
CMPUT 466/551 — Assignment 1

Instructor: R Greiner
Due Date: 12:30pm, Tuesday, 6 Oct 2009

The following exercises are intended to further your understanding of probability, Bayesian
decision theory, linear regression and classifiers (LMS, logistic regression, LDA).
Relevant reading: [HTF Chapters 1,2,3,4]
Total points: Grad: 100; Undergrads: 80
% of course marks 20%

Everyone — both grads and undergrads – should do Questions 1–7 and 9. Only grads
need to answer Question8 as well.

To submit your solutions: For Question 1–7 (and 8): submit in paper form to the course
assignment drop box. Please ensure that your name, login, and student ID are written on
your assignment.

To will submit your solution to Question 9: First zip your code LMS.m, LR.m, LDA.m,
9d.png, and 9e.mat into a single file, then email that file to c466-submit@cs.ualberta.ca.
(Be sure to watch the newsgroup for possible further directions.)

Question 1 [8 points] Using Bayes Rule — “Finger Exercises”
Suppose that we have three coloured urns that contain fruit:

Urn (color) #apples #oranges #limes
r (red) 3 4 3
b (blue) 1 1 0
g (green) 3 3 4

You select an urn at random, with probabilities p(r) = 0.2, p(b) = 0.2 and p(g) = 0.6, and
draw a piece of fruit at random from that urn (with equal probability of selecting any item
in that urn).

a [2]: What is the probability of selecting an apple?

b [3]: If you observed that the fruit is an orange, what is the probability that it came
from the green box?

c [3]: Paradox?
Harry and Ron each practice casting spells for two sessions. In the first session, over 100
attempts, Harry’s spells work correctly 60 times, while Ron are correct 90 times. In the
second session, Harry is accurate just 1 time in 10, while Ron’s are correct 300 times in
1000. What are their respective accuracies when considering both sessions together? Does
this seem strange to you? (Note Harry is less accurate than Ron in both individual sessions
— session1: 0.6<0.9; and session2: 0.1<0.3.)
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Question 2 [7 points] Probability Decision Boundary
Assume you have learned the conditional probability distribution P ( y |x ) for a binary clas-
sification problem; let pA = P ( y = A |x ). Consider the following loss matrix:

true label y
A B

predicted A 0 cB

label ŷ B cA 0

(That is, cB is the penalty for not saying B when you should — i.e., for predicting the value
is A when the correct label is B.)

a [5]: Show that the decision ŷ that minimizes the expected loss is equivalent to setting
a probability threshold θ and predicting ŷ = A if P ( y = A |x ) > θ and ŷ = B otherwise.
If possible, write θ as a function of cA and cB.

b [1]: What is the threshold for the loss matrix, if cB = 20 and cA = 5?

c [1]: Show a loss matrix where the threshold is 0.1.

Question 3 [7 points] Reject Option
Suppose any misclassification costs $10, but a human can manually classify an object for
only $3. Here, it makes sense to allow the classifier to “reject” a test example (i.e., hand it
off to a person to make the call), rather than classifying it into one of the classes.

We can formulate this as the following loss matrix:

true label y
A B

predict ŷ =A 0 cB

decision predict ŷ =B cA 0
reject cr cr

where cA = cB = 10 and cr = 3.

a [1]: Suppose pA = P ( y = A |x ) = 0.2. Which decision minimizes the expected loss?

b [1]: Which decision minimizes the expected loss if P ( y = B |x ) = 0.4?

c [4]: Now consider general (strictly-positive) values of cA, cB and cr, which might be
different from one another. Show that, in general, there will be two thresholds θA and
θB such that the optimal decision is to predict A if PA = P ( y = A |x ) > θA, reject if
θA > P ( y = A |x ) > θB, and predict B if P ( y = A |x ) < θB. If possible, write θA and θB

as functions of cA, cB and cr.

d [1]: What are the values of these thresholds for the loss matrix shown above, with
cA = cB = 10 and cr = 3?

e [1]: What are the θA and θB values when cB = 20, cA = 5 and cr = 2.

Question 4 [3 points] Mean, Variance
The uniform distribution for a continuous variable x is defined by

U( x | a, b ) =
1

b − a
, a ≤ x ≤ b
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Verify that this distribution is normalized, and find expressions for its mean and variance.
You may use var[x] = E [ x2 ] − E [ x ]2.

