Declarative Programming
PROLOG (4 Bayesian Nets)

e Motivation
* Warm Fuzzies
* What is Logic? ...Logic Programming?

e Mechanics of Prolog
* Terms, Substitution, Unification, Horn Clauses
* Proof (procedure)
* Example: List Processing

e [ heoretical Foundations
* Semantics
* Logic / Theorem Proving ... Resolution

e Issues
* Search Strategies
* Declarative/Procedural, ...

e Other parts of Prolog
*x “Impure” Operators — NOT, !
*x Utilities

e Constraint Programming

e Bayesian Belief Nets



What is Logic?

Logic is formal system for reasoning

Reasoning is inferring new facts from old

Eg: Given: { All men are mortal. }

Socrate is a man.

infer (conclude, reason that, ...)

Socrates is mortal.

What is role of Logic within CS7?
Foundation of discrete mathematics
Automatic theorem proving
Hardware design/debugging
Artificial intelligence (Cmput366)

N

Components: Syntax (What does it ook like?)
Semantics (What does it mean?)
Reasoning/ProofTheory (New facts from old)



Logic Programming

e Program = Logic Formula

e Execution of Program = theorem proving

User: 1. Specifies WHAT is true
2. Asks if something else follows

Prolog answers question.

e By comparison,
using Procedural Programming (C, Pascal, ...):

User must

— decide on data-structure

— explicitly write procedure
search, match, substitute

— write diff programs for

father (X, tom) vS father(tom, Y)



Logic in general

Logics are formal languages
for representing information
such that conclusions can be drawn

Syntax defines the sentences in the language
...what does it look like?

Semantics define “meaning” of sentences;
i.e., define truth of a sentence in a world
How is it linked to the world?

Proof Theory “new facts from old”
find implicit information. .. “pushing symbols”

Eg, wrt arithmetic

x+2>y| issentence; |z2+y > is not

x4+ 2>y is true iff
the number x + 2 is no less than the number y

x+ 2>y is true in a world where x =7, y=1
x+ 2 >y is false in a world where x =0, y =06



What are Parts of a Logic?

Syntax: Set of Expressions

? Well-formed or not?

SEQUENCE of Symbols — { Accept

Reject

Accept: The boys are at home.
at (X, home) :- boy(X).

Reject: boys. home the angrily democracy
X(at), x Boy(1X,( ) :-

Proof Process:
Given Believed statements,
Determine other Believed statements.

{s$1,.--,8n} Fp s

Semantics: Which expressions are Believed? )

John’s mother is (the individual) Mary.
John’s mother is (the individual) Fred.
Colorless green ideas sleep furiously.

— T
— F
— F



“Logic Programming”’ Framework

Is o true?

AN |

Knowledge Base

Facts about World) | — Proof
( )| — Procedure

|

Yes- - -No




Concept of PROLOG

PROgramming in LOGIC
~ Sound Reasoning Engine

1. User asserts true statements.
A1l men are mortal. }

User asserts )
Socrates is a man.

2. User poses query.
A. User asks "Is Socrates mortal?”
B. User asks “Who/what is mortal?”

3. Prolog provides answer (Y /N, binding).
A. Prolog answers “Yes”.

B. Prolog answers “Socrates’.



Tving Prolog to Logic

e Syntax: Horn Clauses
(aka Rules, Facts; Axioms)
— Terms

e Proof Process: Resolution
— Substitution
— Unification

( Semantics
— Only in that Resolution is Sound )



Proof Process: Backward Chaining

To prove [X|,
find FACT X| in database

® | To prove [X|,
find RULE Y = X|in database,
then prove |Y|.

e Actually...

To prove [X|,
find FACT X’ | in database
(where X’aX)

To prove [X|,

find RULE Y = X’|in database,
(where X’aX)

then prove |Y|.

e Need to define. ..
What |X| is? “Term”
When [X’~X| 7 “Unification”




Terms

e BNF:
(term) = (constant) | (variable)
| (functor)
(constant) = <atom starting w/lower case>
(variable) = (atom starting w/upper case)
(functor) = (constant)((tlist))
(tlist) = " | (term) {, (tlist)}

e Examples of (term):

al b fred (constant)
X Yc3 Fred (variable)
married(fred) g(a, £(Yc3), b) (functor)

e Ground Term = term with no variables
f(q) g(f(w),wi(b,c)) are ground,
f(A) g(f(w),wi(B,c)) are not.



