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How to Reason?

How to reason?
Given KB, q, determine if KB

Select Inference Rule IR
Select Fact(s) {F;} from KB

Apply rule IR to Facts {F;}
to get new Fact ¢

...Add ¢ to KB

Repeat until find ¢ = ¢

Issues:

1. Lots of Inference Rules
Which one to use, when?

2. Is overall system “complete’” ?
If 4 answer, guaranteed to find it?



Resolution Rule (Propositional)

e Most Simple:
AV B Man V Mouse

-B —Mouse

A Man

e Almost as Simple:

AV B Man V Mouse
-B Vv C —Mouse V CatFood
AV C Man V CatFood
e General:
AiVA>V---VA,_ 1V Ap
By VByV---V By
Ai{VA>V---VA,_1V BoV---V Bp

where A, = —-B;



Res

Verify Soundness

¢ Modus Ponens:

a = 3
Q

5

Truth table:
a [ a=
x| T T T
T F F
F T T
F F T
. (8
Consider all worlds where both hold.
a= 3
Observe: B holds here as well!
a V B
e Resolution: -8V v
o \% y
a I} 0 aVp A% aVy
False False False False True False
False False True False True True
False True False True False False
False True True True True True
True False False True True True
True False True True True True
True True False True False True
True True True True True True

olution




Sufficiency

e Subsumes:
[MP]

[MT]

[RC]

[MG]

(<]

p=Tr

pP=4q
P=4q

e Is Resolution sufficient?
Complete inference process?




Resolution Rule (PC)

Simple Example:

—man (X) V mortal (X)
man (socrates)

mortal (socrates)

using binding list o = { X/socrates}

Notice:
— subst(man(socrates), o ) = subst(man(X), o)
— subst(mortal(X), o) = mortal(socrates)
In General:
Ai{VA>V---VA,_1V Ap
By VB>V---V By,
/ / / / /
Al\/AQV"'VAn_lv B2\/"'\/Bm

where there is a binding list, o, for which
subst( A,,o0) = —subst( B1,0)
subst( A;,o) = Al Vi
subst( Bj,o) = B Vj



Requirements of Resolution

For Resolution to work, need:

. Process that takes two literals p and ¢q

and returns binding-list o s.t.

subst(p, o) = subst(q, o)

A: Called Unification
[...is well defined, and efficient, and ...]

. ...tobe “complete”, needs particular type

of proof procedure

A: Called Refutation Proof
[...try to find contradiction. . .]

. To express information as

Conjunction of Disjunctions

A: Called Conjunctive Normal Form
[...is universal; can eliminate =, 3, ...]



1. Unification (Specification)

e Fancy Match

e Unify(p,q) = o

— p, q: atomic propositions (w/variables)

— 0. binding list —

Fail OrF
{x1/e1, x2/e2, ..., xp/en}
where
x;' S are distinct,
constant
each e; is variable

functional expr.
No x; appears in any e;.

e If non-Fail,

subst(p, o) = subst(q, o)

...le, o0 makes p and q look the same.



Resolution is NOT Complete

Resolution Fgr smashes together clauses

Given

KB = {, oVA, ..., "AVp, },
R can derive ...

KB Fp oVp

But if KB = {},
Fr cannot derive anything

But tautologies (p Vv —p) always entailed

p|pV-p
{} = »pv-p +1 +
o) +
But
{} Vr pVv-p
Similarly
{r} E »pvp
But

{r} Vr pVp



Refutation

e Resolution can still be used for entailment!
Using Refutation Proof:

e KB =0 means
o is true in all models, M(KB)

++++ 0 9|9

e Now consider KBU —o

It has NO models
M(KBU-o) = {}

= KBU-o = JJFalse




Refutation Proof

e Deduction Theory

KB = o

if

KB U {—c} is inconsistent iff

KB U {—0o}

— Jalse

e [0 prove o:

Add —o to KB
Prove a Contradiction, False




Refutation Complete

Def'n: F is Complete:
VKB, o: KBFEo = KBto

Fis REFUTATION Complete:
VKB: KBI={} = KBI{}

e |Resolution i is REFUTATION COMPLETE

If KBE=Eo
then 3 resolution proof of False
from KB U {—o}

Proof: Let RC(I") be deductive closure of I using Resl'n

Need only show: if {} € RC(I'),
then [T is consistent ...i.e., [ has model.

Build model over variables vy, ..., vg:
For : = 1..k
* if 3¢; € RC(IN) s.t.
—v; € ¢; and assg’'n to vi,...,v;—1 false

then v; < false
*x otherwise v; < true

This assignment {£wvi,...,%v;} is model for I !