Question 5 [7 points] For any loss function L(·, ·) [HTF Section 2.4], the “expected
prediction error” (EPE) of the function f(x) is

EPE( f(x) ) =
∫ ∫

L(y, f(x)) p(x, y) dx dy

which means, for each specific x0,

EPE( f(x0) ) =
∫

L(y, f(x0)) p(y|x0) dy

a [3]: When using squared loss L(y, f(x)) = (y − f(x))2, prove that minimizing EPE
leads to the conditional mean:

f̂(L2)(x0) = argmin
y0

EPE( y0 ) = E [Y |X = x0 ] .

b [4]: When using absolute loss L(y, f(x)) = |y − f(x)|, prove that minimizing EPE
leads to the conditional median:

f̂(L1)(x0) = argmin
y0

EPE( y0 ) = Median(Y |X = x0) .

Note c is a median for a probability density function (pdf) p(z) when c divides the area
under the pdf into two equal halves – i.e., when

∫ c
−∞ p(z) dz =

∫ +∞
c p(z) dz.

Question 6 [13 points] MLE of Variance is Biased
For each n = 1..N , let xn ∼ N (µ, Σ) denote an instance drawn (independently) from a
Gaussian distriubtion with mean µ and convariance Σ. Recall µML = 1

N

∑N
m=1 xm, and

E [ ΣML ] = E

[

1

N

N
∑

n=1

(xn − µML) (xn − µML)T

]

.

Show that E [ ΣML ] = N−1
N

Σ. You may want to prove, then use,

E
[

xnx
T
m

]

= µµT + δn,mΣ (1)

where δn,m = 1 if m = n and . . . = 0 otherwise.

Question 7 [5 points] Weighted squared error
In our derivation of the LMS algorithm, we used the squared error to approximate the 0/1
loss. Suppose that we have a general loss matrix, with the cost of a false positive being
L(1, 0) = c0 and the cost of a false negative L(0, 1) = c1. Here, we seek the weight vector w
that minimizes the following function:

J(w) =
m

∑

t=1

1

2
cyt

[w · xt − yt]
2
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(There is typically an additional factor of 1/m, which we dropped to simplify the computa-
tion.) Compute the gradient based on this function, and show how the Batch LMS algorithm
is modified to incorporate this change.

Question 8 [20 points] Bias-Variance for Classifiers [ONLY GRADS!]
In class, we explored the bias-variance tradeoff in the context of regressors. This question
explores this tradeoff in the context of classifiers — here binary classifiers, Y = {0, 1}.

Following the lecture notes, we have an observation x, with label t. (Note t could be
stochastic — i.e., different t’s for same x.) Given instance x, we predict yd(x) ∈ {0, 1},
based on the function yd() = Learning(d), which depends on the training dataset d ∈ D. In
class, we considered the loss function: L2(y, y′) = (y − y′)2; here, we instead consider

L(y, y′) = L0/1(y, y′) =

{

0 if y = y′

1 otherwise

Using this function, define

y∗(x) = argmin
y

Et [ L(t, y) |x ] = argmin
y∈{0,1}

{P ( t = y |x )}

to be the value y ∈ {0, 1} that minimizes the loss. (Note a Bayes optimal classifier would
return y∗(x) for every x.)

Let D be the distribution over datasets; then

ŷD(x) = argmin
y

Ed∈D [L(yd(x), y) ]

is the value that minimizes this 0/1-loss, on average over the possible datasets.
Now define

“Noise”: N(x) = Et [ L(t, y∗(x)) |x ] = P ( t 6= y∗(x) |x )
“Bias”: B(x) = L( y∗(x), ŷD(x) )
“Variance”: V (x) = Ed∈D [ L(ŷD(x), yd(x)) ]

Show that

ED,t [ L(t, yd(x)) |x ] = [2 PD(yd(x) = y∗(x)) − 1] × N(x) + B(x) + (−1)B(x)V (x)

[Hint: Prove that

1. L(t, y) = L(y∗, y) + c × L(t, y∗) for some value of c that might depend on the values t, y, y∗;

2. L(y∗, y) = L(y∗, ŷD) + c′ × L(ŷD, y), for some value of c′ that might depend on y∗, y ŷD;

3. Then consider the distribution.]

Question 9 [30 points] Programming: Linear Threshold Unit
In class, we discussed a number of ways to learn the parameters for a linear threshold unit.
For this assignment, you will implement these learning algorithms in MATLAB, then evaluate
them on some given datasets.

