
Recursion

CMPT325: Functional Programming Techniques

Dr. B. Price & Dr. R. Greiner

16th September 2004

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 1

Recursion

Road Map Revisited

I Functions: Done!

I Lisp's Foundations: Done!

I Functional Programming
I Recursion, Variables, E�ciency,
I Funarg Problem (Scoping)
I Program=Data (eval, nlambda, oop)
I Lambda Calculus
I SECD machine

I �Extensions� to Pure Lisp

I Example (polynomials)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 2

Recursion Overview

Recursion

I Recursion is a problem-solving technique (a.k.a.
divide-and-conquer)

I Steps in magic formula:

I Reduce problem to simpler, self-similar problems
I Solve the simpler problems
I Compose results to solve the main problem

I Decomposition is also used in procedural programming

I In recursion, subproblems are similar to original

I Recursion is the central model of computation in pure
functional programming

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 3

Recursion Overview

Recursion

I Recursion is a problem-solving technique (a.k.a.
divide-and-conquer)

I Steps in magic formula:

I Reduce problem to simpler, self-similar problems
I Solve the simpler problems
I Compose results to solve the main problem

I Decomposition is also used in procedural programming

I In recursion, subproblems are similar to original

I Recursion is the central model of computation in pure
functional programming

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 3

Recursion Overview

Recursion

I Recursion is a problem-solving technique (a.k.a.
divide-and-conquer)

I Steps in magic formula:
I Reduce problem to simpler, self-similar problems

I Solve the simpler problems
I Compose results to solve the main problem

I Decomposition is also used in procedural programming

I In recursion, subproblems are similar to original

I Recursion is the central model of computation in pure
functional programming

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 3

Recursion Overview

Recursion

I Recursion is a problem-solving technique (a.k.a.
divide-and-conquer)

I Steps in magic formula:
I Reduce problem to simpler, self-similar problems
I Solve the simpler problems

I Compose results to solve the main problem

I Decomposition is also used in procedural programming

I In recursion, subproblems are similar to original

I Recursion is the central model of computation in pure
functional programming

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 3

Recursion Overview

Recursion

I Recursion is a problem-solving technique (a.k.a.
divide-and-conquer)

I Steps in magic formula:
I Reduce problem to simpler, self-similar problems
I Solve the simpler problems
I Compose results to solve the main problem

I Decomposition is also used in procedural programming

I In recursion, subproblems are similar to original

I Recursion is the central model of computation in pure
functional programming

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 3

Recursion Overview

Recursion

I Recursion is a problem-solving technique (a.k.a.
divide-and-conquer)

I Steps in magic formula:
I Reduce problem to simpler, self-similar problems
I Solve the simpler problems
I Compose results to solve the main problem

I Decomposition is also used in procedural programming

I In recursion, subproblems are similar to original

I Recursion is the central model of computation in pure
functional programming

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 3

Recursion Overview

Recursion

I Recursion is a problem-solving technique (a.k.a.
divide-and-conquer)

I Steps in magic formula:
I Reduce problem to simpler, self-similar problems
I Solve the simpler problems
I Compose results to solve the main problem

I Decomposition is also used in procedural programming
I In recursion, subproblems are similar to original

I Recursion is the central model of computation in pure
functional programming

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 3

Recursion Overview

Recursion

I Recursion is a problem-solving technique (a.k.a.
divide-and-conquer)

I Steps in magic formula:
I Reduce problem to simpler, self-similar problems
I Solve the simpler problems
I Compose results to solve the main problem

I Decomposition is also used in procedural programming
I In recursion, subproblems are similar to original

I Recursion is the central model of computation in pure
functional programming

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 3

Recursion Overview

Factorial Example

I Counts ordered n-tuples drawable from n items without
replacement

I The factorial of n, fct(n) is the product of the �rst n integers:∏
i=1,n

i = 1× 2× · · · × (n − 1)× n

I Procedurally we could write this as a loop:

int fct(int n)
fct := 1
FOR i := 1 TO n DO

fct := fct * i
return fct

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 4

Recursion Overview

Factorial Example

I Counts ordered n-tuples drawable from n items without
replacement

I The factorial of n, fct(n) is the product of the �rst n integers:∏
i=1,n

i = 1× 2× · · · × (n − 1)× n

I Procedurally we could write this as a loop:

int fct(int n)
fct := 1
FOR i := 1 TO n DO

fct := fct * i
return fct

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 4

Recursion Overview

Factorial Example

I Counts ordered n-tuples drawable from n items without
replacement

I The factorial of n, fct(n) is the product of the �rst n integers:∏
i=1,n

i = 1× 2× · · · × (n − 1)× n

I Procedurally we could write this as a loop:

int fct(int n)
fct := 1
FOR i := 1 TO n DO

fct := fct * i
return fct

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 4

Recursion Overview

Factorial's Self-Similar Substructure

I In general computing fct(n) for di�erent n's repeats a lot of
work

I fct(6) = 1× 2× 3× 4× 5︸ ︷︷ ︸
=fct(5)

×6, but fct(5) = 1× 2× 3× 4× 5

I If we have computed fct(5) we could get fct(6) = 6× fct(5)

I In general we can compute fct(n) as n × fct(n − 1)

fct(5) = 1× 2× 3× 4× 5
fct(5) = 5× fct(4)

fct(4) = 4× fct(3)
fct(3) = 3× fct(2)

fct(2) = 2× fct(1)

I fct(1) is undecomposable. We specify an answer: fct(1) = 1

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 5

Recursion Overview

Factorial's Self-Similar Substructure

I In general computing fct(n) for di�erent n's repeats a lot of
work

I fct(6) = 1× 2× 3× 4× 5︸ ︷︷ ︸
=fct(5)

×6, but fct(5) = 1× 2× 3× 4× 5

I If we have computed fct(5) we could get fct(6) = 6× fct(5)

I In general we can compute fct(n) as n × fct(n − 1)

fct(5) = 1× 2× 3× 4× 5
fct(5) = 5× fct(4)

fct(4) = 4× fct(3)
fct(3) = 3× fct(2)

fct(2) = 2× fct(1)

I fct(1) is undecomposable. We specify an answer: fct(1) = 1

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 5

Recursion Overview

Factorial's Self-Similar Substructure

I In general computing fct(n) for di�erent n's repeats a lot of
work

I fct(6) = 1× 2× 3× 4× 5︸ ︷︷ ︸
=fct(5)

×6, but fct(5) = 1× 2× 3× 4× 5

I If we have computed fct(5) we could get fct(6) = 6× fct(5)

I In general we can compute fct(n) as n × fct(n − 1)

fct(5) = 1× 2× 3× 4× 5
fct(5) = 5× fct(4)

fct(4) = 4× fct(3)
fct(3) = 3× fct(2)

fct(2) = 2× fct(1)

