
Midterm examination, CMPUT 325

Oct 24, 2002

Last name: _____________________

First name: _____________________

Instructions:

- Please do not open this exam until I give the starting sign.

- Then, first write your student ID number on the top of page 2.

- Keep your student ID ready for checking.

- In the end, stop immediately when the time is up.

Time: 75 minutes.

This exam has 6 questions and 8 pages including this cover page.

Total 80 marks for all questions: (+ 21 14 8 8 19 10)

You can use one prepared sheet with your notes, but no other forms of help.

This exam is printed on the right side pages only. You can use the space on the empty

left pages for temporary notes.

Write your final answers in the space directly after each question (preferred), or make it

VERY clear what the final answer for each question is, if you write it on the left side

page.

On the exam pages (right pages), cross out everything that you wrote that should not

be part of your answer.

You can get additional empty pages from me but you must return them with the exam.

For writing Lisp functions, use only those builtin functions that we discussed in class.

The correctness and clarity of your code are both important.

 1

Student ID ___________

Question 1 (21 marks) _________
Question 2 (14 marks) _________
Question 3 (8 marks) _________
Question 4 (8 marks) _________
Question 5 (19 marks) _________
Question 6 (10 marks) _________

Total (80 marks) _________

1. Understanding Lisp code (21 marks total)

1.1 Consider the following Lisp function f:

(defun f (L)
(if (null L)

0
(cons (car L)

(cons (f (cdr L)) nil)
)

))

1.1.1 (6x1 mark)
What is the result of evaluating the following expressions?
Use ‘pure’ Lisp, where it is an error to call the functions car or cdr for nil, or for
something that is not a list.

1.1.1.1 (f nil) 0

1.1.1.2 (f 'a) error - should be a list

1.1.1.3 (f '(a)) (a 0)

1.1.1.4 (f '(a b c)) (a (b (c 0)))

1.1.1.5 (f '(((a) b) c)) (((a) b) (c 0))

1.1.1.6 (f (f '(a b))) (a ((b 0) 0))

 2

1.2 (3x2 marks) In each of the following examples, give a LISP expression that returns
the element a from the given list L.
Example: for L = (a b), a correct answer would be (car L).

1.2.1 L = (x a b y)
(cadr L)

1.2.2 L = (((x)) ((a) b))
(caaadr L)

1.2.3 L = (x y (b a))
(cadaddr L)

1.3 (9 marks) Consider the following Lisp function g:

(defun g (X Y Z)
(cond

((null Y) nil)
((equal X (car Y)) (cons (car Z) (g X (cdr Y) (cdr Z))))
(t (g X (cdr Y) (cdr Z)))

))

1.3.1 (3x2 marks) What is the result of evaluating the following expressions?

1.3.1.1 (g 'a '(a b c a a b) '(6 5 4 3 2 1)) (6 3 2)

1.3.1.2 (g '(a) '((a b) c a (a) b) '(6 5 4 3 2 1)) (3)

1.3.1.3 (g nil '(a b nil nil a ()) '(6 5 4 3 2 1)) (4 3 1)

1.3.2 (3x1 mark) What happens if in the definition of g, equal is changed to eq as
follows?

(defun g (X Y Z)
(cond

((null Y) nil)
((eq X (car Y)) (cons (car Z) (g X (cdr Y) (cdr Z))))
(t (g X (cdr Y) (cdr Z)))

))

Now, what is the result of evaluating these expressions?

1.3.2.1 (g 'a '(a b c a a b) '(6 5 4 3 2 1)) (6 3 2)

 3

2. Writing Lisp code (14 marks total)

2.1 (6 marks)
Write a Lisp function remove as follows:
Given a list of atoms X, and a list Y, remove all elements of X from Y. In other words,
return a list that contains only those elements inY that do not appear in X. The
elements in the result should be in the same order as they are in Y. Elements of X that
appear in nested sublists of Y should not be removed.

Examples: (remove '(a b c) '(d e a b a c e f)) → (d e e f)
(remove '(a b c) '(d e (a b) a (c) e f)) → (d e (a b) (c) e f)

(defun remove (X Y)
(if (null Y) nil

(if (member (car Y) X) (remove X (cdr Y))
(cons (car Y) (remove X (cdr Y)))

)))

This solutions recurses on the Y list, decides for each element whether it should e
removed or not.
Another solution is to recurse on the X list, and use a helper function such as
removeone the removes a single element from all of Y.

2.2 (8 marks)
Write a function rr (remove recursively) similar to remove above, which also removes
elements of X from nested sublists of Y. If all elements of a sublist are removed, the
result should contain an empty list in that place. See the examples below.
Examples: (rr '(a b c) ‘(d e a b a c e f)) → (d e e f)

(rr ‘(a b c) ‘(d e (a b) a (c) e f)) → (d e nil nil e f)
(rr ‘(a b c) ‘(d e (a (a d a b) (b)) a (c) e f)) → (d e ((d) nil) nil e f)

(defun rr (X Y)
(cond

((null Y) nil)
((member (car Y) X) (rr X (cdr Y)))
((atom (car Y)) (cons (car Y) (rr X (cdr Y))))
(t (cons (rr X (car Y)) (rr X (cdr Y))))

))

Again, this recurses on Y, and could also be solved by recursion on X.
Doing the (atom (car Y)) test first, and then the member test inside, would be more

 4

3. S-expressions, Machine Representation (8 marks total)

3.1 (2x2 marks) For the given diagram showing a machine representation, write the
corresponding S-expression both in full dotted-pair form and in the simplest form.