Using Refutation Resolution

e Given KB, o
Let T = KBU —o
Try to prove JFalse, using Fp
r kg 7 False
If succeed, then KB = o
If fail, then KB F= o

e False is EMPTY CLAUSE {}

e Problem:
Resolution works by smashing CLAUSES!
= Need to encode KB, —o as clauses

e Solution: Can always be done!



3. Conversion to
Conjunctive Normal Form

0: Vx [(Vy P(x, y)) = -Vy Q(x, y) = R(x, y) ]

1: Eliminate implication, iff, ...
Vx [-(Vy P(x, y)) VI[-Vy[-Q(x, y) V R(x, y)]l]

2: Move - inwards
Vx[(Fy—-P(x, y)) V[IyQ(x, y) N ~R(x, y)l]

3: Standarize variables
Vx[(Jy-P(x, y)) V[IzQ(x, z) A ~R(x, z)]]

4: Move quantifiers left
Vxdzdy[-P(x, y)) VI[Q(x, z) A ~R(x, z)]]

5: Skolemize (remove existentials); Drop Vs
—P(x, F1(x)) V [Q(x, F2(x)) A =R(x, F2(x)) ]

6: Distribute A over Vv

[-P(x, F1(x)) V Q(x, F2(x))]
A [=P(x, Fi(x)) V =R(x, F2(x))]

7 : Change to SET notation

{ =P(x, F1(x)) V Q(x, F2(x)),
-P(x, F1(x)) V —R(x, F2(x)) }

8 : Make variables unique
{ =P(x1, F1(x1)) VvV Q(x1, F2(x1)),
- P(x2, F1(x2)) V —-R(x2, F2(x2)) }

Resolution



Normal form: Clausal

¢ Eliminate implication, iff, ...
a=pB +— -—aVp

¢ Move - inwards

- =«
-(aVB) = —aA-S Vzod(zx) +— Tz—¢(x)
-(anNB) — —aV-p —dzp(z) — Vz-¢(x)

e Standarize variables (Make all names unique:)
Vzg(z) AJzp(z) +—  Vzd(z) A Jyp(y)
e Move quantifiers left

Ve ¢(xz) AJyp(y) +—  VzIy ¢(z) Ap(y))

e Skolemize (remove existentials)
For each existential z, let yi,...,yn be the uni-
versally quantified variables that are quantified to
the LEFT of z's “dx”. Generate new function
symbol, g,, of m variables. Replace each x with
9z (Y15 -3 Ym)-
(Write g.() as gz.)

Vydz ¢(xz) Ap(y) = Vy o(|gz(y)|) A p(y)
daVy ¢(x) Ap(y) = Yy ¢([gz]) A p(y)

e Distribute A over Vv

(zAy)Vz = (xVz)AlVz)
e Change to SET notation

(zVvVz2)A(yV-z) {xVz, yV-z}
e Make Variables Unique

{ P(z) V Q() } H { P(z1) V Q(z1) }
R(z) v -W(z,y) R(z2) V —~W(z2,y)

[R&N pp. 281-282]



Skolemizing

Q: To convert arbitrary PredicateCalculus to
“Conjunctive Normal Form”

need to eliminate 4

A: Just “name” it
Using new name. .. to avoid conflicts

Eg: “There is a rich person.”
3X rich(X)

becomes

rich( g1 )

where g1 is a new “Skolem constant”

Note: will NOT unify with

“rich(russ)” nor
“rich( x )" for any x in KB.

Eg: |3k L(kY) = kY| becomes |-L(e¥) =¢¥
dy dy

e Irickier when 4 is inside V. ..



Skolemization #2

Eg: “Everyone has a heart.”
VX person(X) = 3Y heart(Y) A has(X,Y)

Incorrect: VX Person(X) = heart(h;)Ahas(x,H;)
7everyone has the SAME heart h1?

Correct: |VXperson(X) = heart(h(X)) A has(X,h(X))
where h is a new symbol (“Skolem function™)

e Skolem function arguments:
all enclosing universally quantified variables

e Skolemizing procedure (to remove existentials)

For each existential X, let Yi,...,Y, be
the universally quantified variables that are
quantified to the LEFT of X's “34X".
Generate new function symbol, gx, of m
variables. Replace each X with gx(Y1,...,Y,).

(Write gx() as gx-)

VYIX ¢(X)Ap(Y) = VY o(|gx(Y)])Ap(Y)
IXVY ¢(X)Ap(Y) — VY ¢([gx])Ap(Y)




Skolemization — Theorem

Theorem: Given theory T,
let s(T") be “skolemized version” of T
replacing each existential with skolem function.