I fct(1) is undecomposable. We specify an answer: fct(1) = 1

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 5

Recursion Overview

Factorial's Self-Similar Substructure

I In general computing fct(n) for di�erent n's repeats a lot of
work

I fct(6) = 1× 2× 3× 4× 5︸ ︷︷ ︸
=fct(5)

×6, but fct(5) = 1× 2× 3× 4× 5

I If we have computed fct(5) we could get fct(6) = 6× fct(5)

I In general we can compute fct(n) as n × fct(n − 1)

fct(5) = 1× 2× 3× 4× 5
fct(5) = 5× fct(4)

fct(4) = 4× fct(3)
fct(3) = 3× fct(2)

fct(2) = 2× fct(1)

I fct(1) is undecomposable. We specify an answer: fct(1) = 1

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 5

Recursion Overview

Factorial's Self-Similar Substructure

I In general computing fct(n) for di�erent n's repeats a lot of
work

I fct(6) = 1× 2× 3× 4× 5︸ ︷︷ ︸
=fct(5)

×6, but fct(5) = 1× 2× 3× 4× 5

I If we have computed fct(5) we could get fct(6) = 6× fct(5)

I In general we can compute fct(n) as n × fct(n − 1)

fct(5) = 1× 2× 3× 4× 5

fct(5) = 5× fct(4)
fct(4) = 4× fct(3)

fct(3) = 3× fct(2)
fct(2) = 2× fct(1)

I fct(1) is undecomposable. We specify an answer: fct(1) = 1

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 5

Recursion Overview

Factorial's Self-Similar Substructure

I In general computing fct(n) for di�erent n's repeats a lot of
work

I fct(6) = 1× 2× 3× 4× 5︸ ︷︷ ︸
=fct(5)

×6, but fct(5) = 1× 2× 3× 4× 5

I If we have computed fct(5) we could get fct(6) = 6× fct(5)

I In general we can compute fct(n) as n × fct(n − 1)

fct(5) = 1× 2× 3× 4× 5
fct(5) = 5× fct(4)

fct(4) = 4× fct(3)
fct(3) = 3× fct(2)

fct(2) = 2× fct(1)

I fct(1) is undecomposable. We specify an answer: fct(1) = 1

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 5

Recursion Overview

Factorial's Self-Similar Substructure

I In general computing fct(n) for di�erent n's repeats a lot of
work

I fct(6) = 1× 2× 3× 4× 5︸ ︷︷ ︸
=fct(5)

×6, but fct(5) = 1× 2× 3× 4× 5

I If we have computed fct(5) we could get fct(6) = 6× fct(5)

I In general we can compute fct(n) as n × fct(n − 1)

fct(5) = 1× 2× 3× 4× 5
fct(5) = 5× fct(4)

fct(4) = 4× fct(3)

fct(3) = 3× fct(2)
fct(2) = 2× fct(1)

I fct(1) is undecomposable. We specify an answer: fct(1) = 1

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 5

Recursion Overview

Factorial's Self-Similar Substructure

I In general computing fct(n) for di�erent n's repeats a lot of
work

I fct(6) = 1× 2× 3× 4× 5︸ ︷︷ ︸
=fct(5)

×6, but fct(5) = 1× 2× 3× 4× 5

I If we have computed fct(5) we could get fct(6) = 6× fct(5)

I In general we can compute fct(n) as n × fct(n − 1)

fct(5) = 1× 2× 3× 4× 5
fct(5) = 5× fct(4)

fct(4) = 4× fct(3)
fct(3) = 3× fct(2)

fct(2) = 2× fct(1)

I fct(1) is undecomposable. We specify an answer: fct(1) = 1

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 5

Recursion Overview

Factorial's Self-Similar Substructure

I In general computing fct(n) for di�erent n's repeats a lot of
work

I fct(6) = 1× 2× 3× 4× 5︸ ︷︷ ︸
=fct(5)

×6, but fct(5) = 1× 2× 3× 4× 5

I If we have computed fct(5) we could get fct(6) = 6× fct(5)

I In general we can compute fct(n) as n × fct(n − 1)

fct(5) = 1× 2× 3× 4× 5
fct(5) = 5× fct(4)

fct(4) = 4× fct(3)
fct(3) = 3× fct(2)

fct(2) = 2× fct(1)

I fct(1) is undecomposable. We specify an answer: fct(1) = 1

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 5

Recursion Overview

Factorial's Self-Similar Substructure

I In general computing fct(n) for di�erent n's repeats a lot of
work

I fct(6) = 1× 2× 3× 4× 5︸ ︷︷ ︸
=fct(5)

×6, but fct(5) = 1× 2× 3× 4× 5

I If we have computed fct(5) we could get fct(6) = 6× fct(5)

I In general we can compute fct(n) as n × fct(n − 1)

fct(5) = 1× 2× 3× 4× 5
fct(5) = 5× fct(4)

fct(4) = 4× fct(3)
fct(3) = 3× fct(2)

fct(2) = 2× fct(1)

I fct(1) is undecomposable. We specify an answer: fct(1) = 1

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 5

Recursion Overview

Recursive Factorial

I Self-similar substructure is captured with a conditional
function:

fct(n) =

{
1 if n = 0

n × fct(n − 1) otherwise

I n = 0 is the "base case" and n > 0 is the "recursive case"

I Notice:

I fct(n − 1) is a simpler problem than f (n)
I n − 1 is a reduction operator (reduces problem to a simpler

one)
I Reduction operator progresses to base case so recursion

terminates
I Composition operator × in n × fct(n − 1) creates solution to

original problem from subproblems

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 6

Recursion Overview

Recursive Factorial

I Self-similar substructure is captured with a conditional
function:

fct(n) =

{
1 if n = 0

n × fct(n − 1) otherwise

I n = 0 is the "base case" and n > 0 is the "recursive case"

I Notice:

I fct(n − 1) is a simpler problem than f (n)
I n − 1 is a reduction operator (reduces problem to a simpler

one)
I Reduction operator progresses to base case so recursion

terminates
I Composition operator × in n × fct(n − 1) creates solution to

original problem from subproblems

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 6

Recursion Overview

Recursive Factorial

I Self-similar substructure is captured with a conditional
function:

fct(n) =

{
1 if n = 0

n × fct(n − 1) otherwise

I n = 0 is the "base case" and n > 0 is the "recursive case"

I Notice:

I fct(n − 1) is a simpler problem than f (n)
I n − 1 is a reduction operator (reduces problem to a simpler

one)
I Reduction operator progresses to base case so recursion

terminates
I Composition operator × in n × fct(n − 1) creates solution to

original problem from subproblems

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 6

Recursion Overview

Recursive Factorial

I Self-similar substructure is captured with a conditional
function:

fct(n) =

{
1 if n = 0

n × fct(n − 1) otherwise

I n = 0 is the "base case" and n > 0 is the "recursive case"

I Notice:
I fct(n − 1) is a simpler problem than f (n)

I n − 1 is a reduction operator (reduces problem to a simpler
one)

I Reduction operator progresses to base case so recursion
terminates

I Composition operator × in n × fct(n − 1) creates solution to
original problem from subproblems

