Declarative Programming PROLOG (+ Bayesian Nets)

- Motivation
 - * Warm Fuzzies
 - * What is Logic? ... Logic Programming?
- Mechanics of Prolog
 - * Terms, Substitution, Unification, Horn Clauses
 - * Proof (procedure)
 - * Example: List Processing
- Theoretical Foundations
 - * Semantics
 - * Logic / Theorem Proving ... Resolution
- Issues
 - * Search Strategies
 - * Declarative/Procedural, ...
- Other parts of Prolog
 - * "Impure" Operators NOT, !
 - * Utilities
- Constraint Programming
- Bayesian Belief Nets

What is Logic?

Logic is formal system for reasoning

Reasoning is inferring new facts from old

What is role of Logic within CS?

- 1. Foundation of discrete mathematics
- 2. Automatic theorem proving
- 3. Hardware design/debugging
- 4. Artificial intelligence (Cmput366)

Components: Syntax (What does it look like?)
Semantics (What does it mean?)
Reasoning/ProofTheory (New facts from old)

Logic Programming

- Program ≡ Logic Formula
- Execution of Program
 ≡ theorem proving
- User: 1. Specifies WHAT is true
 - 2. Asks if something else follows

Prolog answers question.

- By comparison, using Procedural Programming (C, Pascal, . . .): User must
 - decide on data-structure
 - explicitly write procedure search, match, substitute
 - write diff programs for
 father(X, tom) vs father(tom, Y)

Logic in general

Logics are formal languages for representing information such that conclusions can be drawn

Syntax defines the sentences in the language . . . what does it look like?

Semantics define "meaning" of sentences; *i.e.*, define <u>truth</u> of a sentence in a world How is it linked to the world?

Proof Theory "new facts from old" find implicit information... "pushing symbols"

Eg, wrt arithmetic

$$egin{array}{c|c} x+2\geq y & \text{is sentence; } x2+y> & \text{is not} \\ \hline x+2\geq y & \text{is true} & \text{iff} \\ & \text{the number } x+2 & \text{is no less than the number } y \\ \hline x+2\geq y & \text{is true in a world where } x=7, \ y=1 \\ \hline x+2\geq y & \text{is false in a world where } x=0, \ y=6 \\ \hline \end{array}$$

What are Parts of a Logic?

- Syntax: Set of Expressions

Accept: The boys are at home. at(X, home) :- boy(X).

Reject: boys. home the angrily democracy X(at), x Boy(1X,():-

Proof Process:

Given Believed statements,

Determine other Believed statements.

$$\{s_1,\ldots,s_n\} \vdash_P s$$

(Semantics: Which expressions are *Believed*?)

John's mother is (the individual) Mary. $\mapsto \mathcal{T}$ John's mother is (the individual) Fred. $\mapsto \mathcal{F}$ Colorless green ideas sleep furiously. $\mapsto \mathcal{F}$

"Logic Programming" Framework

*

Concept of PROLOG

PROgramming in LOGic

≈ Sound Reasoning Engine

1. User asserts true statements.

User asserts
$$\left\{\begin{array}{l} \texttt{All men are mortal.} \\ \texttt{Socrates is a man.} \end{array}\right\}$$

- 2. User poses query.
 - A. User asks "Is Socrates mortal?"
 - B. User asks "Who/what is mortal?"
- 3. Prolog provides answer (Y/N, binding).
 - A. Prolog answers "Yes".
 - B. Prolog answers "Socrates".

Tying Prolog to Logic

- Syntax: Horn Clauses
 (aka Rules, Facts; Axioms)
 - Terms
- Proof Process: Resolution
 - Substitution
 - Unification
- (Semantics
 - Only in that Resolution is Sound)

Proof Process: Backward Chaining

To prove X, find FACT X in database

- To prove X,
 find RULE Y ⇒ X in database,
 then prove Y.
- Actually...

To prove X, find FACT X' in database (where X' $\approx X$)

To prove X, find RULE $Y \Rightarrow X$ ' in database, (where X' $\approx X$) then prove Y.

Need to define...

What X is? "Term" When $X^{2} \approx X$? "Unification"

Terms

BNF:

```
\langle \texttt{term} \rangle \qquad ::= \ \langle \texttt{constant} \rangle \ | \ \langle \texttt{variable} \rangle 
| \ \langle \texttt{functor} \rangle \rangle 
\langle \texttt{constant} \rangle \ ::= \ \langle \texttt{atom starting w/lower case} \rangle 
\langle \texttt{variable} \rangle \ ::= \ \langle \texttt{atom starting w/upper case} \rangle 
\langle \texttt{functor} \rangle \ ::= \ \langle \texttt{constant} \rangle (\langle \texttt{tlist} \rangle) 
\langle \texttt{tlist} \rangle \ ::= \ "" \ | \ \langle \texttt{term} \rangle \ \{, \langle \texttt{tlist} \rangle \}
```

Examples of \(\lambda\):

```
a1 b fred \( \text{constant} \)
X Yc3 Fred \( \text{variable} \)
married(fred) g(a, f(Yc3), b) \( \text{functor} \)
```

• Ground Term \equiv term with *no* variables

$$f(q)$$
 $g(f(w), w1(b,c))$ are ground,
 $f(A)$ $g(f(w), w1(B,c))$ are not.

Substitution

```
A Substitution is a set \{v_1/t_1 \ v_2/t_2 \cdots v_n/t_n\} where v_i are distinct variables t_i are terms that do not use any of the v_js.
```

Examples:

Applying a Substitution

 \bullet Given $\left\{ \begin{array}{ll} t & - \text{ a term} \\ \sigma & - \text{ a substitution} \end{array} \right.$

" $t\sigma$ " is the term resulting from applying substitution σ to term t.

• Small Examples:

$$X{X/a} = a$$

 $f(X){X/a} = f(a)$

• Example: Using t = f(a, h(Y,b), X) $t\{X/b\} = f(a, h(Y,b), b)$ $t\{X/b Y/f(Z)\} = f(a, h(f(Z),b), b)$ $t\{X/Z Y/f(Z,a)\} = f(a, h(f(Z,a),b), Z)$ $t\{W/Z\} = f(a, h(Y,b), X)$

• σ need not include all variables in t; σ can include variables not in t.

Composition of Substitutions

• Composition:

 $\sigma \circ \theta$ is *composition* of substitutions σ , θ . For any term t, $t[\sigma \circ \theta] = (t\sigma)\theta$.

• Example:

$$f(X)[{X/Z} \circ {Z/a}] = (f(X){X/Z}){Z/a}$$

= $f(Z){Z/a}$
= $f(a)$

- $\sigma \circ \theta$ is a *substitution* (usually)
- Eg:

$$[{X/a} \circ {Y/b}] = {X/a, Y/b}$$

 $[{X/Z} \circ {Z/a}] = {X/a, Z/a}$

Unifiers

ullet t_1 and t_2 are unified by σ iff $t_1\sigma=t_2\sigma$. Then σ is called a unifer t_1 and t_2 are unifiable

• Examples:

t_1	t_2	unifer	term
f(b,c) f(X,b)	f(b,c) f(a,Y)	{} {	f(b,c) f(a,b)
f(a,b) f(a,b) f(X,a)	f(c,d) f(X,X) f(Y,Y)	* * {	f(a,a)
f(g(U),d) f(X) f(X,g(X))	f(X,U) f(g(X)) f(Y,Y)	{U/d X/g(d)} * *	f(g(d),d)
f(X)	f(Y)	(X/Y)	f(Y)

• NB t_1 and t_2 are symmetrical! (Both can have variables.)

Multiple Unifiers

• Unifier for $t_1 = f(X)$ and $t_2 = f(Y)$ $\theta \qquad \qquad t_1\theta = t_2\theta =$

- {Y/X} and {X/Y} make sense, but
 {Y/a X/a} has irrelevant constant
 {X/Y W/g} has irrelevant binding (W)
- Adding irrelevant bindings: ∞ unifiers!
- ? Is there a best one?