Then. ..

If T is consistent, then s(T') is consistent.

Eg...

then

...if s(T) is inconsistent, then T is inconsistent ...

\

s(T1) = 1

p

\

a1
a2

IXVY o(X,Y)

a1
a2

0

/

VY QD(Cl, Y)

iIs consistent

> IS consistent.

/



Example

e Natural Language

Jack owns a dog.

Every dog owner is an animal lover.

No animal lover kills an animal.

Either Jack or Curiosity killed the cat (named Tuna).
Did Curiosity kill the cat?

e In predicate calculus:

dx Dog(x) A Owns(Jack, x)

Vz (Jy Dog(y) A Owns(z,y)) = AnimalLover(x)

Vz AnimalLover(z) = (Vy Animal(y) = —-Kills(z,y) )
Kills(Jack, Tuna) V Kills(Curiosity, Tuna)

Cat (Tuna)

Vr Cat(xz) = Animal(x)

—Kill( Curiousity, Tuna)

e Now what?

esolution

— REFUTATION PROOF! (includes — of goal)
— Convert to “Clausal Form”

— Resolve, seeking {}

— (Return solution)



CNF Form

e ...in Conjunctive Normal Form Form

dog(d)
owns (jack, d)
(“d" is constant “naming” Jack's dog)
—dog(Y) V —owns(X,Y) V AnimalLover(X)
—animalLover(W) V —animal(Y) V —-kills(W,Y)
kills(jack, tuna) V kills(curiosity, tuna)
cat (tuna)
—cat(Z) V animal(Z2)

—kills(curiosity, tuna)

Note: Uniform structure
Use new constants / functions: d
for existentials (“Skolemizing).
= easier to refer to those objects



dog(d) —dog(Y) V —owns(X,Y) V animalLover (X)

—owns (X,d) V animalLover (X)

animalLover (jack)

owns (jack,d)

cat (tuna)

—cat (X) V animal (X)

/.

animal (tuna)

—animalLover (X) V —animal(Y) V —kills(X,Y)

—animallover (X) V —kills(X,tuna)

—kills(jack,tuna)

—kills(curiousity,tuna)

kills(jack,tuna) V kills(curiousity,tuna)

kills(jack,tuné)




“Tricks”

1. Refutation Proof

2. Normalization: put in CNF form

e Skolemize — remove 4

(by giving arbitrary, but uniqgue name to 3 objects)

e remove quantifiers / = / A/ VvV etc.

[R&N pp. 281-282]

3. Unification: matching variables/ terms
between clauses that look similar

e [Robinson 1965]



Comments on Resolution

e Formal Properties
Sound, Complete
Efficiency [exponential time]

e Strategies
— Unit Preference
— Ordered
— Set of Support: Backward vs Forward Reasoning

— Input
— Linear

e Equality

implementation = Prolog

esolution



Inference Using Resolution

Given KB, o
1. Convert KB to CNF: CNF(KB)
2. Convert —o to CNF: CNF(—o)
3. CNF(KB) U CNF(-0o) Fp * {}
If succeed, then KB = o
If fail, then KB = o

As propositional:
* sound
* complete
* decidable

But
* Exponential time in general
(not “just” NP-hard)
*x Linear time for Horn clauses
* Quadratic time for 2-CNF clauses

Resolution



Properties of Resolution

Sound
KB Fgrr o only if
o is true in EVERY world in which KB holds.

Complete

KB Fgrr o whenever
o is true in EVERY world in which KB holds.
(as kg is O-complete)

KB l_]-%R - If Yes, returns that answer eventually

Semi—?Decid ble in Predicate Calculus
If No, may never return.

Intractable
Exponential in |[KB| for Propositional Logic
(Linear for Proposition HORN)

esolution

While complete, significant search problem!

= Many different search strategies:
resolution strategies



Length of resolution proof?

e Can Resolution be FORCED
to take exponentially many steps?

e Posed [Cook / Karp] ~ 1971/72.
...Related to NP vs. co— NP questions

“Resolved” by Armin Haken 1985.

e Pigeon-Hole (PH) problem:

Cannot place n + 1 pigeons in n holes (1/hole)

e PH takes exponentially many steps
(for Resolution)

no matter what order, strategy, ...

e Important:

PH hidden in many practical problems
Makes theorem proving/ reasoning expensive

Contributed to recent move to model-based methods



Pigeon-Hole Principle

e P, ; for Pigeon i in hole j.

e Every pigeon is in some hole:
P1,1\/P1,2\/P1’3\/...\/P1,n
P2,1\/P272\/P273\/...\/P27n

Piont1)1 vV Put+1)2V Pat1)3 V-V Patiyn

e Every pigeon is in at most one hole:
(—IP1,1 \% ﬁPl,Q), (—IP1’1 V —IP1,3), - (_'Pl,(n—l) V ﬂPl,n)

(—|P2,1 V _|P2,2), ce e (—|P2’(n_1) V ﬂPQ,n)

e Every hole has at most one pigeon:
(mP11V-P1), (-P11V-P31), ...
(=P12V P23), (=Pi2V —-P32), ...