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 6

Recursion Overview

Recursive Factorial

I Self-similar substructure is captured with a conditional
function:

fct(n) =

{
1 if n = 0

n × fct(n − 1) otherwise

I n = 0 is the "base case" and n > 0 is the "recursive case"

I Notice:
I fct(n − 1) is a simpler problem than f (n)
I n − 1 is a reduction operator (reduces problem to a simpler

one)

I Reduction operator progresses to base case so recursion
terminates

I Composition operator × in n × fct(n − 1) creates solution to
original problem from subproblems

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 6

Recursion Overview

Recursive Factorial

I Self-similar substructure is captured with a conditional
function:

fct(n) =

{
1 if n = 0

n × fct(n − 1) otherwise

I n = 0 is the "base case" and n > 0 is the "recursive case"

I Notice:
I fct(n − 1) is a simpler problem than f (n)
I n − 1 is a reduction operator (reduces problem to a simpler

one)
I Reduction operator progresses to base case so recursion

terminates

I Composition operator × in n × fct(n − 1) creates solution to
original problem from subproblems

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 6

Recursion Overview

Recursive Factorial

I Self-similar substructure is captured with a conditional
function:

fct(n) =

{
1 if n = 0

n × fct(n − 1) otherwise

I n = 0 is the "base case" and n > 0 is the "recursive case"

I Notice:
I fct(n − 1) is a simpler problem than f (n)
I n − 1 is a reduction operator (reduces problem to a simpler

one)
I Reduction operator progresses to base case so recursion

terminates
I Composition operator × in n × fct(n − 1) creates solution to

original problem from subproblems

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 6

Recursion Overview

Recursive Factorial in Pure Lisp

(LABELS ((fact (n)
(IF (= n 0)

1
(* n (fact (- n 1))))

))

(LIST
(fact 1)
(fact 4)
(fact 33)))

→(1 24 8683317618811886495518194401280000000)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 7

Recursion Overview

Recursive Factorial in Pure Lisp

(LABELS ((fact (n)
(IF (= n 0)

1
(* n (fact (- n 1))))

))
(LIST

(fact 1)
(fact 4)
(fact 33)))

→(1 24 8683317618811886495518194401280000000)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 7

Recursion Overview

Recursive Factorial in Semi-pure Lisp

I The DEFUN form assigns the global function symbol fact to a
closure with the arguments and body given

(DEFUN fact (n)
"returns factorial of the non-negative integer n"
(IF (= n 0)

1
(* n (fact (- n 1)))))

(fact 1) →1
(fact 4) →24

I Be careful not to clobber a function with the same name or
unintentionally use a previously de�ned predicate!

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 8

Recursion Overview

Recursive Factorial in Semi-pure Lisp

I The DEFUN form assigns the global function symbol fact to a
closure with the arguments and body given

(DEFUN fact (n)
"returns factorial of the non-negative integer n"
(IF (= n 0)

1
(* n (fact (- n 1)))))

(fact 1) →1
(fact 4) →24

I Be careful not to clobber a function with the same name or
unintentionally use a previously de�ned predicate!

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 8

Recursion Overview

Recursive Factorial in Semi-pure Lisp

I The DEFUN form assigns the global function symbol fact to a
closure with the arguments and body given

(DEFUN fact (n)
"returns factorial of the non-negative integer n"
(IF (= n 0)

1
(* n (fact (- n 1)))))

(fact 1) →1

(fact 4) →24

I Be careful not to clobber a function with the same name or
unintentionally use a previously de�ned predicate!

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 8

Recursion Overview

Recursive Factorial in Semi-pure Lisp

I The DEFUN form assigns the global function symbol fact to a
closure with the arguments and body given

(DEFUN fact (n)
"returns factorial of the non-negative integer n"
(IF (= n 0)

1
(* n (fact (- n 1)))))

(fact 1) →1
(fact 4) →24

I Be careful not to clobber a function with the same name or
unintentionally use a previously de�ned predicate!

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 8

Recursion Overview

Recursive Factorial in Semi-pure Lisp

I The DEFUN form assigns the global function symbol fact to a
closure with the arguments and body given

(DEFUN fact (n)
"returns factorial of the non-negative integer n"
(IF (= n 0)

1
(* n (fact (- n 1)))))

(fact 1) →1
(fact 4) →24

I Be careful not to clobber a function with the same name or
unintentionally use a previously de�ned predicate!

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 8

Recursion Overview

Recursions with Lists: contains

I De�ne a function "contains(s,a)" which returns true
⇔ the atom a is contained in list s.

I Can we see shared subproblems here?

(contains '() 3) →NIL
(contains '(3) 3) →T
(contains '(2 3) 3)
(contains '(1 2 3) 3)

;(OR (EQ 1 3) (contains '(1 2) 3)

I As Lisp code

(DEFUN contains (s a)
(COND ((NULL s) nil)

((EQUAL (CAR s) a) t)
(t (contains (CDR s) a))))

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 9

Recursion Overview

Recursions with Lists: contains

I De�ne a function "contains(s,a)" which returns true
⇔ the atom a is contained in list s.

I Can we see shared subproblems here?

(contains '() 3) →NIL
(contains '(3) 3) →T
(contains '(2 3) 3)
(contains '(1 2 3) 3)

;(OR (EQ 1 3) (contains '(1 2) 3)

I As Lisp code

(DEFUN contains (s a)
(COND ((NULL s) nil)

((EQUAL (CAR s) a) t)
(t (contains (CDR s) a))))

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 9

Recursion Overview

Recursions with Lists: contains

I De�ne a function "contains(s,a)" which returns true
⇔ the atom a is contained in list s.

I Can we see shared subproblems here?

(contains '() 3) →NIL
(contains '(3) 3) →T
(contains '(2 3) 3)
(contains '(1 2 3) 3)

;(OR (EQ 1 3) (contains '(1 2) 3)

I As Lisp code

(DEFUN contains (s a)
(COND ((NULL s) nil)

((EQUAL (CAR s) a) t)
(t (contains (CDR s) a))))

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 9

Recursion Overview

Recursions with Lists: contains

I De�ne a function "contains(s,a)" which returns true
⇔ the atom a is contained in list s.

I Can we see shared subproblems here?

(contains '() 3) →NIL
(contains '(3) 3) →T
(contains '(2 3) 3)
(contains '(1 2 3) 3)

;(OR (EQ 1 3) (contains '(1 2) 3)

I As Lisp code

(DEFUN contains (s a)
(COND ((NULL s) nil)

((EQUAL (CAR s) a) t)
(t (contains (CDR s) a))))

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 9

Recursion Overview

Recursions with Lists: contains

I De�ne a function "contains(s,a)" which returns true
⇔ the atom a is contained in list s.

I Can we see shared subproblems here?

