Why not use Predicate Calculus?

Eg: Consider diaghosing toothache:
1. Vp Symptom(p, Toothache) = Disease(p,Cavity)
Wrong — other factors cause toothaches:

2. Vp Symptom(p, Toothache) = Dis(p,Cavity)V
Dis(p, GumDisease) V Dis(p, ImpactedWisdom) V ...

Too many! Maybe diagnhostic:
3. Vp Disease(p,Cavity) = Symptom(p, Toothache)
Wrong — many other factors (on |hs)!

e Difficulties of Building Exhaustive KB

Laziness: Just too many rules and contingen-
cies.

Theoretical Ignorance: No complete theory for
the domain.

Practical Ignorance: Don’t have all the (patient)
information available.

e Probabilities provide way of

. : laziness
summarizing uncertainty from ¢ .
ignorance



Using Probability

e Not everyone with cavity has toothache
— [Vp Disease(p,Cavity) = Symptom(p, Toothache) ]

but. ..
perhaps 80% do.

e "80%" summarizes factors required for

cavity to cause toothache
+ patient has cavity & toothache (but unrelated)

Remaining 20% summarizes
all other possible causes of toothache

Meaning: An individual with cavity either has toothache, or not.

In 80% of situations where z has Cavity
(ie, indistinguishable from this situation
based on current knowledge)
x has toothache



Terms from Probability Theory

Random Variable:
Weather € {Sunny, Rain, Cloudy, Snow }

Domain: Possible values a random variable
can take.
(...finiteset, K, ...)

Probability distribution: mapping from do-
main to values in [0, 1]

P(Weather) = (0.7, 0.2, 0.08, 0.02)

P(Weather = Sunny) = 0.7
means P(Weather = Rain) = 0.2

P(Weather = Cloudy) = 0.08

P(Weather = Snow) = 0.02

Event: Each assignment
(eg, Weather = Rain)
Is “event”



General Events

Boolean Combinations: Can have
Conjunction, Disjunction, Negation

of events:
P(Weather = Rain A Card = 2S)
P(Weather = Rain V Card = 2S)

P(—(Weather = Rain) )

Atomic Event: “Complete specification”
Conjunction of assignments to EVERY variable

Joint Probability Distribution:
Probability of every possible atomic event

Toothache Cavity | P(---)
T T 0.04
T F 0.01
F T 0.06
F F 0.89

n binary variables: 2" entries
(2" — 1 independent values, as sum = 1)

A huge table!



Joint Probability Distribution
IS Sufficient

t | ¢ | P(Toothache = ¢, Cavity = c¢)
+ | + 0.04
o | + | — 0.01
— | + 0.06
— | = 0.89

e P(Cavity V Toothache) =
P( Cavity A Toothache ) +
P( Cavity A —Toothache ) +
P(—Cavity A Toothache )
= 0.04+40.0140.06=0.11

e P(Toothache) =
P(ToothacheACavity ) + P(ToothacheA—Cavity )
= 0.04+40.01 =0.05

e Atomic Events are sufficient
... but very unnatural

e Why not “connections”?



Conditional Probability

Conditional Probability: P(A|B) =
Probability of event A,
given that event B has happened.

P(Cavity | Toothache ) = 0.8

In gen’l:

P(A|B) = P;?gff)?)

P(AAB) = P(A|B)P(B)

Unconditional (prior) Probability: Probability of event
before evidence is presented

P(Cavity) = 0.01
= probability that someone (from this population)
has a cavity
is 1 in 100

Evidence: Percepts that affects degree of belief in
event

Conditional (posterior) Probability: Probability of
event after evidence is presented

N.b., posterior probability can be COMPLETELY
different than prior probability!



Bayes’ Rule and Its Use

Diagnosis typically involves computing
P( Hypothesis | Symptoms )

What is P(Meningitis |StiffNeck)?
= prob that patient A has meningitis,
given that A has stiff neck?

Typically have ...

e Prior prob of meningitis P(M) = -

50,000
e Prior prob of having a stiff neck P(SN) = X

20
e Prob that meningitis causes a stiff neck
pP(sn|m) =1

P(A|B) P(B)
P(A)

Bayes’ Rule: P(B|A) =

P(X|Y,E)P(Y |E)

P(Y|X,E) — P(X|E)

N [M)P(M
Eg: P(u|sn) = EELTQEID — 05x0.00002 — .0002

Note: Only 1 in 5000 stiff necks have meningitis. ..
even though SN is major symptom of M. ..