Haken85:

=

Result

Requires O(n3) clauses

Resolution proof that
PH is inconsistent
requires dealing with at least exponential
number of clauses,

no matter how clauses are resolved!

‘“‘Method can’t count.”

Can word in Predicate Calculus . ..same problem.



esolution

Generality; Choice Points

As any theory can be translated to CNF
and as resolution is O-complete,
All deduction in terms of Resolution.

As unification is functional,
[MGU is unique up to variable names]
only decision is
Which (two literals in which) two clauses
to (try to) Resolve?

Eg:

Insist on using a positive atomic literal:
Forward reasoning

Insist on using a negative atomic literal:
Backward reasoning

Insist on using an atomic literal:
Unit Resolution (F or B)

+ Set of support, ancestry filtering, ordered(lock)



Goal:

But

Resolution Strategy I
Unit Preference

to find {} (clasue w/ 0 literals)

When v = Resolve(a, B)
v = lal + 8] =2

If || = 4 and |8| = 3, then |y| =5

so |yv| > |af, |B]
Is this progress?

if |a| =1, then |Resolve(a, )| = |8| — 1
PROGRESS towards O !

Unit Preference:
Given

KB={{a, B, ..., X, ¢, ...}

May resolve o and g only if
o is single literal (“unit clause™)

Does it work?



Unit Propagation

~ Forward/Backward Reasoning

Query: |animal (ralph) 7

F ~
zebra(ralph) N
—fly(X)  Vinsect(X) B ! \
—bee (X) V insect (X)
—spider(X) V insect (X) Animal
—insect (X) V animal (X)
—lion(X) Vmammal (X) T M /

—tiger(X) Vmammal (X)
—zebra(X) Vmammal (X) 4 e
—mammal (X) V animal (X)

—£(X) Vi(X)
—b(X) Vi(X)
—s(X) Vi(X)
—i(X) Va(X)
—1(X) Vm(X)
=t (X) Vm(X)
—z(X) Vm(X)
—m(X) Va(X)

—-a(r)

z(r)

—f(X) Vi(X)
—b(X) Vi(X)
—s(X) Vi(X)
—1i(X) Va(X)
—1(X) Vm(X)
=t (X) Vm(X)
-z (X) Vm(X)
—m(X) V a(X)
z(r)

—-a(r)




Unit Resolution; Ordered Resolution

Can resolve P and Q only if ...

Unit Preference: |P| =1

STATUS: Notcomplete{ AvVE, AvV-B }

-AVvV B, -AV-B

But ... Refutation Complete for Horn clauses.

e Horn < each clause has <1 positive literal
Horn: A AvV-B, —-B, -AV-B,
NotHorn: AV B, AV-QVW

Ordered Resolution: Literals in each clause
are ordered:

P={(p1Vpy V...), Q@={(q1VqgV...)
...only if p1 unifies with —q;.

STATUS: Refutation complete for Horn



Resolution Strategies, II

Set of Support: Resolve P, Q only if P€ S
where S C KB is ‘“set of support’ .
...then add resolvent to S.

Complete if Consistent( KB — S)

Backward Reasoning:
Initial Support: S = negated query —o

Forward Reasoning:
Initial Support: S = original KB

Q: Which is better?

A: Depends on branching factor!



Set-of-Support: Backward Reasoning

Query: |animal(ralph) 7
KB
zebra(ralph)

—f1y (X) V insect (X)
—bee (X) V insect (X)
—spider (X) V insect (X)
—insect (X) V animal (X)
—lion(X) Vmammal(X)
—tiger(X) Vmammal (X)
—zebra(X) Vmammal (X)
—mammal (X) V animal (X)

F:\\\‘

B—*I
N\

Animal

T—»M/

z -

z(r)

—£(X) Vi(X)
—b(X) Vi(X)
—s(X) Vi(X)
—1i(X) Va(X)
—1(X) Vm(X)
=t (X) Vm(X)
=z (X) Vm(X)
—m(X) V a(X)

—-a(r)