(contains '() 3) →NIL
(contains '(3) 3) →T
(contains '(2 3) 3)
(contains '(1 2 3) 3)

;(OR (EQ 1 3) (contains '(1 2) 3)

I As Lisp code

(DEFUN contains (s a)
(COND ((NULL s) nil)

((EQUAL (CAR s) a) t)
(t (contains (CDR s) a))))

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 9

Recursion Overview

Alternative Version of contains

I Original Version

(DEFUN contains (s a)
(COND ((NULL s) nil)

((EQUAL (CAR s) a) t)
(t (contains (CDR s) a))))

I Alternative Version emphasizing functional perspective

(DEFUN contains (s a)
(AND (NOT (NULL s))

(OR (EQUAL (CAR s) a)
(contains (CDR s) a))))

I E�ectively, we are using or to compose value of subproblems

I Boolean functions can be written in compact intuitive form

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 10

Recursion Overview

Alternative Version of contains

I Original Version

(DEFUN contains (s a)
(COND ((NULL s) nil)

((EQUAL (CAR s) a) t)
(t (contains (CDR s) a))))

I Alternative Version emphasizing functional perspective

(DEFUN contains (s a)
(AND (NOT (NULL s))

(OR (EQUAL (CAR s) a)
(contains (CDR s) a))))

I E�ectively, we are using or to compose value of subproblems

I Boolean functions can be written in compact intuitive form

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 10

Recursion Overview

Alternative Version of contains

I Original Version

(DEFUN contains (s a)
(COND ((NULL s) nil)

((EQUAL (CAR s) a) t)
(t (contains (CDR s) a))))

I Alternative Version emphasizing functional perspective

(DEFUN contains (s a)
(AND (NOT (NULL s))

(OR (EQUAL (CAR s) a)
(contains (CDR s) a))))

I E�ectively, we are using or to compose value of subproblems

I Boolean functions can be written in compact intuitive form

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 10

Recursion Overview

Alternative Version of contains

I Original Version

(DEFUN contains (s a)
(COND ((NULL s) nil)

((EQUAL (CAR s) a) t)
(t (contains (CDR s) a))))

I Alternative Version emphasizing functional perspective

(DEFUN contains (s a)
(AND (NOT (NULL s))

(OR (EQUAL (CAR s) a)
(contains (CDR s) a))))

I E�ectively, we are using or to compose value of subproblems

I Boolean functions can be written in compact intuitive form

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 10

Recursion Overview

Tail Recursion

I The very last recursive call to contains determines its value

(contains '(1 2 3) 3)
(contains '(2 3) 3)

(contains '(3) 3)
→T

→T
→T

(contains '(1 2 3) 4)
(contains '(2 3) 4)

(contains '(3) 4)
(contains '() 4)
→NIL

→NIL
→NIL

→NIL

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 11

Recursion Overview

Tail Recursion

I The very last recursive call to contains determines its value

(contains '(1 2 3) 3)
(contains '(2 3) 3)

(contains '(3) 3)
→T

→T
→T
(contains '(1 2 3) 4)

(contains '(2 3) 4)
(contains '(3) 4)

(contains '() 4)
→NIL

→NIL
→NIL

→NIL

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 11

Recursion Overview

Tail Recursion

I Modern compilers
I Detect "Tail recursion"
I Convert the computation to an iteration
I Eliminate the recursive function calls

I Results in highly e�cient code

I We can write code in a functional style obtaining freedom
from side-e�ects and elegant formulations while obtaining the
e�ciency of highly-optimized compiled code

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 12

Recursion Overview

Tail Recursion

I Modern compilers
I Detect "Tail recursion"
I Convert the computation to an iteration
I Eliminate the recursive function calls

I Results in highly e�cient code

I We can write code in a functional style obtaining freedom
from side-e�ects and elegant formulations while obtaining the
e�ciency of highly-optimized compiled code

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 12

Recursion Overview

Tail Recursion

I Modern compilers
I Detect "Tail recursion"
I Convert the computation to an iteration
I Eliminate the recursive function calls

I Results in highly e�cient code

I We can write code in a functional style obtaining freedom
from side-e�ects and elegant formulations while obtaining the
e�ciency of highly-optimized compiled code

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 12

Recursion Overview

Three Types of Simple List Recursions

I Three types of recursions on a single list:
I CAR recursion
I CDR recursion
I CAR/CDR recursion

I Type of recursion identi�ed by reductions employed

I contains uses "CDR" for reduction

(DEFUN contains (s a)
(COND ((NULL s) nil)

((EQUAL (CAR s) a) t)
(t (contains (CDR s) a))))

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 13

Recursion Overview

Three Types of Simple List Recursions

I Three types of recursions on a single list:
I CAR recursion
I CDR recursion
I CAR/CDR recursion

I Type of recursion identi�ed by reductions employed

I contains uses "CDR" for reduction

(DEFUN contains (s a)
(COND ((NULL s) nil)

((EQUAL (CAR s) a) t)
(t (contains (CDR s) a))))

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 13

Recursion Overview

Three Types of Simple List Recursions

I Three types of recursions on a single list:
I CAR recursion
I CDR recursion
I CAR/CDR recursion

I Type of recursion identi�ed by reductions employed

I contains uses "CDR" for reduction

(DEFUN contains (s a)
(COND ((NULL s) nil)

((EQUAL (CAR s) a) t)
(t (contains (CDR s) a))))

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 13

Recursion Overview

Typical Structure of Recursions We'll See

I Recursive Analysis

1. Identify trivial (base) cases with immediate answers
(e.g. atom, (), nil, 0, 1, . . .)

2. Find reduction operator(s) to transform general towards
trivial
(e.g. CAR, CDR, -1, ÷, . . .)

3. Create a composition operator to calculate answers in
terms of reduced cases
(e.g. AND, CONS, +, MAX, MIN, . . .)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 14

Recursion Overview

Typical Structure of Recursions We'll See

I Recursive Analysis

1. Identify trivial (base) cases with immediate answers
(e.g. atom, (), nil, 0, 1, . . .)

2. Find reduction operator(s) to transform general towards
trivial
(e.g. CAR, CDR, -1, ÷, . . .)

3. Create a composition operator to calculate answers in
terms of reduced cases
(e.g. AND, CONS, +, MAX, MIN, . . .)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 14

Recursion Overview

Typical Structure of Recursions We'll See

I Recursive Analysis

1. Identify trivial (base) cases with immediate answers
(e.g. atom, (), nil, 0, 1, . . .)

2. Find reduction operator(s) to transform general towards
trivial
(e.g. CAR, CDR, -1, ÷, . . .)

3. Create a composition operator to calculate answers in
terms of reduced cases
(e.g. AND, CONS, +, MAX, MIN, . . .)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 14

Recursion Overview

Typical Structure of Recursions We'll See

I Recursive Analysis

1. Identify trivial (base) cases with immediate answers
(e.g. atom, (), nil, 0, 1, . . .)

2. Find reduction operator(s) to transform general towards
trivial
(e.g. CAR, CDR, -1, ÷, . . .)

3. Create a composition operator to calculate answers in
terms of reduced cases
(e.g. AND, CONS, +, MAX, MIN, . . .)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 14

Recursion Overview

Recursive Version of my-length

I Can we see shared substructure?