Quest for Best Unifier

- Wish list:
 - No irrelevant constantsSo {Y/X} prefered over { Y/a, X/a }
 - No irrelevant bindings So $\{Y/X\}$ prefered over $\{Y/X, W/f(4,Z)\}$
- Spse λ_1 has constant where λ_2 has variable (Eg, $\lambda_1 = \{ \texttt{X/a}, \, \texttt{Y/a} \}, \, \lambda_2 = \{ \texttt{X/Y} \})$ Then \exists substitution μ s.t. $\lambda_2 \circ \mu = \lambda_1$ (Eg, $\mu = \{ \texttt{Y/a} \}$: $\{ \texttt{X/Y} \} \circ \{ \texttt{Y/a} \} = \{ \texttt{X/a}, \, \texttt{Y/a} \}$)
- Spse λ_1 has extra binding over λ_2 (Eg, $\lambda_1 = \{X/a, Y/b\}$, $\lambda_2 = \{X/a\}$)
 Then \exists substitution μ s.t. $\lambda_2 \circ \mu = \lambda_1$ (Eg, $\mu = \{Y/b\}$: $\{X/a\} \circ \{Y/b\} = \{X/a, Y/b\}$)
- INFERIOR unifier = composition of Good Unifer + another substitution

Most General Unifier

- σ is a mgu for t_1 and t_2 iff
 - σ unifies t_1 and t_2 , and
 - $\forall \mu$: unifier of t_1 and t_2 , \exists substitution, θ , s.t. $\sigma \circ \theta = \mu$.

 (Ie, for all terms t, $t\mu = (t\sigma)\theta$.)
- Example: $\sigma = \{ \texttt{X/Y} \}$ is mgu for f(X) and f(Y). Consider unifier $\mu = \{ \texttt{X/a} \ \texttt{Y/a} \}$. Use substitution $\theta = \{ \texttt{Y/a} \}$:

$$f(X)\mu = f(X)\{X/a Y/a\}$$

$$= f(a)$$

$$f(X)[\sigma \circ \theta] = (f(X)\sigma) \theta$$

$$f(X)[\sigma \circ \theta] = (f(X)\sigma) \theta$$
$$= (f(X)\{X/Y\})\theta$$
$$= f(Y)\{Y/a\}$$
$$= f(a)$$

Similarly, $f(Y)\mu = f(a) = f(Y)[\sigma \circ \theta]$

(μ is NOT a mgu, as $\neg \exists \theta'$ s.t. $\mu \circ \theta' = \sigma$!)

MGU — Example#2

A mgu for

$$f(W,g(Z),Z)$$
 & $f(X,Y,h(X))$

is
$$\{X/W Y/g(h(W)) Z/h(W)\}$$

*

MGU (con't)

Notes:

- If t_1 and t_2 are unifiable, then \exists a mgu.
- Can be more than 1 mgu
 but they differ only in variable names.
- Not every unifier is a mgu.
- A mgu uses constants only as necessary.

• Implementation:

 \exists fast algorithm that computes a mgu of t_1 and t_2 , if one exists; or reports failure.

(Slow part is verifying legal substitution: none of v_i appear in any t_j .

Avoid by resetting Prolog's occurscheck parameter.)

MGU Procedure

```
Recursive Procedure MGU (x,y)
  If x=y then Return ()
  If Variable(x) then Return( MguVar(x,y) )
  If Variable(y) then Return( MguVar(y,x) )
  If Constant(x) or Constant(y) then Return( False )
  If Not(Length(x) = Length(y)) then Return( False )
  g \leftarrow []
  For i = 0 .. Length(x)
      s \leftarrow MGU(Part(x,i), Part(y,i))
      g \leftarrow Compose(g,s)
      x \leftarrow Substitute(x,g)
      y \leftarrow Substitute(y,g)
  Return(g)
End
Procedure MguVar (v,e)
  If Includes(v,e) then Return(False)
    Return( [v/e] )
End
```

Backward Chaining

Recall

```
To prove X, find FACT X' in database (where X' \approx X)

To prove X, find RULE Y \Rightarrow X' in database, (where X' \approx X) then prove Y.
```

- Prolog writes $Y \Rightarrow X'$ as X' := Y so always unifies X against "first part"... X' := Y
- Issue: What if rule is $Y_1 \& Y_2 \Rightarrow X'$?