Comments on Bayes Rule

Don't need P(SN) if have P(SN|—M):

P(sN) = P(SN, M) + P(SN, —M)
= P(SN|M)P(M) 4+ P(SN|-M)P(—M)
P(—-M) = 1-P(M)

Given “sore neck’”, want to compare

prob of meningitis P(M|sN) = Pﬁﬁpg\]l)’(m
i __ P(SN|W)P(W)
prob of whiplash P(w|sN) = =55y

To compute ‘“relative likelihood”, don't
need P(SN):

P(M|SN) __ P(SN|M)P(M) __
P(W|SN) — P(SN|W)P(W) —
P(Y|X) aP(X|Y)P(Y)

where o= is independent of Y.

P(X)



Combining Evidence

e What is prob of Cavity,
given {Toothache, Catch}?
P(Cav|Ta, Ct)

e Bayesian Update

P(cav|{}) = P(Cav)
P(cav|Ta) = P(cav|{}) "5
P(Cav|Ta, Ct) = }D(Cav|Ta)-P(CtéigélgzgitY)

Each time new evidence is observed
(Toothache; Catch; ...),

belief in unknown  (Cavity)
IS multiplied by factor
that depends on new evidence.

(Note: independent of order of observations)



Using Independence

Note: needs 3rd order information:
P(Ct|Ta, Cav)

Not always available. ..

e But sometimes, INDEPENDENCE!
P(Ct|Ta, Cav) = P(Ct|Cav)

(Prob of symptom2, given disease and symptom1
= Prob of symptom?2, given disease)
If so. ..

P(Ta|Cav) P(Ct|Cav)
P(Ta) P(Ct[Ta)

P(Cav|Ta, Ct) = P(Cav)

e ASSUMPTION is NOT ALWAYS TRUE!

But when it is, just need 2nd order statistics!

e Even better:
Denominatoris P(Ta)P(Ct|Ta) = P(Ta, Ct)

Independent of Cavity,;
just normalizing term!



Probability Theory

0 < P(A) < 1

P(True) = 1, P(False) = O

P(AvV B) = P(A)+ P(B) — P(AAB)
P(A) + P(-A) = 1

AXioms:

Not arbitrary: If Agentl assign prob that violate axioms,
then
J betting strategy s.t. Agentl guaranteed to lose $

Def’'n: Independence of Variables:

Events A and B are independent <«
P(ANB) = P(A)P(B)
P(A|B) P(A)
P(AvVB) = 1-(1-P(A))(1—-P(B))

Variables independent
< independent for all values

Va,b P(A=a, B=b) = P(A=a)x P(B=b)



Source of Numbers

Requires numbers: P(X), P(X|Y)

Where do they come from?

Experiments: Empirical, frequentist approach

Prior prob’s from actuary tables,
Conditional probability (symptom, given disease)

sensitivity /specificity (lab results)

Objectivist: Probabilities express some real
aspects of the universe.

Subjectivist: Characterizes an agent’s beliefs.

e Reference class problem. ..
What are “equivalent cases” ?



Motivation for Belief Nets

Challenge: To decide on proper action
Which treatment, given symptoms?
Where to move?

Where to search for info?

Need to know dependencies in world
between symptom and disease
between symptom; and symptoms,
between disease; and diseases

Q: Full joint?

A: Too big (>27)
Too slow (inference requires adding 2% . ..