Substitution

A Substitutionis aset {vi/t1 vo/ty - vp/tn }
where wv; are distinct variables
t; are terms that do not use

any of the v;S.

Examples:

+ { X/a}
{X/a Y/b Z/f(a,W)}

{X/W Y/£(W) Z/W}

— {fX)/a}
{ X/a X/b}
{ X/£(X) }
{x/£(Y) Y/g(q }



Applying a Substitution

Given {

t — a term
o — a substitution

“to’ is the term resulting from applying
substitution o to term ¢t.

Small Examples:

X{X/a} = a

f(X){X/a} = f(a)

Example: Using t=£( a, h(Y,b), X )

t{X/b} =
t{X/b Y/£(Z) } =
t{X/Z Y/£(Z,a) } =
t{w/z} =

f(
f(
f (
f (

a, h(Y,b), b )

a, h(£(Z),b), b )
a, h(f(Z,a),b), Z )
a, h(Y,b), X )

o need not include all variables in ¢;
o can include variables not in ¢.



Composition of Substitutions

Composition:
ool is composition of substitutions o , 6.
For any term t, t[o 0 8] = (to)80.

Example:

f(X)[{X/Z} o {Z/a}] = C(£X){X/Z2}){Z/a}
= f£(2){z/a}
= f(a)

o o6 is a substitution (usually)

Eg:
[{X/a} o {Y/b}] = {X/a, Y/b}
[{X/Z2} o {z/a}] = {X/a, Z/a}



Unifiers

e t1 and to are unified by o iff

t10 = too.
Then ¢ is called a unifer
t1 and to are unifiable

e Examples:

t1 to unifer term
f(b,c) f(b,c) {} f(b,c)
f(X,b) f(a,Y) {X/a Y/b} f(a,b)
f(a,b) f(c,d) *

f(a,b) f(X,X) *

f(X,a) f(ty,Y) {X/a Y/a} f(a,a)

flg(U),d) f(X,U) {u/d x/g@} f(g(d),d)
f(X) f(a(X)) =

f(X,g(X)) f(Y,Y) =«

f(X) f(Y) {x/Y} f(Y)

e NB t1 and t, are symmetricall!
(Both can have variables.)



Multiple Unifiers

e Unifierfor t1 =fX) and to =1£(Y)

0 t10 = to0 =
{X/Y} f(Y)
{Y/X} f (X)
{Y/a X/a} f(a)
{Y/g(®,Z2) X/g,Z2)} £(g(Z)))
{X/Y W/f(q,2)} £ (Y)

e {Y/X} and {X/Y} make sense, but
{Y/a X/a} has irrelevant constant
{X/Y W/g} has irrelevant binding (W)

e Adding irrelevant bindings: oo unifiers!

7 Is there a best one 7



Quest for Best Unifier

Wish list:

— No irrelevant constants
So {Y/X} prefered over {Y/a, X/a}

— No irrelevant bindings
So {Y/X} prefered over {Y/X, W/f(4,2)}

Spse A1 has constant where A has variable
(Eg, M1 = {X/a, Y/a}, Ao = {X/Y})

Then 4 subsitution u s.t. doou = A\q
(Eg, p = {Y/a}: {X/Y}o{¥/a} = {X/a, Y/a})

Spse A1 has extra binding over Ao
(Eg, M1 = {X/a, Y/b}, Ao = {X/a})

Then d subsitution u s.t. doou = A\q
(Eg, p = {¥/b}: {X/a}o{¥Y/b} = {X/a, Y/b})

INFERIOR unifier = composition of
Good Unifer 4+ another substitution



Most General Unifier

e o is a mgu for t1 and t» iff
— o unifies t1 and t», and

— V w: unifier of t1 and ¢y,
d subsitution, 0, s.t. 006 = u.
(Ie, for all terms ¢, tu = (to)6.)

e Example: o = {X/Y} is mgu for £(X) and £(Y).
Consider unifier u = {X/a Y/a}.
Use substitution 8 = {Y/a }:

f(X){X/a Y/a}
f(a)

(£fX)o) 6
(£(X){Xx/Y})6
f(M{Y/a}
f(a)

Similarly, f(Y)u = f(a) = £(Y)[o o 6]

f(Xp

f(X) [0 0 6]

( »is NOT a mgu, as -3¢’ s.t. pob' =o'



MGU — Example#2

A mgu for

f(W,g(2),2) & £(X,Y,h(X))

is {X/W Y/g(W) Z/h(W)}



MGU (con’t)

e Notes:
— If t1 and to are unifiable, then 3 a mgu.
— Can be more than 1 mgu
but they differ only in variable names.
— Not every unifier is a mgu.
— A mgu uses constants only as necessary.

e Implementation:
4 fast algorithm that computes
a mgu of t1 and to, if one exists;
or reports failure.

( Slow part is verifying legal substitution:
none of v; appear in any t;.
Avoid by resetting Prolog’s occurscheck parameter.)



MGU Procedure

Recursive Procedure MGU (x,y)
If x=y then Return ()
If Variable(x) then Return( MguVar(x,y) )
If Variable(y) then Return( MguVar(y,x) )
If Constant(x) or Constant(y) then Return( False )
If Not(Length(x) = Length(y)) then Return( False )
g «— []
For i = 0 .. Length(x)
s < MGU( Part(x,i), Part(y,i) )
g < Compose(g,s)
X < Substitute(x,g)
y < Substitute(y,g)
Return( g )
End

Procedure MguVar (v,e)
If Includes(v,e) then Return( False )
Return( [v/e] )
End

20



Backward Chaining

e Recall

To prove [X|,
find FACT X’ | in database
(where X’aX)

To prove [X|,

find RULE Y = X’|in database,
(where X’aX)

then prove |Y|.

e Prolog writes |Y = X? as X =Y

so always unifies |X| against “first part’ . ..
X’ X - Y

e Issue: What if ruleis|Y1 & Yo = X’ |7




Prolog’s Syntax

e BNF:
(Horn) = (literal). |
(literal) :-(1llist).
(11ist) := (literal) {, (1list) }
(literal) ::= (term)

e Examples:

father(john, sue).

father (odin, X).

parent (X, Y) :- father(X, Y).
gparent (X, Z) :- parent(X, Y), parent(Y, Z).

e How to read as predicate calculus?

father(john, sue)

VX. father(odin, X).
VX,Y.father(X,Y) = parent(X,Y).

VX,Y,Z.parent (X,Y) & parent(Y,Z) = gparent(X,Z)



Relation to Predicate Calculus

e In general:

t.
— Vrq1...Vem.t
[called “atomic formula”]
t - t]_, t2, e e oy tn.

—VT1,...,Tm-t1&tr... &ty =t
[called “(production) rule”]

So

Set of Predicate Calculus Expressions = Knowl-
edge Base =
Conjunctive Normal Form:
(Al V —As VvV —IA7) & (—lAl V Az V A4) & --- & (—IA2 V —IA4)

Horn clause is disjunction with ONE Positive Literal

(Horn) Form is CNF, where every clause is Horn
... has ONE Positive Literal

(Horn) C CNF.
d Predicate Calculus expressions
which canNOT be written as Horn Clauses.

(Eg: AV B)



Prolog’s Proof Process

e User provides

— K B: Knowledge Base
(List of Horn Clauses — axioms)

— ~: Query (aka Goal, Theorem)
(Literal) 1. Who is mortal? mortal (X).