Prolog's Syntax

BNF:

```
\langle {	ext{Horn}} \rangle ::= \langle {	ext{literal}} \rangle. | \langle {	ext{literal}} \rangle ::= \langle {	ext{literal}} \rangle {, \langle {	ext{llist}} \rangle } \langle {	ext{literal}} \rangle ::= \langle {	ext{term}} \rangle
```

• Examples:

```
father(john, sue).
father(odin, X).
parent(X, Y) :- father(X, Y).
gparent(X, Z) :- parent(X, Y), parent(Y, Z).
```

How to read as predicate calculus?

```
father(john, sue)

\forall X. father(odin, X).

\forall X, Y. father(X,Y) \Rightarrow parent(X,Y).

\forall X, Y, Z. parent(X,Y) & parent(Y,Z) \Rightarrow gparent(X,Z)
```

Relation to Predicate Calculus

• In general:

 $\begin{array}{c} \mathsf{t}\,.\\ & \mapsto \forall x_1 \ldots \forall x_m.\,\mathsf{t}\\ & \textit{[called "atomic formula"]} \\ \\ \mathsf{t}\,:=\,\mathsf{t}_1,\;\mathsf{t}_2,\;\ldots,\;\mathsf{t}_n.\\ & \mapsto \forall x_1,\ldots,x_m.\,\mathsf{t}_1\,\&\,\mathsf{t}_2\ldots\,\&\,\mathsf{t}_n\Rightarrow \mathsf{t}\\ & \textit{[called "(production) rule"]} \end{array}$

- Set of Predicate Calculus Expressions = Knowledge Base \equiv Conjunctive Normal Form: $(A_1 \lor \neg A_2 \lor \neg A_7) \& (\neg A_1 \lor A_3 \lor A_4) \& \cdots \& (\neg A_2 \lor \neg A_4)$
- Horn clause is disjunction with ONE Positive Literal
- (Horn) Form is CNF, where every clause is Horn ... has ONE Positive Literal
- So $\langle \mathtt{Horn} \rangle \subset \mathsf{CNF}$. \exists Predicate Calculus expressions which canNOT be written as Horn Clauses. (Eg: $A \vee B$)

Prolog's Proof Process

- User provides
 - KB: Knowledge Base
 (List of Horn Clauses axioms)
- Prolog finds
 - a Proof of $\gamma,$ from KB , if one exists & substitution for γ 's variables: σ

$$KB \vdash_{P} \gamma\{\sigma\}$$

 $KB_1 \vdash_{P} \mathsf{mortal}(X)\{X/\mathsf{soc}\}$

- Failure (otherwise)
- Returns bindings Finds "Top-Down" (refutation) Proof Actually returns LIST of σ_i s [one for each proof] $\{X/soc\} \{X/plato\} \{X/freddy\} \dots$

Examples of Proofs: I

ullet Using Knowledge Base, $KB_1 =$

$$\begin{cases} on(a, b). & (1) \\ on(b, c). & (2) \\ above(X, Y) :- on(X,Y). & (3) \end{cases}$$

• Query γ_1 : on(a,b)

Hence, $KB_1 \vdash_P \mathtt{on(a,b)}\{\}$. \nwarrow empty substitution

(Like Data Base retrieval)

Examples of Proof: II (variables)

- Using Knowledge Base, KB_1
- Query γ_2 : on(a,Y)

$$\begin{bmatrix} \text{on(a,Y)} \\ & & \\ & & \\ & & \\ & & \\ & & \\ \text{Success} - \{\text{Y/b}\} \end{bmatrix}$$

$$(\text{Say} \quad KB_1 \vdash_P \text{on(a,Y)}\{\text{Y/b}\}\)$$

• Query γ_3 : on(X,Y) on(X,Y) $x=a, \ Y=b \ (1)$ (2) $x=b, \ Y=c$ success $-\{x/a, y/b, \}$ success $-\{x/b, y/c, \}$

$$egin{pmatrix} KB_1 & dash_P & ext{on(X,Y)}\{X/a, Y/b\} & o & KB_1 & dash_P & ext{on(a,b)} \ KB_1 & dash_P & ext{on(X,Y)}\{X/b, Y/c\} & o & KB_1 & dash_P & ext{on(b,65)} \end{pmatrix}$$