Better:
+ Encode dependencies
+ Encode relevant dependencies



Components of a Bayesian Net

P(B) P(E)
0.001 0.002
C Burglary ) CEarthquake)
\ / b e|P(A|B=bE=¢)
T T 0.95
( Alarm ) T F 0.94
F T 0.29
/ \ F F 0.001
C JohncCalls > C MaryCalls >
a | P(J|A=a) a | P(M|A=ua)
T 0.90 T 0.70
F ‘ 0.05 F ‘ 0.01
Directed Acyclic Graph:
N Nodes = Variables
BN = A Arcs = Dependencies

C CPTables = “weights”

e Nodes: one for each random variable

e Arcs: one for each direct influence between two
random variables

e CPT: each node stores a conditional probability

table

P(Node | Parents(Node) )
to quantify effects of “parents” on child

Act-Uncertain




Causes, and Bayesian Net

Burglary P(B)
.001

PE)
Earthquake 002

P(A|B k)
.95
.94
.29
.001

M- -|w
M7 —H|m

PUIA)

A
T
E

.90
.05

A P(M]A)
.70
.01

-

e What “causes” Alarm?
A: Burglary, Earthquake

e What “causes’ JohnCall?”

A: Alarm

N.b., NOT Burglary, ...

e Why not Alarm = MaryCalls?

Alarm | P(MC|A)
CPTable = T 1.0
F 0.0

A: Mary not always home
... may be playing loud music
... phone may be broken



Independence in a Bayesian Net

Burglary Earthquake

e Burglary, Earthquake independent

(have no parents...)

e Given Alarm,
JohnCalls and MaryCalls independent

JohnCalls is correlated with MaryCalls in general
as suggest Alarm
But given Alarm,

JohnCalls gives no NEW evidence wrt MaryCalls



Recovering Joint

P(_'baeaaa_'jam) —
P(_'b) P(€|—lb) P(a’|ea_'b) P(ﬂj|aaeaﬂb) P(m|_'jaaaea_'b)

P(-b) P(¢)  P(ale,~b) P(=jla)  P(m|a)
0.99 x 0.02 x 0.29 x 0.1 x 0.70

Node independent of predecessors, given parents

P(ﬁba €, a, _'j7 m) —

pe e
@ P(al|-b,e) -

P(=jla) - P(m]a)



Meaning of Bayesian Net

e A BN represents
-+ joint distribution
-+ condition independence statements

Eg: P(JMA—IB —IE)
P(J|AYP(M|A)P(A|-B,~E)P(-B)P(-E)
0.90 x 0.70 x 0.001 x0.999 x 0.998

0.00062

In gen’l, P(X:1,X5,...,.X,) =
P(X1|X2,...,Xm)P(Xo,..., Xm) =
P(X1|Xo,...,Xm)P(X2| X3,..., Xm)P(X3,...,Xm) =

e Independence means:
P(X;| X;41,.--,Xm) = P(X;| Parents(X;) )

Node independent of predecessors, given parents

So... |P(X1,Xo,...,Xm) = HP( X; | Parents(X;) )

.
Act-Uncert. ain ?/




Comments

PE)
PE) Earthquake
) =
PAEH

Burglary

@

LT
nan-H|m
®

29
001

A1 _POR) A [ _PVIA)
Tl % T 70
Fl .05 F| o1

e BN used 10 entries
... can recover full joint (2° entries)

(Given structure, other 2° — 10 entries
are REDUNDANT)

= Can compute
P(Burglary | JohnCalls, —MaryCalls ):

Get joint, then marginalize, conditionalize, ...

4 better ways. ..

Note: Given structure, ANY CPT is consistent.

A redundancies in BN. ..



Conditional Independence

Node X is independent of its non-descendants

given assignment to immediate parents parents(X)

General question: “X LY |E"
Are nodes X independent of nodes Y,
given assignments to (evidence) nodes E7

Answer: If every undirected path from X to Y
is d-separated by F, then X LY |E

d-separated if every path from X to Y is
blocked by FE

...If 4 node Z on path s.t.

1. Z € FE, and Z has 1 out-link (on path)

2. Z € F, and Z has 2 out-link

3. Z has 2 in-links, Z ¢ E, no child of Z in E

v | OH-O—t=O—-0+0"
o | O—O-+—O—+0-+0
@ | O— O—10O

A



Explaining d-Separation

Burglary Earthquake

Case 1: Burglary and JohnCalls are
conditionally independent dgiven Alarm

Case 2: JohnCalls and MaryCalls are
conditionally independent diven Alarm

Case 3: Burglary and Earthquake are
independent given no other information

But... Burglary and Earthquake are
dependent given Alarm

Ie, Earthquake may “explain away” Alarm
decreasing prob of Burglary



