
CMPUT 466/551 — Assignment 3
Instructors: R Greiner, B Poczos
Due Date: 12:30pm, Tues, 24/Nov/09
The following exercises are intended to further your understanding of (Linear Algebra and
Probability Theory) related to Gaussian Processes, Artificial Neural Nets, (including Line
Search and Conjugate Gradient), Decision Trees, and Ensemble Methods.
Relevant reading: HTF: Ch 10 (8.7, 16), 11 + http://www.gaussianprocess.org/[Chapter
2]
Total points: UGrad: 99 Grad: 113
Grad students should answer every question; undergrads do not have to answer Q6b and
Q9b.

The ReadMe file will specify the details about the datasamples, and other coding issues,
including a specification of what to hand and how; for Q3, Q5, and Q7.

Question 1 [4 points] Partitioned covariance and inverse covariance matrices

Let Σ
.
=

(

Σaa Σab

Σba Σbb

)

∈ ℜm×m be an arbitrary invertible matrix, partitioned into block ma-

trices, and let Λ
.
= Σ−1 =

(

Λaa Λab

Λba Λbb

)

Prove that the following equations hold (assuming that the inverse marices exist):
a [2]: Λ−1

aa Λab = −ΣabΣ
−1
bb

b [2]: Λ−1
aa = Σaa − ΣabΣ

−1
bb Σba

[Hint: Use the blockwise matrix inversion formulas from:

http:// en. wikipedia.org/wiki/ Invertible matrix#Blockwise inversion]

Question 2 [5 points] Posterior is normal

Let X∗ =

xT
∗1
...

xT
∗m

 ∈ ℜm×D be m test input points, and X =

xT
1
...

xT
n

 ∈ ℜn×D be n training

input points. Let k(·, ·) be a kernel function, and let the joint distribution of the noisy
observations y ∈ ℜn and the noise free test outputs f∗ ∈ ℜ

m be given by
[

y
f∗

]

∼ N2

4

y
f∗

3

5

{[

0n

0m

]

,

[

k(X, X) + σ2In k(X, X∗)
k(X∗, X) k(X∗, X∗)

]}

Prove that the posterior distributions of the function values at the test points can be ex-
pressed as

P (f∗|X, y, X∗) = Nf∗(f̄∗, cov(f∗)) ,

where
f̄∗ = E[f∗|X,y, X∗] = k(X∗, X)[k(X, X) + σ2In]−1y ∈ ℜm

1

2

and

cov(f∗) = k(X∗, X∗)− k(X∗, X)[k(X, X) + σ2In]−1K(X, X∗) ∈ ℜm×m

[Hint: What is the distribution of the marginals of a multivariate Guassian conditioned on the

other marginals?]

Question 3 [20 points] GP regression implementation
Implement a Gaussian process algorithm for the regression problem. Assume that there is
an ǫ noise on the observations:

y(x) = f(x) + ǫ, ǫ ∼ N (0, σ2)

The ReadMe file specifies what to test, and what to hand in.

Question 4 [10 points] Gradient Descent
Consider a new ptron unit with inputs x1 and x2, which produces a real-valued output
defined as

s
w
(x1, x2) = w0 + (w0 w1) x1 + (w1 w2) x2

Describe an algorithm for learning the weights w0, w1 and w2 of a single ptron, from a
datasample S = {[xi

1, x
i
2; y

i]}i=1..m, using gradient descent, based on the error function

err(w; S) =
∑

[x1,x2;y]∈S

(y − s
w
(x1, x2))

2

Question 5 [18 points] Neural Net Learning

Consider the neural net

�

�

	

6A
������1B

�

�

	

6D
PPPPPPi C

�

�

	

���1E
�

�

	

PPPiF

�

�

	

where all units are sigmoid — i.e., each uses the logistic σ(x) = 1/(1 + e−x) squashing
function.

a [10]: Implement the back-propagation learning algorithm for this network, in Matlab.
(Just the simplest version; set the learning rate η = 0.05, initialize the weights randomly,
. . .)

(The ReadMe file specifies what to test, and what to hand in.)

For the remaining parts of this question, assume we begin with all weights having exactly
the same value and run back-propagation on some set of data. Which statements below will
be always true? For each, explain your reasoning in at most a few sentences.

3

b [2]: Weights A and B never differ.

c [2]: Weights A and C never differ.

d [2]: Weights E and F never differ.

e [2]: Give a short explanation of one good reason NOT to initialize all weights to the
same value when running backprop.

Question 6 [3 + 7 points] Conjugate Gradient Factoids
Show the following, using the notation defined in the class lecture notes.

a [3]: Show that dT
j gk = 0 for all j < k.

[Hint: First show this holds for k = j + 1.]

b [7 Grad students only]: Show that gT
i gj = 0 for i 6= j.