26

Examples of Proof: III (failures)

```
( Using Knowledge Base, KB_1 )
• Query \gamma_4: on(a,b10)
                       on(a,b10)
                              X
  (Hence, KB_1 \not\vdash_P \text{on(a,b10)})
• Query \gamma_5: on(X,b10)
                       on(X,b10)
                              X
```

(Hence, $KB_1 \not\vdash_P \text{ on(X,b10)}$, for any value of X.)

Examples of Proof: IV (rules)

(Using KB_1)

• Query γ_6 : above(b,c)

(Hence, $KB_1 \vdash_P above(b,c)$)

• Query γ_7 : above(b,W)

(Hence, $KB_1 \vdash_P \text{above(b,W)}\{W/c\}$ $\rightarrow KB_1 \vdash_P \text{above(b,c)}$)

Examples of Proof: V (big)

$$KB_2 = \begin{cases} on(a, b). & (1) \\ on(b, c). & (2) \\ above(X, Y) :- on(X,Y). & (3) \\ above(X, Y) :- on(X,Z), above(Z,Y). & (4) \end{cases}$$

Examples of Proof: VI (many answers)

• Using $KB_3 =$

$$\begin{cases} \text{ on(a, b).} & \text{ (1)} \\ \text{ on(b, c).} & \text{ (2)} \\ \text{ above(X, Y) :- on(X,Y).} & \text{ (3)} \\ \text{ above(X, Y) :- on(X,Z), above(Z,Y).} & \text{ (4)} \\ \text{ above(c1, c2).} & \text{ (5)} \end{cases}$$

Query γ_9 : above(X,Y)

Answers:

```
- [X=a,Y=b] above(a, b) (3), (1)
- [X=b,Y=c] above(b, c) (3), (2)
- [X=a,Y=c] above(a, c) (4), (1), (3), (2)
- [X=c1,Y=c2] above(c1, c2) (5)
```

30

Prolog's Proof Process

- A goal is either
 - a sequence of literals (conjunction),
 - the special goal "success"

(eg, on(X,Y)
$$p(X,5)$$
, q(X) success ...)

The sequence of goals

$$\langle G_1, G_2, \ldots, G_n \rangle$$

- is a $\underline{top\text{-}down\ proof}$ of \mathtt{G}_1 (from the knowledge base, KB) iff
- 1. $G_n = success$, and
- 2. G_i is a SUBGOAL (in KB) of G_{i-1} , $i=2,3,\ldots n$

Subgoals

<u>Subgoals</u> of $G = \{g_1, \dots g_r\}$ in KB:

Rule 1 If atomic axiom "t" in KB where t and \mathbf{g}_i have mgu σ , then

 $\{g_1\sigma,\ldots,g_{i-1}\sigma,g_{i+1}\sigma,\ldots,g_r\sigma\}$ is a subgoal of G.

(If r = 1, then "success" is subgoal of G.)

Rule 2 If axiom "t:-t₁, ..., t_k" in KB where t and g_i have mgu σ , then

 $\{ t_1 \sigma, \ldots, t_k \sigma, g_1 \sigma, \ldots, g_{i-1} \sigma, g_{i+1} \sigma, \ldots g_r \sigma \}$ is a subgoal of G.

32

Example of Subgoals – I

$$KB_3 = \begin{cases} (1) & \text{on(a, b).} \\ (2) & \text{on(b, c).} \\ (3) & \text{above(X, Y) :- on(X,Y).} \\ (4) & \text{above(X, Y) :- on(X,Z), above(Z,Y).} \\ (5) & \text{above(c1, c2).} \end{cases}$$

Subgoals of ...

