Useful Equivalencies

[Needs only & - V]

—=P = P
PVQ = —[(=P) A (=Q)]
S[PVQl = (-P) A (-Q)
P=Q = (-P)VvQ
= (P A Q)
PeQ = [(P=Q) AN (Q=P)
= (PA-Q) N =(Q N —P)
Jr.¢(z) = —[Vz.—¢(z)]
—~[Fz.6(x)] = V. -o(z)
o => T = T = -y
Nz d(z) = 3z [op(z) A Vz.6(2) = 2 =]

... Exactly n values of ¢ ...

Aux-Logic

Example of =, V

Using 4 = Set of natural numbers, N

Vn.6ln = 2|n
= Vn.—-6|n V 2|n

A={ n: —6|n }
= {1,2,3,4,5, 7,8,9,10,11, 13,14,...}

{ n:2n}
{

2, 4, 6, 8, 10, 12, 14, ...}

B

Notice AUB =N
(Hence each n € N, n satisfies either =6|n or 2|n)

So Vn 6ln = 2|n

Godel’s Incompleteness Proof

3 true Sentences that cannot be proved

Consider Numbers:
0, succ, +, X, ...
+ axioms

Can enumerate all syntactically legal sentences
= give each sentence «, a number G(a) e N
= give each PROOF (a;), a humber G({a;))

Let A = set of true statements about N

Let a(j,A) <
Vi 2 is NOT GOdel number of proof, using A,

of G71(j)
Let o =a(G(og), A)
ie, “I am not provable, from A"

If o is provable from A, then o is FALSE
= A inconsistent!

As A consistent,
= o NOT provable from A
= o IS true statement!

o is true, but cannot be proven from A!

1c. How to Compute (> 174 50)7?

Challenge: Determine truth of (> 174 50)

Option 1:

Explicitly store

(> 5150 (> 5250 O
(> 5550 (> 5650 (O
(> 173 50) (> 174 50) (>
(> 2021 50) (> 2022 50) (>
and negative facts:
—(> 41 50) —(> 42 50) —-(
>10) G 20)
> 2 1)
as well as

e Requires ~ oo storage!

Is there a better way?

Aux-Logic

53 50)
57 50)

175 50)

2023 50)

43 50)

(> 3 0)
(>3 1)
(> 3 2)

54 50)
58 50)

176 50)

(> 2024 50)

- (> 44 50)

(> 4 0)
> 4 1)
(> 4 2)
(> 4 3)

Option 2: Procedural Attachment

e To compute (> x y),
Use procedure FetchGT
where FetchGT returns nil or t

® FetchGT(o: proposition)
(if (> (cadr o) (caddr o))
t
nil)

Eg: -> (FetchGT ’(> 174 50))
t

-> (FetchGT ’(> 23 41))
0

Procedural Attachment: +

Find w s.t. (+ 10 65 w)

Explicit storage: oo space!

Procedure:
To compute (+ 10 65 w)
Use procedure FetchPlus
where FetchPlus returns appropriate binding list:

FetchPlus(o: proposition)
(Match (cadddr o) (+ (cadr o) (caddr o)))
33 w 10 65

(FetchPlus (+ 10 65 w)) +— (w/75)
(FetchPlus (+ 10 65 75)) —+t
(FetchPlus (+ 10 65 921)) — (O

MRS Solution:

a) MetaTell (ToFetch (> &x &y) FetchGT)
MetaTell (ToFetch (+ &x &y &z) FetchPlus)

b) MetaTell (relnproc > >)
MetaTell (funproc + +)

Procedural Attachment

Why? (Space) inefficient to store explicitly.

What? Use procedure to solve query.

Constraints: Sound procedure
?Only some bound-sets (directions)?

Eg: <, +, Sort, ...

Gen’l: MRS allows user to define
how to answer arbitrary Asked proposition

Declarative/Procedural

e AXIiOMS [eg “man(X) :- human(X), male(X)."]
have two readings:

declarative: For any X,
iIf human(X) and male(X) are true,
then so is man(X).

procedural: For any X,
to achieve goal |man(X) |,
it is sufficient to achieve
human (X) and |male(X) |

e Like procedure: X ~ formal parameter

man(X) head
human(X), male(X) body can fail/succeed

e Goal of |lman(a) | =~ call with X «— a

[see top-down theorem proving, [Reiter] p19-20]

Aux-Logic

Top Down Theorem Proving
qua Procedure Calling

Consider goal G = | (g1, ..., gn)

as procedural calls (performed left-to-right):

Goal | (g1,
1. 21

(g201, ...
2. Literal [g

.» gn)| Succeeds (with o;00) if

succeeds (with o1), and

, gno1) | Succeeds (with o)

succeeds (with ¢) if either

e g unifies with atomic “procedure” t (under o)

e g unifies with the head of “procedure”

t (- t1, ..., th

under ¢/, and

(tlo", -

., tmo') | succeeds (with o).

[c = o' o o]

| If sucessful, Prolog returns unifer o. |

Different from
Standard Procedures

1. Success vs Fail

_ P(X) :- (body1l).
KB = { p(X) - (body2). }

“Called” on |p(a) |

~ Procedure: try (bodyl) and if that fails,
try (body2) .

2. Automatic backtracking (all sol'ns, 1-by-1)

{q<a,b> a(a,c). q(a,d>.}
KB = r(c). r(d).

P(X) - a(X,Y), r(Y).
“Called” on |p(a) |

assign Y=b then fails
re-assign Y=c then succeeds

{ If Prolog asked for next proof: }
re-assign Y=d then succeed

{ If Prolog asked for next proof = fail & done. }

Differences (con't)

3. Non-Determinism (in principle)
Can “execute” a goal in > 1 way

. p(X,a) :- (bodyl).
KB = { p(X,Y) - (body2). }

Called on |(..., p(b,Z), ...)

Will it execute (body1)?
Will it get to (body2)7?

(Made deterministic by Depth-First strategy)

4. Variables
Need not
— be given values for procedural call
— get values from procedure

... but constrained wrt other variables
via unification

(Major strength of Prolog.)

1.

Examples of Variable Use

Constrained by goal:

_ P(X,Y) - a(X), r(Y).
KB = {q(b). r(a). r(b). r(c).}

Goal |p(Z,2)
does NO'T give values to args (x, Y)
but does constrain them to be equal.

So succeeds only with {,Z}

. KB = { “r(s(X),Y) -", .-+ }

Goal: |r(Z,p(2))
forces

Z to be s(-:), and

Y to be p(Z2) = p(s(---))
where “..." determined by later goals.

(Using MGU = least commitment:
establishes only what HAS to be true.)