(my-length '()) →0
(my-length '(a)) →1
(my-length '(a b)) →2

I Analysis

1. What is trivial (base) case?
'() →0

2. How can we reduce toward this case?
(CDR the-list)

3. How to compose value of problem from value of reduced
problem?
(+ 1 reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 15

Recursion Overview

Recursive Version of my-length

I Can we see shared substructure?

(my-length '()) →0
(my-length '(a)) →1
(my-length '(a b)) →2

I Analysis

1. What is trivial (base) case?
'() →0

2. How can we reduce toward this case?
(CDR the-list)

3. How to compose value of problem from value of reduced
problem?
(+ 1 reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 15

Recursion Overview

Recursive Version of my-length

I Can we see shared substructure?

(my-length '()) →0
(my-length '(a)) →1
(my-length '(a b)) →2

I Analysis

1. What is trivial (base) case?

'() →0
2. How can we reduce toward this case?

(CDR the-list)
3. How to compose value of problem from value of reduced

problem?
(+ 1 reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 15

Recursion Overview

Recursive Version of my-length

I Can we see shared substructure?

(my-length '()) →0
(my-length '(a)) →1
(my-length '(a b)) →2

I Analysis

1. What is trivial (base) case?
'() →0

2. How can we reduce toward this case?
(CDR the-list)

3. How to compose value of problem from value of reduced
problem?
(+ 1 reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 15

Recursion Overview

Recursive Version of my-length

I Can we see shared substructure?

(my-length '()) →0
(my-length '(a)) →1
(my-length '(a b)) →2

I Analysis

1. What is trivial (base) case?
'() →0

2. How can we reduce toward this case?

(CDR the-list)
3. How to compose value of problem from value of reduced

problem?
(+ 1 reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 15

Recursion Overview

Recursive Version of my-length

I Can we see shared substructure?

(my-length '()) →0
(my-length '(a)) →1
(my-length '(a b)) →2

I Analysis

1. What is trivial (base) case?
'() →0

2. How can we reduce toward this case?
(CDR the-list)

3. How to compose value of problem from value of reduced
problem?
(+ 1 reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 15

Recursion Overview

Recursive Version of my-length

I Can we see shared substructure?

(my-length '()) →0
(my-length '(a)) →1
(my-length '(a b)) →2

I Analysis

1. What is trivial (base) case?
'() →0

2. How can we reduce toward this case?
(CDR the-list)

3. How to compose value of problem from value of reduced
problem?

(+ 1 reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 15

Recursion Overview

Recursive Version of my-length

I Can we see shared substructure?

(my-length '()) →0
(my-length '(a)) →1
(my-length '(a b)) →2

I Analysis

1. What is trivial (base) case?
'() →0

2. How can we reduce toward this case?
(CDR the-list)

3. How to compose value of problem from value of reduced
problem?
(+ 1 reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 15

Recursion Overview

Lisp Implementation of my-length

(defun my-length (any-list)
"returns length of 'any-list'"
(COND ((NULL any-list) 0)

(t (+ 1 (my-length (CDR any-list))))
)

)
)

I Base case

I Recursive case
I Reduction
I Composition

I What type of recursion? CDR-recursion

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 16

Recursion Overview

Lisp Implementation of my-length

(defun my-length (any-list)
"returns length of 'any-list'"
(COND ((NULL any-list) 0)

(t (+ 1 (my-length (CDR any-list))))
)

)
)

I Base case

I Recursive case
I Reduction
I Composition

I What type of recursion? CDR-recursion

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 16

Recursion Overview

Lisp Implementation of my-length

(defun my-length (any-list)
"returns length of 'any-list'"
(COND ((NULL any-list) 0)

(t (+ 1 (my-length (CDR any-list))))
)

)
)

I Base case

I Recursive case
I Reduction
I Composition

I What type of recursion? CDR-recursion

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 16

Recursion Overview

Lisp Implementation of my-length

(defun my-length (any-list)
"returns length of 'any-list'"
(COND ((NULL any-list) 0)

(t (+ 1 (my-length (CDR any-list))))
)

)
)

I Base case

I Recursive case
I Reduction
I Composition

I What type of recursion?

CDR-recursion

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 16

Recursion Overview

Lisp Implementation of my-length

(defun my-length (any-list)
"returns length of 'any-list'"
(COND ((NULL any-list) 0)

(t (+ 1 (my-length (CDR any-list))))
)

)
)

I Base case

I Recursive case
I Reduction
I Composition

I What type of recursion? CDR-recursion

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 16

Recursion Overview

Recursive Version of my-append

I Samples of behavior:

(my-append '() '(a)) →(a) ; '(a)
(my-append '(b) '(a)) → (b a) ; (CONS 'b '(a))
(my-append '(c b) '(a)) →(c b a) ; (CONS 'c

(CONS 'b '(a)))

I Analysis

1. What is trivial (base) case?
() a →(a)

2. How can we reduce toward this case?
(CDR first-list)

3. How to compose value of problem from value of reduced
problem?
(CONS (FIRST first-list) reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 17

Recursion Overview

Recursive Version of my-append

I Samples of behavior:

(my-append '() '(a)) →(a) ; '(a)
(my-append '(b) '(a)) → (b a) ; (CONS 'b '(a))
(my-append '(c b) '(a)) →(c b a) ; (CONS 'c

(CONS 'b '(a)))

I Analysis

1. What is trivial (base) case?
() a →(a)

2. How can we reduce toward this case?
(CDR first-list)

3. How to compose value of problem from value of reduced
problem?
(CONS (FIRST first-list) reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 17

Recursion Overview

Recursive Version of my-append

I Samples of behavior:

(my-append '() '(a)) →(a) ; '(a)
(my-append '(b) '(a)) → (b a) ; (CONS 'b '(a))
(my-append '(c b) '(a)) →(c b a) ; (CONS 'c

(CONS 'b '(a)))

I Analysis

1. What is trivial (base) case?

() a →(a)
2. How can we reduce toward this case?