Set-of-Support: Forward Reasoning

Query: |animal(ralph) 7
K By
zebra(ralph)
—f1y (X) V insect (X)
—bee (X) V insect (X)

—spider (X) V insect (X)
—insect (X) V animal (X)
—lion(X) Vmammal(X)
—tiger(X) Vmammal (X)
—zebra(X) Vmammal (X)
—mammal (X) V animal (X)

F\

B—»I
.
T—»M/

z -

Animal

z(r)

—£(X) Vi(X)
—b(X) Vi(X)
—s(X) Vi(X)
—1i(X) Va(X)
—1(X) Vm(X)
=t (X) Vm(X)
=z (X) Vm(X)
—m(X) V a(X)

—-a(r)

SofS |

—-a(r)

z(r)

—f (X) Vi(X)
—b(X) Vi(X)
—s(X) Vi(X)
—1i(X) Va(X)
—1(X) Vm(X)
=t (X) Vm(X)
=z (X) Vm(X)
—m(X) Va(X)




Forward vs Backward Reasoning

e Here, both F- and B- reasoning were also
Unit Preferences
typically the case

e Here. ..
Backward Reasoning required 8 steps
Forward Reasoning required 3 steps

Not always. ..



Forward vs Backward Reasoning

Query:

animal (ralph) 7

K By
zebra(ralph)

—ant (X) V insect (X)
—bee (X) V insect (X)
—spider(X) V insect (X)
—insect (X) V animal (X)
—lion(X) Vmammal(X)
—tiger(X) Vmammal (X)
—zebra(X) Vmammal (X)
—mammal (X) V animal (X)

A\

B—>I
N

Animal

T#M/

z -

K B»
zebra(ralph)
—zebra(X) Vmedium(X)
—zebra(X) Vstriped(X)
—zebra(X) Vmammal (X)
—medium(X) Vnonsmall (X)
—medium(X) Vnonlarge (X)
—striped(X) Vnonsolid(X)
—striped(X) V nonspot (X)
—mammal (X) V animal (X)
—mammal (X) V warm(X)

o —Small
~ —Large

77+ str < —>pot
\ . —Solid
_~ Warm

S~ Animal

Med

Mam



Resolution Strategies, III

Input Resolution: only if P in original KB

STATUS: Not complete.

Linear resolution: only if P in original KB

or P is ancestor of @) in proof tree.
{PvQ} {_'PaQ} {Pa_'Q}{_'Pa_'Q}

{Q}
{ P}

{Q@r {Q}

0
STATUS: Refutation complete

(if KB consistent, then KBU{¢} inconsistent
iff LinRes, starting with ¢, reaches {})



?

Dealing with Equality

Given axioms

russ = profG

happy (russ)
poor (profG)

confused(X) :- happy(X), poor(X).

expect to conclude

confused (russ)

Prolog would not:

Reduce confused(russ) tO poor(russ),

but not match |poor(russ) | w/

poor (profG) |.

Could add rule:

poor(Y) :- poor(X), Y=X.




Comments on Equality

russ = profG. happy(russ). poor(profG).
confused(X) :- happy(X), poor(X).

e Need rule for each relation, function, ...

e Rule
poor(Y) :- poor(X), X=Y.
would NOT work

Reduce confused(russ) to profG = russ,
NOT in knowledge base!

X=Y :- Y=X.
Fix: X=X.
X=Z :- X=Y, Y=Z.

But... poor(billGates)
poor(russ), russ=billGates.
russ=billGates
billGates=russ
russ=billGates
billGates=russ

or worse:

russ=billGates
russ=Y, Y=billGates
profG=billGates
profG=Y, Y=billGates
Y=profG, Y=billGates
russ=profG, russ=billGates
russ=billGates

Sol’'n: Need lots of control rules!

39



Wrap-Up wrt Equality

Note: £(A) does NOT unify with £(B),

evenif A =B
Eg: Father(Russ) = Leonard
MorningStar = Venus
2+2 = 4

Option#1: View “=" as std predicate
Ve : z==x
Ve,y: =y = y==
Ve,y,z. =y N y=z = x==z

But also need. ..
Ve,y: =y < Pi(x) =P1(y)
Ve,y: 2=y < P2(5E) — PQ(y)

VI, TB, Y4, YB: TA = TBAYA =Y <
F1(za,y4) = F1(zB,yB)

for every predicate
-+ search control problems. ..

Demodulation: For any terms x,y,z where
Unify(x,z) = 0:
r=vy, (...2...)
(...Subst(0,y)...)
Paramodulation: ...do not know z = v,

but only “z=vy Vv P(z)"