Question 7 [30 points] Conjugate Gradient
The purpose of this question is to understand Conjugate Gradient (GC). For now, let’s
forget about the estimation part of parameter optimization by assuming we already know
everything there is to know about the error function, and just want to find the values of the
parameters that minimize this function. To make life easy, we will consider an error function
that is a simple quadratic over the 2 parameters, x and y:

(1) f(x, y) = a× x2 + b× y2

for some specified values of a and b. Our task is to (write a program that can) efficiently
“descend” from a given initial vector (x1, y1) to produce the values of (x, y) that minimize
this function. (Yes, we all know this minimal value is at (x∗, y∗) = (0, 0). But here the path is

important...)

You will implement three routines — simple gradient descent (GD), GD with line search,
and CG — and compare their behavior over the following initial set-ups.

a b initial weight vector, (x1, y1)
1 1 [10, 0]
1 1 [10, 10]
1 10 [0.1, 0.1]
1 10 [20, 10]
1 1000 [40, 40]

In particular, you should indicate how many iterations each algorithm required to converge
— here to an error of 1E-6, or alternatively when your program stopped “prematurely”. You
should also submit a ZIP file of the relevant programs, such that the top-level Matlab call

>> Weights = GradientDescent(1,10, [20,10], χ)
deals with the a = 1, b = 10 and initial weight= [20, 10] setting; here Weights(i,:) should
be the weights associated with the ith iteration of the algorithm. This routine should cover
all three different processes shown below, depending on the value of χ provided; see below.
You may also wish to plot these results, to help visualize what is going on.

For notation, at iteration j, you have the current weights wj and can directly compute
the gradient gj , as well as the (constant) Hessian H , which you will use to compute the new
weights wj+1.

a [10]: Setting the third argument “χ = 0” should call your implementation of simple
gradient descent, which uses the simple heuristic of traveling η = κ/j along the gradient gj;

4

you get to decide on the value for κ, but you need to specify this value and it should be the
same for all set-ups.

b [3]: Given the weight vector wj and gradient gj, you want to descend along gj to a new
vector wj+1 ← wj + η gj that produces the smallest f(.) value — i.e.,

(2) η = argmin
t

f(wj + tgj)

In class, we provided an iterative way to do this, which is useful if f(·) is unknown. Here, we
know f(·). Provide a simple direct formula for computing Equation 2 based on our particular
f(·) from Equation 1.

[Hint: Take the derivative of values along this line.]

c [7]: Setting “χ = 1” should call your implementation of gradient descent using “line-
search”: that is, your code should determine the optimal distance to travel along the gradient
gj, to minimize f(x, y) — using your answer to (b) above. (This should be a simple direct
computation — it does NOT require any iterations.)

d [10]: Setting “χ = 2” should call your implementation of conjugate gradient: Here, at
iteration j, you should compute the new weights wj+1 using the following formulae:

wj+1 = wj + αj dj

d1 = −g1

dj+1 = −gj+1 + βjdj for j ≥ 1

βj =
gT

j+1(gj+1 − gj)

gT
j gj

αj = −
dT

j gj

dT
j Hdj

Once again, you can just directly compute the Hessian matrix H , and every other quantity
needed to go from wj to wj+1, without any iterations.

Question 8 [6 points] Decision Tree Classification
In the recursive construction of decision trees, we may sometimes produce a leaf node based
on a mixed set of positive and negative examples — e.g., due to pruning, or perhaps after all
the attributes have been used. Suppose that we have P positive and N negative examples.

a [3]: One approach is to return the majority classification — i.e., “true” if P > N ; else
“false”. Show that this approach minimizes the absolute error , over the set of examples that
reach this leaf node.

b [3]: Suppose the decision tree, on reaching this leaf, returns the probability α. This
means the “squared error” for each positive instance is (1− α)2 as the decision tree should
have returned 1 here; and the squared error for each negative instance is (0 − α)2. Find
the value of α (as a function of P , N , and any other relevant aspect, such as number of
attributes, etc.) that minimizes the sum of these squared errors.

Question 9 [3 + 7 points] Ensemble: Mixing using Variance
Suppose you have K regressors {hk(·)} , each of which returns, for each x, an estimate hk(x)
of the response µ(x), along with the variance σ2

k of this estimate — i.e., hk(x) = µ(x)+ǫk(x)
where ǫk(x) ∼ N (0, σ2

k(x)). Note that the standard deviation of the error, σk(x), can differ
for different xs. To simplify notation, however, we will suppress the (x) — i.e., we will
consider only a single x.

5

a [3]: First, assume that these estimates are uncorrelated with each other — E[ǫjǫk] = 0
for j 6= k — and are also independent of x.

What is the best linear combination of these predictors: that is, the values of {αk} such
that

h∗ =
∑

k

αkhk

minimizes the expected squared error:

err(α) = E[(µ− h∗)2]

where
∑

k

αk = 1 .

[Hint: Think of Lagrange Multipliers...]

b [7 Grad students only)]: Now allow the errors to be correlated — that is

ǫ =

ǫ1
...
ǫn

 ∼ N

0
...
0

 , Σ

where this Σ = (σjk) covariance matrix is not (necessarily) diagonal — i.e., σjk = E[ǫjǫk]
may be non-0 when j 6= k. Now what is the “best” linear combination of these predictors
(using the equations show above)?