(CDR first-list)
3. How to compose value of problem from value of reduced

problem?
(CONS (FIRST first-list) reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 17

Recursion Overview

Recursive Version of my-append

I Samples of behavior:

(my-append '() '(a)) →(a) ; '(a)
(my-append '(b) '(a)) → (b a) ; (CONS 'b '(a))
(my-append '(c b) '(a)) →(c b a) ; (CONS 'c

(CONS 'b '(a)))

I Analysis

1. What is trivial (base) case?
() a →(a)

2. How can we reduce toward this case?
(CDR first-list)

3. How to compose value of problem from value of reduced
problem?
(CONS (FIRST first-list) reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 17

Recursion Overview

Recursive Version of my-append

I Samples of behavior:

(my-append '() '(a)) →(a) ; '(a)
(my-append '(b) '(a)) → (b a) ; (CONS 'b '(a))
(my-append '(c b) '(a)) →(c b a) ; (CONS 'c

(CONS 'b '(a)))

I Analysis

1. What is trivial (base) case?
() a →(a)

2. How can we reduce toward this case?

(CDR first-list)
3. How to compose value of problem from value of reduced

problem?
(CONS (FIRST first-list) reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 17

Recursion Overview

Recursive Version of my-append

I Samples of behavior:

(my-append '() '(a)) →(a) ; '(a)
(my-append '(b) '(a)) → (b a) ; (CONS 'b '(a))
(my-append '(c b) '(a)) →(c b a) ; (CONS 'c

(CONS 'b '(a)))

I Analysis

1. What is trivial (base) case?
() a →(a)

2. How can we reduce toward this case?
(CDR first-list)

3. How to compose value of problem from value of reduced
problem?
(CONS (FIRST first-list) reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 17

Recursion Overview

Recursive Version of my-append

I Samples of behavior:

(my-append '() '(a)) →(a) ; '(a)
(my-append '(b) '(a)) → (b a) ; (CONS 'b '(a))
(my-append '(c b) '(a)) →(c b a) ; (CONS 'c

(CONS 'b '(a)))

I Analysis

1. What is trivial (base) case?
() a →(a)

2. How can we reduce toward this case?
(CDR first-list)

3. How to compose value of problem from value of reduced
problem?

(CONS (FIRST first-list) reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 17

Recursion Overview

Recursive Version of my-append

I Samples of behavior:

(my-append '() '(a)) →(a) ; '(a)
(my-append '(b) '(a)) → (b a) ; (CONS 'b '(a))
(my-append '(c b) '(a)) →(c b a) ; (CONS 'c

(CONS 'b '(a)))

I Analysis

1. What is trivial (base) case?
() a →(a)

2. How can we reduce toward this case?
(CDR first-list)

3. How to compose value of problem from value of reduced
problem?
(CONS (FIRST first-list) reduced-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 17

Recursion Overview

Lisp Implementation of my-append

(defun my-append (first-list second-list)
(COND ((NULL first-list) second-list)

(t (CONS (CAR first-list)
(my-append (CDR first-list)

second-list)))
)

))

I Base case

I Recursive case
I Reduction
I Composition

I What type of recursion? CDR-recursion

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 18

Recursion Overview

Lisp Implementation of my-append

(defun my-append (first-list second-list)
(COND ((NULL first-list) second-list)

(t (CONS (CAR first-list)
(my-append (CDR first-list)

second-list)))
)

))

I Base case

I Recursive case
I Reduction
I Composition

I What type of recursion? CDR-recursion

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 18

Recursion Overview

Lisp Implementation of my-append

(defun my-append (first-list second-list)
(COND ((NULL first-list) second-list)

(t (CONS (CAR first-list)
(my-append (CDR first-list)

second-list)))
)

))

I Base case

I Recursive case
I Reduction
I Composition

I What type of recursion? CDR-recursion

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 18

Recursion Overview

Lisp Implementation of my-append

(defun my-append (first-list second-list)
(COND ((NULL first-list) second-list)

(t (CONS (CAR first-list)
(my-append (CDR first-list)

second-list)))
)

))

I Base case

I Recursive case
I Reduction
I Composition

I What type of recursion?

CDR-recursion

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 18

Recursion Overview

Lisp Implementation of my-append

(defun my-append (first-list second-list)
(COND ((NULL first-list) second-list)

(t (CONS (CAR first-list)
(my-append (CDR first-list)

second-list)))
)

))

I Base case

I Recursive case
I Reduction
I Composition

I What type of recursion? CDR-recursion

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 18

Recursion Overview

Recursive Analysis of my-equal

I Suppose we want to implement 'equal' with eq

(my-equal 'a 'a) → t ;(EQ 'a 'b)
(my-equal 'a 'b) → nil ;(EQ 'a 'b)
(my-equal '(a) '(a)) → t ;(EQ (CAR '(a)) (CAR '(a)))

(my-equal '(a b) '(a b)) →t
;(AND (EQ (CAR '(a b)) (CAR '(a b)))
; (EQ (CDR '(a b)) (CDR '(a b)))

I Analysis

1. What is trivial (base) case? (EQ x y) where x,y atoms
2. How can we reduce toward this case?

Use CAR and CDR
3. Composition operator?

(AND reduced-car-value reduced-cdr-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 19

Recursion Overview

Recursive Analysis of my-equal

I Suppose we want to implement 'equal' with eq

(my-equal 'a 'a) → t ;(EQ 'a 'b)
(my-equal 'a 'b) → nil ;(EQ 'a 'b)
(my-equal '(a) '(a)) → t ;(EQ (CAR '(a)) (CAR '(a)))

(my-equal '(a b) '(a b)) →t
;(AND (EQ (CAR '(a b)) (CAR '(a b)))
; (EQ (CDR '(a b)) (CDR '(a b)))

I Analysis

1. What is trivial (base) case? (EQ x y) where x,y atoms
2. How can we reduce toward this case?

Use CAR and CDR
3. Composition operator?

(AND reduced-car-value reduced-cdr-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 19

Recursion Overview

Recursive Analysis of my-equal

I Suppose we want to implement 'equal' with eq

(my-equal 'a 'a) → t ;(EQ 'a 'b)
(my-equal 'a 'b) → nil ;(EQ 'a 'b)
(my-equal '(a) '(a)) → t ;(EQ (CAR '(a)) (CAR '(a)))

(my-equal '(a b) '(a b)) →t
;(AND (EQ (CAR '(a b)) (CAR '(a b)))
; (EQ (CDR '(a b)) (CDR '(a b)))

I Analysis

1. What is trivial (base) case?

(EQ x y) where x,y atoms
2. How can we reduce toward this case?

Use CAR and CDR
3. Composition operator?

(AND reduced-car-value reduced-cdr-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 19

Recursion Overview

Recursive Analysis of my-equal

I Suppose we want to implement 'equal' with eq

(my-equal 'a 'a) → t ;(EQ 'a 'b)
(my-equal 'a 'b) → nil ;(EQ 'a 'b)
(my-equal '(a) '(a)) → t ;(EQ (CAR '(a)) (CAR '(a)))

(my-equal '(a b) '(a b)) →t
;(AND (EQ (CAR '(a b)) (CAR '(a b)))
; (EQ (CDR '(a b)) (CDR '(a b)))

I Analysis

1. What is trivial (base) case? (EQ x y) where x,y atoms

2. How can we reduce toward this case?
Use CAR and CDR

3. Composition operator?
(AND reduced-car-value reduced-cdr-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 19

Recursion Overview

Recursive Analysis of my-equal

I Suppose we want to implement 'equal' with eq

(my-equal 'a 'a) → t ;(EQ 'a 'b)
(my-equal 'a 'b) → nil ;(EQ 'a 'b)
(my-equal '(a) '(a)) → t ;(EQ (CAR '(a)) (CAR '(a)))

(my-equal '(a b) '(a b)) →t
;(AND (EQ (CAR '(a b)) (CAR '(a b)))
; (EQ (CDR '(a b)) (CDR '(a b)))

I Analysis

1. What is trivial (base) case? (EQ x y) where x,y atoms
2. How can we reduce toward this case?

Use CAR and CDR
3. Composition operator?

