Useful Equivalencies

[Needs only & $\neg \forall$]

$$\neg \neg P \qquad \equiv P \\
P \lor Q \qquad \equiv \neg [(\neg P) \land (\neg Q)] \\
\neg [P \lor Q] \qquad \equiv (\neg P) \land (\neg Q) \\
P \Rightarrow Q \qquad \equiv (\neg P) \lor Q \\
\equiv \neg (P \land \neg Q) \\
P \Leftrightarrow Q \qquad \equiv [(P \Rightarrow Q) \land (Q \Rightarrow P)] \\
\equiv \neg (P \land \neg Q) \land \neg (Q \land \neg P) \\
\exists x. \phi(x) \qquad \equiv \neg [\forall x. \neg \phi(x)] \\
\neg [\exists x. \phi(x)] \qquad \equiv \forall x. \neg \phi(x) \\
\varphi \Rightarrow \tau \qquad \equiv \neg \tau \Rightarrow \neg \varphi \\
\exists ! x. \phi(x) \qquad \equiv \exists x. [\phi(x) \land \forall z. \phi(z) \Rightarrow z = x] \\
\dots \text{ Exactly } n \text{ values of } \varphi \dots$$

Example of \Rightarrow , \forall

- \bullet Using $\mathcal{U} = \mathsf{Set}$ of natural numbers, \mathcal{N}

$$A = \{ n : \neg 6 | n \}$$

$$= \{ 1,2,3,4,5, 7,8,9,10,11, 13,14,... \}$$

$$B = \{ n : 2 | n \}$$

$$= \{ 2, 4, 6, 8, 10, 12, 14,... \}$$

• Notice $A \cup B = \mathcal{N}$ (Hence each $n \in \mathcal{N}$, n satisfies either $\neg 6|n$ or 2|n) So $\forall n \ 6|n \ \Rightarrow \ 2|n$

Gödel's Incompleteness Proof

- ∃ true Sentences that cannot be proved
- Consider Numbers:

```
0, succ, +, \times, ... + axioms
```

Can enumerate all syntactically legal sentences

- \Rightarrow give each sentence α , a number $G(\alpha) \in \mathcal{N}$
- \Rightarrow give each PROOF $\langle \alpha_i \rangle$, a number $G(\langle \alpha_i \rangle)$
- Let $A = \text{set of true statements about } \mathcal{N}$

Let
$$\alpha(j,A)\Leftrightarrow \forall i\ i\ \text{is NOT}\ \text{G\"{o}del}\ \text{number of proof, using }A, \text{ of }G^{-1}(j)$$

Let
$$\sigma = \alpha(G(\sigma), A)$$
 ie, "I am not provable, from A "

• If σ is provable from A, then σ is FALSE $\Rightarrow A$ inconsistent!

As A consistent,

- $\Rightarrow \sigma$ NOT provable from A
- $\Rightarrow \sigma$ is true statement!

 $\Rightarrow \sigma$ is true, but cannot be proven from A!

1c. How to Compute (> 174 50)?

Challenge: Determine truth of (> 174 50)

Option 1: Explicitly store

and negative facts:

. . .

• Requires $\approx \infty$ storage!

Is there a better way?

Option 2: Procedural Attachment

To compute (> x y),
 Use procedure FetchGT
 where FetchGT returns nil or t

```
    FetchGT( σ: proposition )
        (if (> (cadr σ) (caddr σ))
        t
        nil )
    Eg: -> (FetchGT '(> 174 50))
        t
        -> (FetchGT '(> 23 41))
        ()
```

Procedural Attachment: +

- Find w s.t. (+ 10 65 w)
- Explicit storage: ∞ space!
- Procedure:

To compute (+ 10 65 w)
Use procedure FetchPlus
where FetchPlus returns appropriate binding list:

FetchPlus(σ : proposition) (Match (cadddr σ) (+ (cadr σ) (caddr σ)));;; w 10 65

```
(FetchPlus (+ 10 65 w)) \mapsto (w/75)
(FetchPlus (+ 10 65 75)) \mapsto t
(FetchPlus (+ 10 65 921)) \mapsto ()
```

- MRS Solution:
 - a) MetaTell (ToFetch (> &x &y) FetchGT)
 MetaTell (ToFetch (+ &x &y &z) FetchPlus)
 - b) MetaTell (relnproc > >)
 MetaTell (funproc + +)

Procedural Attachment

Why? (Space) inefficient to store explicitly.

