern Recognition Systems

- Sensing
 - Using transducer (camera, microphone, ...)
 - PR system depends of the bandwidth
 - the resolution sensitivity distortion of the transducer
- Segmentation and grouping
 - Patterns should be well separated (should not overlap)

Machine Learning Steps

- Feature extraction
 - Discriminative features
 - Want useful features
 - Here: INVARIANT wrt translation, rotation, scale
- Classification
 - Using feature vector (provided by feature extractor) to assign given object to a *category*
- Post Processing
 - Exploit context (information not in the target pattern itself) to improve performance

Training a Classifier

Width	Size.	Eyes	 Light	type
35	95	Y	 Pale	bass
22	110	N	 Clear	salmon
:	:		:	:
10	87	N	 Pale	bass

The Design Cycle

- Data collection
- Feature Choice
- Model Choice
- Training
- Evaluation

Computational Complexity

Data Collection

- Need set of examples for training and testing the system
- How much data?
 - sufficiently large # of instances
 - representative

Which Features?

- Depends on characteristics of problem domain
- Ideally...
 - Simple to extract
 - Invariant to irrelevant transformation
 - Insensitive to noise

Which Model?

- Try one from simple class
 - Degree1 Poly
 - Gaussian
 - Conjunctions (1-DNF)
- If not good...
 - try one from **yet** more complex class of models
 - Degree2 Poly
 - Mixture of 2 Gaussians
 - 2-DNF

Training
 Test

Training

- Use data to obtain good classifier
 - identify best model
 - determine appropriate parameters
- Many procedures for training classifiers (and choosing models)

Evaluation

- Measure error rate
 ≈ performance
- May suggest switching
 - from one set of features to another one
 - from one model to another

Computational Complexity

- Trade-off between computational ease and performance?
- How algorithm scales as function of
 - number of features, patterns or categories?

Learning and Adaptation

- Supervised learning
 - A teacher provides a category label for each pattern in the training set
- Unsupervised learning
 - System forms clusters or "natural groupings" of input patterns

Questions

- What is learning ?
- Is learning really possible? Can an algorithm really predict the future?
- Why learn?
- Is learning \subset ? statistics ?

2: Is Learning Possible?

Is learning possible? Can an algorithm really predict the future?

• No...

Learning \equiv guessing; Guessing \Rightarrow might be wrong

- But...
 - Can do "best possible" (Bayesian)
 - Can USUALLY do CLOSE to optimally
- Empirically...

Machine Learning studies ...

Computers that use "*experiences*" to improve *performance* of some system

Successes: Mining Data Sets **Computer learns...**

to find ideal customers

- Credit Card approval (AMEX)
- Humans ~50%; ML is >70% ! to find best person for job

- Telephone Technician Dispatch [Danyluk/Provost/Carr 02]
- BellAtlantic used ML to learn rules to decide which technician to dispatch
- Saved \$10+ million/year
- to predict purchasing patterns
 - Victoria Secret (stocking)
- to help win games
 - **NBA** (scouting)

to catalogue celestial objects [Fayyad et al. 93]

- Discovered 22 new guasars
- >92% accurate, over tetrabytes

2: Sequential Analysis

- **BioInformatics 1:** identifying genes
 - Glimmer [Delcher et al, 95]
 - identifies 97+% of genes, automatically!
- **BioInformatics 2:** Predicting protein function, ...
- Recognizing Handwriting

DNA

- Recognizing Spoken Words
 - "How to wreck a nice beach"

3: Control

- **TD-Gammon** (Tesauro 1993; 1995)
 - World-champion level play by learning ...
 - by playing millions of games against itself!

Drive autonomous vehicles

- DARPA Grand Challenge (Thrun et al 2007)
- Printing Press Control (Evans/Fisher 1992)
 - Control rotogravure printer, prevent groves, ... specific to each plant
 - More complete than human experts
 - Used for 10+ years, reduced problems from 538/year to 26/year!

Oil refinery

- Separate oil from gas
 - ... in 10 minutes (human experts require 1+ days)
- Manufacture nuclear fuel pellets (Leech, 86)
 - Saves Westinghouse >\$10M / year
- Adaptive agents / user-interfaces

Growth of Machine Learning

- Machine learning is preferred approach to
 - Speech recognition, Natural language processing
 - Computer vision
 - Medical outcomes analysis
 - Robot control
 - ...

Object detection

(Prof. H. Schneiderman)

Example training images for each orientation

Text classification

Company home page

VS

Personal home page

VS

Univeristy home page

VS

. . .

Modeling sensor data

- Measure temperatures at some locations
- Predict temperatures throughout the environment

[Guestrin et al. '04]

Learning to act

- Reinforcement learning
- An agent
 - Makes sensor observations
 - Must select action
 - Receives rewards
 - positive for "good" states
 - negative for "bad" states

[Ng et al. '05]

Questions

- What is learning ?
- Is learning really possible? Can an algorithm really predict the future?

• Is learning ⊂[?] statistics ?

Why Learn? Why not just "program it in"?

Appropriate Classifier ...

• ... is not known

Medical diagnosis... Credit risk... Control plant...

• ... is too hard to "engineer"

Drive a car... Recognize speech...

- ... changes over time Plant evolves...
- ... user specific

Adaptive user interface...

Why Machine Learning is especially relevant now!

- Growing flood of online data
 - customer records, telemetry from equipment, scientific journals,
- Recent progress in algorithms and theory
 - SVM, Reinforcement Learning, Boosting, …
 - PAC-analysis, SRM, ...
- Computational power is available
 - networks of fast machines
- Budding industry in many application areas
 - market analysis, adaptive process control, decision support, ...
- Alberta Ingenuity Centre for Machine Learning

Questions

- What is learning ?
- Is learning really possible? Can an algorithm really predict the future?
- Why learn?
- Is learning ⊂[?] statistics ?

4. Is learning ⊂[?] statistics?

Statistics ≡

- Use examples to identify best model
- Use model for predictions (labels of new instances, ...)
- Both
 - Deal with required # of samples, quality of output, ...
 - Over discrete / continuous, parameterized/not, complete/partial, frequentist/bayesian,
- But Machine Learning also ...
 - deals with COMPUTATIONAL ISSUEs
 - different focus/frameworks (on-line, reinforcement, ...)
 - embraces MULTI-Variate correlations

Training a Classifier

Width	Press.	Sore Throat	 Light	type
35	95	Y	 Pale	bass
22	110	N	 Clear	salmon
:	:		:	:
10	87	N	 Pale	bass

Training a Regressor

Width	Size	Eyes	 Light	size
35	95	Y	 Pale	22
22	110	N	 Clear	18
:	:		:	:
10	87	N	 Pale	33

Classification

- Input: "feature list" Output: "label"
 - Features can be symbols, real numbers, ...
 - [age ∈ ℜ⁺, height ∈ ℜ⁺, weight ∈ ℜ⁺, gender∈ {M,F}, hair_colour, ...]
 - Labels come from a (small) discrete set
 - L = { Icelander, Canadian }
- Output: *discriminant* function, mapping feature vectors to labels.
- We can learn this from data, in many ways.
 - ([27, 172, 68, M, brown, ...], Canadian)
 - ([29, 160, 54, F, brown, ...], Icelander)
 - ...
- We can use it to *predict* the label of a new instance.
 - How good are our predictions?

Regression

- Input: "feature list" Output: "response"
 - Features can be symbols, real numbers, etc...
 - [age, height, weight, gender, hair_colour, ...]
 - Response is real-valued.
 - life_span $\in \mathscr{R}^+$
- We need a *regression* function that maps feature vectors to responses.
- We can learn this from data, in many ways.
 - ([27, 172, 68, M, brown, ...], 86)
 - ([29, 160, 54, F, brown, ...], 99)
 - ...
- We can use it to *predict* the response of a new instance.
 - How good are our predictions?

Pause: Classification vs. Regression

- Same: "Learn a function from labeled examples"
- Difference: Domain of label: small set vs ${\mathcal R}$ Why make the distinction?
 - Historically, they have been studied separately
 - The label domain can significantly impact what algorithms will work or not work
- Classification
 - "Separate the data"
- Regression
 - "Fit the data"

- Density Estimation
 - Learning Generative Model
 - Clustering

- Density Estimation
 - Learning Generative Model
 - > Clustering
- Learning Sequence of Actions
 - Reinforcement Learning

- Learning non-IID Data
 - Sequences
 - Images

• ...

- Density Estimation
 - Learning Generative Model
 - Clustering
- Learning Sequence of Actions
 - Reinforcement Learning
- Learning non-IID Data
 - Images
 - Sequences

• ...

Issues wrt Learning

- What is measure of improvement/? "accuracy/effectiveness", "efficiency", ...
- What is feedback ? Supervised, Delayed Reinforcement, Unsupervised
- What is representation of to-be-improved component? Rules, Decision Tree, Bayesian net, Neural net, ...
- What prior information is available?
 "Bias", space of hypotheses, background theory, ...
- What statistical assumptions?
 - Stationarity (iid), Markovian, ...
 - "Noisy" or Clean,

• ...

Relevant Disciplines

- Artificial intelligence
- Bayesian methods
- Computational complexity theory
- Control theory
- Information theory
- Philosophy
- Psychology and neurobiology
- Statistics

Summary

- Machine Learning is a mature field
 - solid theoretical foundation
 - many effective algorithms

- ML is *crucial* to large number of important **applications**
 - BioInformatics, WebReDesign, MarketAnalysis, Fraud Detection, ...
- Fun: Lots of intriguing open questions!

• Exciting time for Machine Learning

Unsupervised Learning

- Take clustering for example.
- Input: "features" Output: "label"
 - Features can be symbols, real numbers, etc...
 - [age, height, weight, gender, hair_colour, ...]
 - Labels are not given.
 (Sometimes |L| is known.)
- Each label describes a *subset of the data*
 - Clustering: group together examples that are "close"
 - ... need to define "close"
 - Labels = "cluster centres"
- Here: cluster can be the end result (Not classification)
 - Subjective \Rightarrow Evaluation is difficult

Reinforcement Learning

- Input: "observations", "rewards" Output: "actions"
 - Observations may be real or discrete
 - Reward $\in \mathscr{R}$
 - Actions may be real or discrete
- Think of ... agent ("robot") interacting with its environment
- On-going interaction At each time,
 - agent observes "observations"
 - Selects an actions
 - Receives a reward
- Agent can use Reinforcement Learning to improves its performance (ie, selecting actions that lead to better rewards) by analyzing past experience

Conclusion

- Machine Learning has many challenging sub-problems
- These sub-problems have be solved for many real-world problems!
- Many fascinating unsolved problems still remain

Pattern Classification

All materials in these slides were taken from

Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors and the publisher