2. Is Socrates mortal? |mortal(soc).

e Prolog finds
— a Proof of ~, from KB , if one exists
& substitution for ~’'s variables: o

KB Ftp ~{c}
KB; Fp mortal(X){X/soc}

— Failure (otherwise)

e Returns bindings
Finds “Top-Down” (refutation) Proof
Actually returns LIST of g;5 [one for each proof]

{X/soc} {X/plato } {X/freddy }



Examples of Proofs: 1

e Using Knowledge Base, KBi =

on(a, b). (1)
on(b, c). (2)
above(X, Y) - on(X,Y). (3)

e Query v1: on(a,b)

on(a,b)
(1

Success

Hence, KBj Fp on(a,b){}
N empty substitution

( Like Data Base retrieval )



Examples of Proof: II (variables)

e Using Knowledge Base, KB,

e Query ~»: on(a,Y)

on(a,Y)

(1) Y=0»o

success — {Y/b}
(Say KBj Fp on(a,Y){Y/b} )

e Query ~v3: on(X,Y)

on(X,Y)
X=a, Y=b (1) (2) X=b, Y=c
success — {X/a, Y/b, } success — {X/b, Y/c, }

KB; Fp on(X,Y){X/a,Y/b} — KB; Fp on(a,b)
KB Fp on(X,Y){X/b,Y/c} — KB; Fp on(b,65)



Examples of Proof: III (failures)

( Using Knowledge Base, KB )

e Query ~v4: on(a,bl0)

on(a,bl10)
X

(Hence, KB; tp on(a,b10) )

e Query v5: on(X,b10)

on(X,b10)
X

(Hence, KB; {p on(X,b10), for any value of X. )



Examples of Proof: IV (rules)

( Using KB )
e Query ~vg: above(b,c)

above(b,c)

(3) X =Db, Y=c
on(b,c)
(2)

Success

(Hence, KB; tp above(b,c) )

e Query ~7: above(b,W)
above (b, W)

(3) X=b, Y=W
on(b,W)

(2) W=c

success — {W/c}

(Hence, KB; Fp above(b,W){W/c}
— KBj Fp above(b,c) )



Examples of Proof: V (big)

on(a, b).
on(b, c).

KBy = above(X, Y) - on(X,Y).

above(X, Y) :- on(X,Z), above(Z,Y).

above(a,c)

X-a, Y=c <3>/\L> X=a, Y=c

on(a,c) on(a,Z), above(Z,c)

X

(1) Z=b

above(b,c)

X=b,Y=c ‘ffl//////////W\ (4) X=b, Y=c

on(b,c) on(b,Z), above(Z,c)
(2) (2) Z=c
success above(c,c)
X=c,Y=c ’fiz//////////w\(4) X=c, Z=c
on(c,c) on(c,Y) ,above(Y,c)

X X

(1)
(2)
(3)
(4)



Examples of Proof: VI (many answers)

e Using KBz =
( on(a, b). (1)
on(b, ¢). (2)
¢ above(X, Y) :- on(X,Y). (3)
above(X, Y) :- on(X,Z), above(Z,Y). (4)
| above(cl, c2). (5)

Query vg: above(X,Y)

e ANnswers:

— [X=a,Y=b] above(a , b ) (3), (1)

— [X=b,Y=cl] above(b , ¢ ) (3), (2)

—  [X=a,Y=c] above(a , ¢ ) (4), (1), (3),
—  [X=c1,Y=c2] above(cl, c2) (5)

(2)



Prolog’s Proof Process

e A goalis either
— a sequence of literals (conjunction),
— the special goal ‘“success”

(eg, |on(X,Y) p(X,5), q(X) success| ...)

e [ he sequence of goals

(G1, Go, ..., Gp)

is a top-down proof of Gy
(from the knowledge base, KB) iff

1. G, = success, and

2. G; is a SUBGOAL (in KB) of G;_1,
i =2,3,...m



Subgoals

Subgoalsof G = {gy,...8.} in KB:

Rule 1 If atomic axiom ‘" in KB
where t and g, have mgu o,
then

{8107 cey 8i—10, ;4105 - - gra}
IS a subgoal of G.

(If r = 1, then “success” is subgoal of G.)