Remark: in the diagram, nil is represented by a crossed-out box .

b ca

3.1.1 full dotted-pair form:

((a.nil).((b.(c.nil)).(nil.nil)))

3.1.2 simplest form:

((a) (b c) nil)

3.2 (2 marks)
Draw the diagram showing the machine representation of the S-expression (a
(b.(c.d)))

b c

a
d

3.3 (2 marks) Which of the s-expressions a) to d) below are equivalent?

a) (w (x.y).z)

b) (w.((x.y).z))

 5

4. Higher-order functions in Lisp (8 marks total)
Solve the following questions by using the higher-order functions mapcar and reduce.

You are given a list L with employee information. The information for each employee is
a list of three elements of the form (name hours rate), where name is the name of the
employee, hours is the number of hours that the employee worked, and rate is the
salary per hour.

4.1 (4 marks) Use mapcar to write a Lisp function salary that computes a list of pairs
(name payment), where each payment is computed by multiplying hours and rate for
that person. Employees should appear in the same order in the output as in the input.

Example:
(salary '((lee 25 10) (sam 40 8) (ann 10 20)))
→ ((lee 250) (sam 320) (ann 200))

(defun f (T) (list (car T) (* (cadr T) (caddr T))))
(defun salary (L) (mapcar 'f L))

4.2 (4 marks) Use reduce to write a Lisp function totalpay that computes the sum of
all payments for the employer for a list of employees. Use the form of reduce without
an identity element. You can assume that the employee list is not empty.

Example:
(totalpay '((lee 25 10) (sam 40 8) (ann 10 20)))
→ 770

(defun totalpay (L) (reduce '+ (mapcar 'g L)))
(defun g (Tr) (* (cadr Tr) (caddr Tr)))

 6

5. Lambda Calculus (19 marks total)
5.1 (2x3 marks)
Let functions f and g be defined by f(x,y) = 3*x + y, g(x,y) = x + y.
Reduce the following expression and show each reduction step for f and g:

g(f(2, f(1,1)),1)

5.1.1 use normal order reduction:

g(f(2, f(1,1)),1) = f(2, f(1,1)) + 1 = 3*2 + f(1,1) + 1 = 6+3*1+1+1 = 11

5.1.2 use applicative order reduction:

g(f(2, f(1,1)),1) = g(f(2, 4),1) = g(10,1) = 11

5.2 (2x3 marks)
Given the following lambda expressions a) to d):
a) ((λy | y+1) ((λx | x+1) 5))
b) ((λx | x+2) 5)
c) ((λy | y+1) 6)
d) ((λx | x+1) ((λx | x+1) 5))

Which of the expressions a) to d) can be reduced to other expressions among a) to d)?
List all possible reductions. For example, an answer e→f, g→h, h→g would mean that
there are reductions from e) to f), from g) to h), and from h) to g), and no other
reductions.

5.2.1 (3 marks) List all possible alpha reductions between a), b), c) and d).

a) to d), d) to a)

5.2.2 (3 marks) List all possible beta reductions between a), b), c) and d). Also include
thosebeta reductions that can be achieved by doing an alpha reduction as well.

a) to c), d) to c)

5.3 (2x2 marks)
Evaluate the expression below by using context and closure. Assume that evaluation
takes place in an initial context CT0.

 7

5.4 (3 marks) State the Church-Rosser theorem.

See lecture notes.

6 SECD machine (10 marks total)

6.1 (5 marks)
Show the execution of the following code on a SECD machine. Show the state of the
stacks after each operation.

start state: s e c d, with c = (LDC 2 LDC 3 + LDC 2 LDC 6 + *)

(2.s) e (LDC 3 + LDC 2 LDC 6 + *) d

(3 2.s) e (+ LDC 2 LDC 6 + *) d

(5.s) e (LDC 2 LDC 6 + *) d

(2 5.s) e (LDC 6 + *) d

(6 2 5.s) e (+ *) d

(8 5.s) e (*) d

(40.s) e nil d

6.2 (5 marks)
Consider extending the SECD machine with an operation GZ that tests whether the
top of the s stack is a number greater than zero. GZ replaces the top of the stack by T if
the test outcome is true andby F otherwise. GZ can be described as follows:

(x.s) e (GZ.c) d → (r.s) e c d
where r = T if x>0, and r=F if x≤0.

Use the GZ command to compile the following Lisp code into machine code. Remarks:
The SEL command can be used to test whether T or F is on top of the s stack. Assume
that a binary function '-' for subtraction is available: it subtracts the second element on
the stack from the top element and puts the result on the top of the stack.

Lisp code: (if (< 3 5) 10 20)

(LDC 3 LDC 5 - GZ SEL (LDC 10 JOIN) (LDC 20 JOIN))

 8