(AND reduced-car-value reduced-cdr-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 19

Recursion Overview

Recursive Analysis of my-equal

I Suppose we want to implement 'equal' with eq

(my-equal 'a 'a) → t ;(EQ 'a 'b)
(my-equal 'a 'b) → nil ;(EQ 'a 'b)
(my-equal '(a) '(a)) → t ;(EQ (CAR '(a)) (CAR '(a)))

(my-equal '(a b) '(a b)) →t
;(AND (EQ (CAR '(a b)) (CAR '(a b)))
; (EQ (CDR '(a b)) (CDR '(a b)))

I Analysis

1. What is trivial (base) case? (EQ x y) where x,y atoms
2. How can we reduce toward this case?

Use CAR and CDR

3. Composition operator?
(AND reduced-car-value reduced-cdr-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 19

Recursion Overview

Recursive Analysis of my-equal

I Suppose we want to implement 'equal' with eq

(my-equal 'a 'a) → t ;(EQ 'a 'b)
(my-equal 'a 'b) → nil ;(EQ 'a 'b)
(my-equal '(a) '(a)) → t ;(EQ (CAR '(a)) (CAR '(a)))

(my-equal '(a b) '(a b)) →t
;(AND (EQ (CAR '(a b)) (CAR '(a b)))
; (EQ (CDR '(a b)) (CDR '(a b)))

I Analysis

1. What is trivial (base) case? (EQ x y) where x,y atoms
2. How can we reduce toward this case?

Use CAR and CDR
3. Composition operator?

(AND reduced-car-value reduced-cdr-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 19

Recursion Overview

Recursive Analysis of my-equal

I Suppose we want to implement 'equal' with eq

(my-equal 'a 'a) → t ;(EQ 'a 'b)
(my-equal 'a 'b) → nil ;(EQ 'a 'b)
(my-equal '(a) '(a)) → t ;(EQ (CAR '(a)) (CAR '(a)))

(my-equal '(a b) '(a b)) →t
;(AND (EQ (CAR '(a b)) (CAR '(a b)))
; (EQ (CDR '(a b)) (CDR '(a b)))

I Analysis

1. What is trivial (base) case? (EQ x y) where x,y atoms
2. How can we reduce toward this case?

Use CAR and CDR
3. Composition operator?

(AND reduced-car-value reduced-cdr-value)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 19

Recursion Overview

Recursive Implementation of my-equal

(DEFUN my-equal (s1 s2)
(COND ((AND (ATOM s1) (ATOM s2))

(EQ s1 s2))
((AND (CONSP s1) (CONSP s2))
(AND (my-equal (CAR s1) (CAR s2))

(my-equal (CDR s1) (CDR s2))))
(t nil)))

I Base case

I Recursive case
I Reduction
I Composition

I What type of recursion? CAR-CDR-recursion

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 20

Recursion Overview

Recursive Implementation of my-equal

(DEFUN my-equal (s1 s2)
(COND ((AND (ATOM s1) (ATOM s2))

(EQ s1 s2))
((AND (CONSP s1) (CONSP s2))
(AND (my-equal (CAR s1) (CAR s2))

(my-equal (CDR s1) (CDR s2))))
(t nil)))

I Base case

I Recursive case
I Reduction
I Composition

I What type of recursion? CAR-CDR-recursion

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 20

Recursion Overview

Recursive Implementation of my-equal

(DEFUN my-equal (s1 s2)
(COND ((AND (ATOM s1) (ATOM s2))

(EQ s1 s2))
((AND (CONSP s1) (CONSP s2))
(AND (my-equal (CAR s1) (CAR s2))

(my-equal (CDR s1) (CDR s2))))
(t nil)))

I Base case

I Recursive case
I Reduction
I Composition

I What type of recursion?

CAR-CDR-recursion

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 20

Recursion Overview

Recursive Implementation of my-equal

(DEFUN my-equal (s1 s2)
(COND ((AND (ATOM s1) (ATOM s2))

(EQ s1 s2))
((AND (CONSP s1) (CONSP s2))
(AND (my-equal (CAR s1) (CAR s2))

(my-equal (CDR s1) (CDR s2))))
(t nil)))

I Base case

I Recursive case
I Reduction
I Composition

I What type of recursion? CAR-CDR-recursion

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 20

Recursion Overview

Alternative Implementation of my-equal

I Original Implementation

(DEFUN my-equal (s1 s2)
(COND ((AND (ATOM s1) (ATOM s2))

(EQ s1 s2))
((AND (CONSP s1) (CONSP s2))
(AND (my-equal (CAR s1) (CAR s2))

(my-equal (CDR s1) (CDR s2))))
(t nil)))

I Alternative version emphasizing functional perspective

(DEFUN my-equal (s1 s2)
(OR (AND (ATOM s1) (ATOM s2) (EQ s1 s2))

(AND (CONSP s1) (CONSP s2)
(my-equal (CAR s1) (CAR s2))
(my-equal (CDR s1) (CDR s2)))))

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 21

Recursion Overview

E�cient Implementation of my-equal

I Alternative version

(DEFUN my-equal (s1 s2)
(OR (AND (ATOM s1) (ATOM s2) (EQ s1 s2))

(AND (CONSP s1) (CONSP s2) ;; eliminate!
(my-equal (CAR s1) (CAR s2))
(my-equal (CDR s1) (CDR s2)))))

I E�cient Version

(DEFUN my-equal (s1 s2)
(COND ((ATOM s1)

(AND (ATOM s2) (EQ s1 s2))
((ATOM s2) nil)
((my-equal (CAR s1) (CAR s2))

(my-equal (CDR s1) (CDR s2)))))

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 22

Recursion Overview

Other Problems to Try

I split(s) which returns a pair (s1 . s2) of lists jointly containing
the original elements of s and the di�erence in length between
s1 and s2 is at most 1

split('(a b c d)) →((a c) (b d))
split('(a b c d e)) →((a c e) (b d))

I even-list(s) which returns true (e.g. T) if list s has even length

even-list('(a b c d)) →T
even-list('(a b c d e)) → nil

I �atten(s) which returns list containing atoms of s all at the
top level

flatten('((a b) ((c) d))) → (a b c d)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 23

Recursion Overview

Recursion as Substitution

(DEFUN length (L)
(IF (NULL L) 0 (+ 1 (length (CDR L))))

I Need n substitutions to evaluate n-element lists!