You should be familiar with load, save, csvread, ops, slash, find, rand, randn,
function, plot, and print. Type help <topic> in MATLAB if you need to learn about
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any of these. You may not use the built in regression functions or toolbox classification
features for this assignment. Ensure that your algorithm names are the proper case, since
MATLAB is case sensitive, and we will be testing your algorithms automatically.

Many of these algorithms involve setting parameters (e.g., learning rates) and making
decisions (batch or on-line); you should experiment here to find the appropriate settings.
Your goal is to minimize the number of misclassifications – i.e., 0/1 loss function.

Your algorithms will be tested with the datasets available from the course website; there
will be a README (html) file that describes the process of loading the data into MATLAB.
We will provide 5 datasets. Your algorithms should run correctly on all 5, and the last 2
will be used for parts d and e. You should ensure that your algorithms run in a reasonable
time — one minute per algorithm per dataset (of under 1000 data points).

The training data will have the form

X =









1 x1,1 . . . x1,n−1
...

...
...

1 xt,1 . . . xt,n−1









y =









y1
...
yt









where n− 1 is the dimension of the (original) data, t is the training set size, and yi ∈ {0, 1}.
The far-left column of 1’s is to allow the bias term to be the first element of your weight vector
w. Each of your MATLAB functions should return a n×1 weight-value w = 〈w0, w1, ..., wn−1〉.
Given a new input x = 〈x1, ..., xn−1〉, we will compute w0 +

∑n−1
i=1 xi × wi, then return 1 if

this is > 0 and 0 otherwise.

Each of your MATLAB functions should run autonomously, the same for each dataset. So
if you want to the learning rate (or whatever) to depend on the input dataset, your code
should compute this. Note this can involve some magic constants, if you wish. Your program
can change these values from one dataset to another, but YOU may not!
(Of course, you should include name and id as a comment at the begining of each of your
programs.)

Please view the nfoldCV subroutine provided as just a template... this code is too
simplistic: Eg, you need to use BALANCED folds.

a [5]: Write a MATLAB function LMS(X,y) that takes a t×n matrix X and a t×1 vector
of target values y and returns the weights w corresponding to the minimum mean-squared
error linear function. Electronically submit this function in the file LMS.m.
(Given that the underlying regression process is seeking weights w such that w × xi is close
to yi ∈ {0, 1}, the obvious threshold for distinguishing positive from negative would be 1/2
— i.e., we would return “+” if x×w > 1/2 and “−” otherwise. You may therefore want to
shift your weights w to move the threshold to be 0. Hint: this can be done in a very simple
post-processing step.)

b [10]: Write a MATLAB function LR(X,y) that returns the weights w derived using
logistic regression to maximize conditional probability. Electronically submit this function
in the file LR.m.

c [5]: Write a MATLAB function LDA(X,y) that returns the weights w derived using linear
discriminant analysis. Electronically submit this function in the file LDA.m.
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d [5]: Create a plot showing the 5-fold cross validation “learning curve” for each algorithm
on the LearningCurve dataset. This will show how your estimate improves (or not) as you
provide more and more data. Show the results for 10, 50, 100, 200, 500, and 1000 instances.
Each point on your curves should be based on at least 10 different sub-datasets of the specified
size, drawn randomly from the original dataset WITH REPLACEMENT. Hence, any sub-
dataset may include an element more than once. Moreover, these different sub-datasets will
probably not be disjoint. Also, for each dataset (or datasubset), you should compute the 5-
fold CV score, wrt only that data(sub)set. Please include 95% confidence error-bars around
each point. (Construct a t-confidence interval using the number of sub-datasets you chose.
You may want to use Matlab’s errorbar function.) Create a PNG file from your plot using
the command “print -dpng 9d” and electronically submit the file 9d.png. You should
draw one graph for each of the 3 algorithms, named 9d-LMS.png, 9d-LR.png, 9d-LDA.png.
For each, let the x-axis range over the number of points used, and the y-axis be the 5-fold
cross-validation error.

e [5]: Bake-off: Find the best weight vector w for the CHALLENGE dataset, using any
algorithm you wish, with whatever parameters you think should work best. Use the command
“save 9e w” to save the vector and electronically submit the file 9e.mat. Your weight vector
will be tested on unseen instances of the dataset and compared with the results with the
rest of the class.
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