- above(A,B) are
 - $\boxed{\text{on(A,B)}} : \quad \sigma = \{ \text{X/A}, \text{Y/B} \}$ using Rule 2, (3)
 - on(A,Z), above(Z,B): $\sigma = \{ X/A, Y/B \}$ using Rule 2, (4)
 - success: $\sigma = \{ A/c1, B/c2 \}$ using Rule 1, (5)

*

Example of Subgoals – II

$$KB_{3} = \begin{cases} (1) & \text{on(a, b).} \\ (2) & \text{on(b, c).} \\ (3) & \text{above(X, Y) :- on(X,Y).} \\ (4) & \text{above(X, Y) :- on(X,Z), above(Z,Y).} \\ (5) & \text{above(c1, c2).} \end{cases}$$

Subgoals of ...

- $\{on(A,Z_1), above(Z_1,B)\}$ are
 - above(b,B): $\sigma = \{ A/a, Z_1/b \}$ using Rule 1, (1) [1st literal]
 - above(c,B): $\sigma = \{ A/b, Z_1/c \}$ using Rule 1, (2) [1st literal]
 - on(A,c1): $\sigma = \{ Z_1/c1, B/c2 \}$ using Rule 1, (5) [2nd literal]
 - $on(Z_1,B)$, $on(A,Z_1)$: $\sigma = \{X/Z_1, Y/B\}$ using Rule 2, (3) [2nd literal]
 - $on(Z_1,Z)$, above(Z,B), $on(A,Z_1)$: $\sigma=\{X/Z_1,Y/B\}$ using Rule 2, (4) [2nd literal]

Comments wrt Prolog's Proof Procedure

- ullet $\left\{ egin{array}{ll} \mbox{Variable bindings} \\ \mbox{Unifier} \end{array}
 ight\}$ found during proof
- Prolog returns these overall mgu's 1 by-1
- Which "strategy"?
 - Within "frontier" of subgoal-sets, which to expand?
 - Given specific subgoal-set, which literal?
 - Given specific literal (within subgoal-set), which rule/assertion?

(Prolog uses "SLD Resolution" strategy)

- Does Prolog work correctly?
- Does *Prolog* run efficiently?

What User Really Types

```
> sicstus
SICStus 3.11.2 (x86-linux-glibc2.3): Wed Jun 2 11:44:50 CEST
Licensed to cs.ualberta.ca
                    % For user to enter ''Assert-fact'' mode.
| ?- [user].
| on(a,b).
| on(b,c).
| above(X,Y) :- on(X,Y).
                    % Typing ''^D exits ''assert'' mode.
| ^D user con...
                     \% Prolog's answer to most operations.
yes
\mid ?- \underline{on(a,b)}.
                    % User asks a question.
                    % Prolog's answer.
yes
\mid ?- on(a,Y).
                    % User's second question.
Y = b
                    % Prolog's answer: a binding list.
                    % User types CR.
                     \% Prolog's statement that there was answe
yes
\mid ?- on(X,Y).
                    % User's third question.
X = a
                    % Prolog's binding list
Y = b;
                    % User asks for ANOTHER answer
                       by typing '';''.
X = b
Y = c_{;}
                     % Prolog supplies another binding list
                     % Still not satisfied, user asks for
                    %
                        yet ANOTHER answer by typing '';''.
                        Prolog's no means \neg \exists other answers
no
| ?-
```

What User Really Types – II

```
> sicstus
SICStus 3.11.2 (x86-linux-glibc2.3): Wed Jun 2 11:44:50 CEST
Licensed to cs.ualberta.ca
| ?- [file1].
                    % File ''file1'' contains propositions
file1 consulted 120 bytes 0.0333333 sec.
                    % Prolog's answer to this operation.
yes
                    % User asks a question.
| ?- on(a,b10).
                    % Prolog's answer: not derivable.
no
                    % User's next question.
| ?- on(X,b10).
                    % Again, no answer.
no
| ?- above(b,c).
                    % Prolog can find a proof
yes
                       Notice: needs more than simple lookup.
| ?- above(b,W).
                    % Prolog find an answer.
W = c_{\underline{;}}
                    % \dots  but only one answer.
no
| ?-
```

37