(LAMBDA (lst1)
(IF (NULL lst1) 0
(+ 1 ((LAMBDA (lst2)

(IF (NULL lst2) 0
(+ 1 (LAMBDA (lst3)

(IF (NULL lst3) 0
(+ 1 (LAMBDA (lst4)

...
) (CDR lst3))

) (CDR lst2))
) (CDR lst1)))

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 24

Recursion Overview

Recursion as Substitution

(DEFUN length (L)
(IF (NULL L) 0 (+ 1 (length (CDR L))))

I Need n substitutions to evaluate n-element lists!

(LAMBDA (lst1)
(IF (NULL lst1) 0
(+ 1

((LAMBDA (lst2)
(IF (NULL lst2) 0

(+ 1 (LAMBDA (lst3)
(IF (NULL lst3) 0

(+ 1 (LAMBDA (lst4)
...

) (CDR lst3))
) (CDR lst2))

) (CDR lst1))

)

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 24

Recursion Overview

Recursion as Substitution

(DEFUN length (L)
(IF (NULL L) 0 (+ 1 (length (CDR L))))

I Need n substitutions to evaluate n-element lists!

(LAMBDA (lst1)
(IF (NULL lst1) 0
(+ 1 ((LAMBDA (lst2)

(IF (NULL lst2) 0
(+ 1

(LAMBDA (lst3)
(IF (NULL lst3) 0

(+ 1 (LAMBDA (lst4)
...

) (CDR lst3))
) (CDR lst2))

) (CDR lst1)))

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 24

Recursion Overview

Recursion as Substitution

(DEFUN length (L)
(IF (NULL L) 0 (+ 1 (length (CDR L))))

I Need n substitutions to evaluate n-element lists!

(LAMBDA (lst1)
(IF (NULL lst1) 0
(+ 1 ((LAMBDA (lst2)

(IF (NULL lst2) 0
(+ 1 (LAMBDA (lst3)

(IF (NULL lst3) 0
(+ 1

(LAMBDA (lst4)
...

) (CDR lst3))

) (CDR lst2))
) (CDR lst1)))

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 24

Recursion Overview

Recursion as Substitution

(DEFUN length (L)
(IF (NULL L) 0 (+ 1 (length (CDR L))))

I Need n substitutions to evaluate n-element lists!

(LAMBDA (lst1)
(IF (NULL lst1) 0
(+ 1 ((LAMBDA (lst2)

(IF (NULL lst2) 0
(+ 1 (LAMBDA (lst3)

(IF (NULL lst3) 0
(+ 1 (LAMBDA (lst4)

...
) (CDR lst3))

) (CDR lst2))
) (CDR lst1)))

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 24

Recursion Overview

Recursion as Self-Referential Variables

((LAMBDA (dummy)
(

(LAMBDA (length)
(SETF dummy length)
(FUNCALL length '(a b c d))

) (LAMBDA (L)
(IF (NULL L) 0

(+ 1 (funcall dummy (CDR L)))))

)) 'any-old-value)

→4

I Local environment with dummy variable

I Write "length" which calls "dummy"

I Pass "length" to inner environment

I Set dummy to length so "length" calls itself

I Use recursive function in body and get result

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 25

Recursion Overview

Recursion as Self-Referential Variables

((LAMBDA (dummy)
(

(LAMBDA (length)
(SETF dummy length)
(FUNCALL length '(a b c d))

)

(LAMBDA (L)
(IF (NULL L) 0

(+ 1 (funcall dummy (CDR L)))))
)) 'any-old-value)

→4

I Local environment with dummy variable

I Write "length" which calls "dummy"

I Pass "length" to inner environment

I Set dummy to length so "length" calls itself

I Use recursive function in body and get result

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 25

Recursion Overview

Recursion as Self-Referential Variables

((LAMBDA (dummy)
((LAMBDA (length)

(SETF dummy length)
(FUNCALL length '(a b c d))

) (LAMBDA (L)
(IF (NULL L) 0

(+ 1 (funcall dummy (CDR L)))))
)) 'any-old-value)

→4

I Local environment with dummy variable

I Write "length" which calls "dummy"

I Pass "length" to inner environment

I Set dummy to length so "length" calls itself

I Use recursive function in body and get result

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 25

Recursion Overview

Recursion as Self-Referential Variables

((LAMBDA (dummy)
((LAMBDA (length)

(SETF dummy length)

(FUNCALL length '(a b c d))

) (LAMBDA (L)
(IF (NULL L) 0

(+ 1 (funcall dummy (CDR L)))))
)) 'any-old-value)

→4

I Local environment with dummy variable

I Write "length" which calls "dummy"

I Pass "length" to inner environment

I Set dummy to length so "length" calls itself

I Use recursive function in body and get result

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 25

Recursion Overview

Recursion as Self-Referential Variables

((LAMBDA (dummy)
((LAMBDA (length)

(SETF dummy length)
(FUNCALL length '(a b c d))

) (LAMBDA (L)
(IF (NULL L) 0

(+ 1 (funcall dummy (CDR L)))))
)) 'any-old-value) →4

I Local environment with dummy variable

I Write "length" which calls "dummy"

I Pass "length" to inner environment

I Set dummy to length so "length" calls itself

I Use recursive function in body and get result

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 25

Recursion Overview

LABELS as Self-Referential Variables

I Self-reference requires a SETF

I But variable "dummy" is inside a LAMBDA closure so all
side-e�ects are isolated

I The LABELS construct performs the previous expansion for us

(LABELS ((length (L)
(IF (NULL L) 0

(+ 1 (length (CDR L))))))
(length '(a b c d))) →4

I Pure Lisp with LABELS is therefore su�cient to compute any
function

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 26

Recursion Overview

LABELS as Self-Referential Variables

I Self-reference requires a SETF

I But variable "dummy" is inside a LAMBDA closure so all
side-e�ects are isolated

I The LABELS construct performs the previous expansion for us

(LABELS ((length (L)
(IF (NULL L) 0

(+ 1 (length (CDR L))))))
(length '(a b c d))) →4

I Pure Lisp with LABELS is therefore su�cient to compute any
function

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 26

Recursion Overview

LABELS as Self-Referential Variables

I Self-reference requires a SETF

I But variable "dummy" is inside a LAMBDA closure so all
side-e�ects are isolated

I The LABELS construct performs the previous expansion for us

(LABELS ((length (L)
(IF (NULL L) 0

(+ 1 (length (CDR L))))))
(length '(a b c d))) →4

I Pure Lisp with LABELS is therefore su�cient to compute any
function

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 26

Recursion Overview

LABELS as Self-Referential Variables

I Self-reference requires a SETF

I But variable "dummy" is inside a LAMBDA closure so all
side-e�ects are isolated

I The LABELS construct performs the previous expansion for us

(LABELS ((length (L)
(IF (NULL L) 0

(+ 1 (length (CDR L))))))
(length '(a b c d))) →4

I Pure Lisp with LABELS is therefore su�cient to compute any
function

Dr. B. Price & Dr. R. Greiner CMPT325: Functional Programming Techniques 26

	Recursion
	Overview