Rule 2 If axiom "t :- t1, ..., t; In KB
where t and g, have mgu o,
then

{ti0, ..., tko, 810, ..., €;_10, 8410, --- 8.0 }

IS a subgoal of G.



Example of Subgoals — 1

( (1) on(a, b).
(2) on(b, c).
KBz =< (3) above(X, Y) - on(X,Y).
(4) above(X, Y) :- on(X,Z), above(Z,Y).
L (5) above(cl, c2).

Subgoals of ...

e |above(A,B) are

— |on(A,B) | o = {X/A,Y/B}
using Rule 2, (3)

— |on(A,Z), above(Z,B) |1 o= {X/A,Y/B}
using Rule 2, (4)

— [success|) o = {A/cl,B/c2}
using Rule 1, (5)




Example of Subgoals — 11

( (1) on(a, b).

(2) on(b, c).
KBz =< (3) above(X, Y) - on(X,Y).

(4) above(X, Y) :- on(X,Z), above(Z,Y).
L (5) above(cl, c2).

Subgoals of ...

e {on(A,Z;), above(Z1,B) } are

— |above(b,B) | o ={A/a, Z1/b}
using Rule 1, (1) [1st literal]

— |above(c,B) |1 o = {A/b, Z1/c}
using Rule 1, (2) [1st literal]

— |on(A,cl) | o ={Z1/c1,B/c2}
using Rule 1, (5) [2nd literal]

— |on(Z1,B), on(A,Z1) |1 o ={X/Z1,Y/B}
using Rule 2, (3) [2nd literal]

— |on(Z1,2), above(Z,B), on(A,Z1) |1 o= {X/Z1,Y/B}
using Rule 2, (4) [2nd literal]




Comments wrt
Prolog’s Proof Procedure

. Variable bindings
Unifier

} found during proof

e Prolog returns these overall mgu's 1-
by-1

e Which ‘'strategy”?
— Within “frontier” of subgoal-sets,
which to expand?
— Given specific subgoal-set,
which literal?
— Given specific literal (within subgoal-set),
which rule/assertion?

(Prolog uses “SLD Resolution” strategy)
e Does Prolog work correctly?

e Does Prolog run efficiently?



What User Really Types

> sicstus

SICStus 3.11.2 (x86-linux-glibc2.3): Wed Jun 2 11:44:50 CEST
Licensed to cs.ualberta.ca
7%, For user to enter ‘‘Assert-fact’’ mode.

| ?- [user].
on(a,b).
on(b,c).

|

| on(b,c).

| above(X,Y) :- on(X,Y).
I Typing ¢ ‘"D exits

"D user con...
yes
| ?- on(a,b).

yes

| ?- on(a,Y).

Y=Db

yes

I 7- On(X’Y)
X = a

Y = bL

X =D

Y = “H

no

o
o

o
o

o
o
h
h

h

t
t
t

h
h
h
h

‘‘assert’’ mode.

Prolog’s answer to most operations.

User asks a question.
Prolog’s answer.

User’s second question.

Prolog’s answer: a binding list.

User types CR.

Prolog’s statement that there was answe

User’s third question.

Prolog’s binding list
User asks for ANOTHER answer
by typing ‘‘;’’.

Prolog supplies another binding list
Still not satisfied, user asks for
yet ANOTHER answer by typing “‘;’’.
Prolog’s no means —3 other answers
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What User Really Types — 11

> sicstus

SICStus 3.11.2 (x86-linux-glibc2.3): Wed Jun 2 11:44:50 CEST
Licensed to cs.ualberta.ca

% File ¢‘filel’’ contains propositions
filel consulted 120 bytes 0.0333333 sec.

| 7- [file1l].

yes

| ?- on(a,bl0).

no

| ?- on(X,b10).

| ?- above(b,c).

| ?- above(b,W).

W = C;
no

| 7-

% Prolog’s answer to this operation.

h
h

h
h

h
h

h
h

User asks a question.
Prolog’s answer: not derivable.

User’s next question.
Again, no answer.

Prolog can find a proof

Notice: needs more than simple lookup.

Prolog find an answer.

. but only one answer.
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