What? Use procedure to solve query.

Constraints: Sound procedure
?Only some bound-sets (directions)?

Eg: <, +, Sort, ...

Gen'l: MRS allows user to define how to answer arbitrary Asked proposition

Declarative/Procedural

Axioms [eg "man(X): - human(X), male(X)."]
 have two readings:

declarative: For any X,
 if human(X) and male(X) are true,
 then so is man(X).

- Like procedure: X ≈ formal parameter
 man(X) head
 human(X), male(X) body can fail/succeed
- Goal of $|man(a)| \approx call with X \leftarrow a$

[see top-down theorem proving, [Reiter] p19-20]

Top Down Theorem Proving qua Procedure Calling

Consider goal
$$G = (g_1, \ldots, g_n)$$
 as procedural calls (performed left-to-right):

Goal
$$(g_1, \ldots, g_n)$$
 succeeds (with $\sigma_1 \circ \sigma$) if

- 1. g_1 succeeds (with σ_1), and
 - $(g_2\sigma_1, \ldots, g_n\sigma_1)$ succeeds (with σ)
- 2. Literal \boxed{g} succeeds (with σ) if either
 - g unifies with atomic "procedure" t (under σ)
 - g unifies with the head of "procedure" $\begin{array}{c} \mathbf{t} := \mathbf{t}_1, \ \ldots, \ \mathbf{t}_m \\ \text{under } \sigma', \text{ and} \\ \hline (\mathbf{t}_1\sigma', \ \ldots, \ \mathbf{t}_m\sigma') \end{array}] \text{ succeeds (with } \sigma_m).$ $[\sigma = \sigma' \circ \sigma_m]$

If sucessful, Prolog returns unifer σ .

Different from Standard Procedures

1. Success vs Fail

$$KB = \left\{ egin{array}{ll} \mathsf{p}(\mathsf{X}) := \langle \mathsf{body1} \rangle. \\ \mathsf{p}(\mathsf{X}) := \langle \mathsf{body2} \rangle. \end{array} \right\}$$
 "Called" on $\left[\mathsf{p}(\mathsf{a}) \right]$:

 \approx Procedure: try $\langle body1 \rangle$ and if that fails, try $\langle body2 \rangle$.

2. Automatic backtracking (all sol'ns, 1-by-1)

$$KB = \begin{cases} q(a,b) & q(a,c). & q(a,d). \\ r(c). & r(d). \\ p(X) & (q(x,Y), r(Y)). \end{cases}$$
"Called" on $p(a)$:

```
assign Y=b then fails

re-assign Y=c then succeeds

{ If Prolog asked for next proof: }

re-assign Y=d then succeed

{ If Prolog asked for next proof ⇒ fail & done. }
```

Differences (con't)

Non-Determinism (in principle)
 Can "execute" a goal in > 1 way

$$KB = \left\{ \begin{array}{l} p(X,a) := \langle body1 \rangle. \\ p(X,Y) := \langle body2 \rangle. \end{array} \right\}$$
Called on $\left[(\ldots, p(b,Z), \ldots) \right]$

Will it execute \langle body1\rangle? Will it get to \langle body2\rangle?

(Made deterministic by Depth-First strategy)

4. Variables

Need not

- be given values for procedural call
- get values from procedure
- ... but constrained wrt other variables via unification

(Major strength of Prolog.)

Examples of Variable Use

1. Constrained by goal:

$$KB = \left\{ \begin{array}{l} p(X,Y) := q(X), r(Y). \\ q(b). r(a). r(b). r(c). \end{array} \right\}$$

Goal p(Z,Z)

does NOT give values to args (x, y) but does constrain them to be equal.

So succeeds only with $\{\,_{{}_{\mathsf{b}}}Z\,\}$

2.
$$KB = \{ \text{"r(s(X),Y)} :- \dots \text{"}, \dots \}$$

Goal: $\boxed{\text{r(Z,p(Z))}}$
forces

Z to be $s(\cdots)$, and Y to be $p(Z) = p(s(\cdots))$

where "..." determined by later goals.

(Using MGU \approx least commitment: establishes only what HAS to be true.)

Aux-Logic 1: