CMPT325: Functional Programming Techniques

Dr. B. Price & Dr. R. Greiner

16th September 2004

Road Map Revisited

- Functions: Done!
- Lisp's Foundations: Done!
- Functional Programming
 - Recursion, Variables, Efficiency,
 - Funarg Problem (Scoping)
 - Program=Data (eval, nlambda, oop)
 - Lambda Calculus
 - SECD machine
- "Extensions" to Pure Lisp
- Example (polynomials)

Recursion

Recursion is a problem-solving technique (a.k.a. divide-and-conquer)

・ 同 ト・ ・ ヨート・ ・ ヨート

Recursion

- Recursion is a problem-solving technique (a.k.a. divide-and-conquer)
- Steps in magic formula:

・ 同 ト・ ・ ヨート・ ・ ヨート

Recursion

- Recursion is a problem-solving technique (a.k.a.) divide-and-conquer)
- Steps in magic formula:
 - Reduce problem to simpler, *self-similar* problems

Recursion

- Recursion is a problem-solving technique (a.k.a.) divide-and-conquer)
- Steps in magic formula:
 - Reduce problem to simpler, *self-similar* problems
 - Solve the simpler problems

・ 同 ト・ ・ ヨート・ ・ ヨート

Recursion

- Recursion is a problem-solving technique (a.k.a. divide-and-conquer)
- Steps in magic formula:
 - Reduce problem to simpler, self-similar problems
 - Solve the simpler problems
 - Compose results to solve the main problem

< **∂** ► < **≥** ►

Recursion

- Recursion is a problem-solving technique (a.k.a. divide-and-conquer)
- Steps in magic formula:
 - Reduce problem to simpler, self-similar problems
 - Solve the simpler problems
 - Compose results to solve the main problem
- Decomposition is also used in procedural programming

Recursion

- Recursion is a problem-solving technique (a.k.a. divide-and-conquer)
- Steps in magic formula:
 - Reduce problem to simpler, self-similar problems
 - Solve the simpler problems
 - Compose results to solve the main problem
- Decomposition is also used in procedural programming
 - ► In recursion, subproblems are *similar* to original

Recursion

- Recursion is a problem-solving technique (a.k.a.) divide-and-conquer)
- Steps in magic formula:
 - Reduce problem to simpler, self-similar problems
 - Solve the simpler problems
 - Compose results to solve the main problem
- Decomposition is also used in procedural programming
 - In recursion, subproblems are similar to original
- Recursion is the central model of computation in pure functional programming

Factorial Example

Counts ordered n-tuples drawable from n items without replacement

(日) (四) (王) (王) (王)

Factorial Example

- Counts ordered n-tuples drawable from n items without replacement
- ▶ The factorial of n, fct(n) is the product of the first n integers:

$$\prod_{i=1,n} i = 1 \times 2 \times \cdots \times (n-1) \times n$$

(周) (ヨ) (ヨ)

æ

Factorial Example

- Counts ordered n-tuples drawable from n items without replacement
- ▶ The factorial of *n*, *fct*(*n*) is the product of the first *n* integers:

$$\prod_{i=1,n} i = 1 \times 2 \times \cdots \times (n-1) \times n$$

Procedurally we could write this as a loop:

```
int fct(int n)
  fct := 1
  FOR i := 1 TO n DO
      fct := fct * i
   return fct
```

< **∂** ► < **≥** ►

ln general computing fct(n) for different n's repeats a lot of work

-

In general computing fct(n) for different n's repeats a lot of work

►
$$fct(6) = \underbrace{1 \times 2 \times 3 \times 4 \times 5}_{=fct(5)} \times 6$$
, but $fct(5) = 1 \times 2 \times 3 \times 4 \times 5$

-

- In general computing fct(n) for different n's repeats a lot of work
 - ► $fct(6) = \underbrace{1 \times 2 \times 3 \times 4 \times 5}_{=fct(5)} \times 6$, but $fct(5) = 1 \times 2 \times 3 \times 4 \times 5$

• If we have computed fct(5) we could get $fct(6) = 6 \times fct(5)$

(四) (日) (日)

- In general computing fct(n) for different n's repeats a lot of work
 - ► $fct(6) = \underbrace{1 \times 2 \times 3 \times 4 \times 5}_{=fct(5)} \times 6$, but $fct(5) = 1 \times 2 \times 3 \times 4 \times 5$

• If we have computed fct(5) we could get $fct(6) = 6 \times fct(5)$

• In general we can compute fct(n) as $n \times fct(n-1)$

- In general computing fct(n) for different n's repeats a lot of work
 - ► $fct(6) = \underbrace{1 \times 2 \times 3 \times 4 \times 5}_{=fct(5)} \times 6$, but $fct(5) = 1 \times 2 \times 3 \times 4 \times 5$

• If we have computed fct(5) we could get $fct(6) = 6 \times fct(5)$

▶ In general we can compute fct(n) as $n \times fct(n-1)$

 $fct(5) = 1 \times 2 \times 3 \times 4 \times 5$

(4月) (3日) (3日)

- In general computing fct(n) for different n's repeats a lot of work
 - ► $fct(6) = \underbrace{1 \times 2 \times 3 \times 4 \times 5}_{=fct(5)} \times 6$, but $fct(5) = 1 \times 2 \times 3 \times 4 \times 5$

• If we have computed fct(5) we could get $fct(6) = 6 \times fct(5)$

• In general we can compute fct(n) as $n \times fct(n-1)$

 $fct(5) = 1 \times 2 \times 3 \times 4 \times 5$ $fct(5) = 5 \times fct(4)$

- In general computing fct(n) for different n's repeats a lot of work
 - ► $fct(6) = \underbrace{1 \times 2 \times 3 \times 4 \times 5}_{=fct(5)} \times 6$, but $fct(5) = 1 \times 2 \times 3 \times 4 \times 5$

• If we have computed fct(5) we could get $fct(6) = 6 \times fct(5)$

• In general we can compute fct(n) as $n \times fct(n-1)$

$$\begin{aligned} & fct(5) = 1 \times 2 \times 3 \times 4 \times 5 \\ & fct(5) = 5 \times fct(4) \\ & fct(4) = 4 \times fct(3) \end{aligned}$$

- In general computing fct(n) for different n's repeats a lot of work
 - ► $fct(6) = \underbrace{1 \times 2 \times 3 \times 4 \times 5}_{=fct(5)} \times 6$, but $fct(5) = 1 \times 2 \times 3 \times 4 \times 5$

• If we have computed fct(5) we could get $fct(6) = 6 \times fct(5)$

• In general we can compute fct(n) as n imes fct(n-1)

$$fct(5) = 1 \times 2 \times 3 \times 4 \times 5$$

$$fct(5) = 5 \times fct(4)$$

$$fct(4) = 4 \times fct(3)$$

$$fct(3) = 3 \times fct(2)$$

- In general computing fct(n) for different n's repeats a lot of work
 - ► $fct(6) = \underbrace{1 \times 2 \times 3 \times 4 \times 5}_{=fct(5)} \times 6$, but $fct(5) = 1 \times 2 \times 3 \times 4 \times 5$

• If we have computed fct(5) we could get $fct(6) = 6 \times fct(5)$

• In general we can compute fct(n) as n imes fct(n-1)

$$fct(5) = 1 \times 2 \times 3 \times 4 \times 5$$

$$fct(5) = 5 \times fct(4)$$

$$fct(4) = 4 \times fct(3)$$

$$fct(3) = 3 \times fct(2)$$

$$fct(2) = 2 \times fct(1)$$

- In general computing fct(n) for different n's repeats a lot of work
 - ► $fct(6) = \underbrace{1 \times 2 \times 3 \times 4 \times 5}_{=fct(5)} \times 6$, but $fct(5) = 1 \times 2 \times 3 \times 4 \times 5$

• If we have computed fct(5) we could get $fct(6) = 6 \times fct(5)$

• In general we can compute fct(n) as n imes fct(n-1)

$$\begin{aligned} fct(5) &= 1 \times 2 \times 3 \times 4 \times 5 \\ fct(5) &= 5 \times fct(4) \\ fct(4) &= 4 \times fct(3) \\ fct(3) &= 3 \times fct(2) \\ fct(2) &= 2 \times fct(1) \end{aligned}$$

• fct(1) is undecomposable. We specify an answer: fct(1) = 1

Recursive Factorial

Self-similar substructure is captured with a conditional function:

$$fct(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fct(n-1) & \text{otherwise} \end{cases}$$

イロト イヨト イヨト イヨト

Self-similar substructure is captured with a conditional function:

$$fct(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fct(n-1) & \text{otherwise} \end{cases}$$

 \blacktriangleright n = 0 is the "base case" and n > 0 is the "recursive case"

Self-similar substructure is captured with a conditional function:

$$fct(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fct(n-1) & \text{otherwise} \end{cases}$$

 \blacktriangleright n = 0 is the "base case" and n > 0 is the "recursive case"

Notice:

Self-similar substructure is captured with a conditional function:

$$fct(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fct(n-1) & \text{otherwise} \end{cases}$$

• n = 0 is the "base case" and n > 0 is the "recursive case"

Notice:

• fct(n-1) is a simpler problem than f(n)

Self-similar substructure is captured with a conditional function:

$$fct(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fct(n-1) & \text{otherwise} \end{cases}$$

• n = 0 is the "base case" and n > 0 is the "recursive case"

- Notice:
 - fct(n-1) is a simpler problem than f(n)
 - ▶ n-1 is a reduction operator (reduces problem to a simpler one)

(D) (A) (A) (A)

Self-similar substructure is captured with a conditional function:

$$fct(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fct(n-1) & \text{otherwise} \end{cases}$$

• n = 0 is the "base case" and n > 0 is the "recursive case"

- Notice:
 - fct(n-1) is a simpler problem than f(n)
 - ▶ n-1 is a reduction operator (reduces problem to a simpler one)
 - Reduction operator progresses to base case so recursion terminates

(D) (A) (A) (A)

Self-similar substructure is captured with a conditional function:

$$fct(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \times fct(n-1) & \text{otherwise} \end{cases}$$

• n = 0 is the "base case" and n > 0 is the "recursive case"

Notice:

- fct(n-1) is a simpler problem than f(n)
- ▶ n-1 is a reduction operator (reduces problem to a simpler one)
- Reduction operator progresses to base case so recursion terminates
- ▶ Composition operator × in n × fct(n − 1) creates solution to original problem from subproblems

イロト イポト イヨト イヨト

Recursive Factorial in Pure Lisp

(ロ) (部) (目) (目)

Recursive Factorial in Pure Lisp

・ 同 ト・ ・ ヨ ト・ ・ ヨ ト

æ

Recursive Factorial in Semi-pure Lisp

The DEFUN form assigns the global function symbol fact to a closure with the arguments and body given

イロト イポト イヨト イヨト

Recursive Factorial in Semi-pure Lisp

The DEFUN form assigns the global function symbol fact to a closure with the arguments and body given

```
(DEFUN fact (n)
   "returns factorial of the non-negative integer n"
   (IF (= n 0))
       (* n (fact (- n 1))))
```

・ 同 ト・ ・ ヨート・ ・ ヨート

Recursive Factorial in Semi-pure Lisp

The DEFUN form assigns the global function symbol fact to a closure with the arguments and body given

```
(DEFUN fact (n)
   "returns factorial of the non-negative integer n"
   (IF (= n 0))
        1
        (* n (fact (- n 1))))
(fact 1) \rightarrow 1
```

Recursive Factorial in Semi-pure Lisp

The DEFUN form assigns the global function symbol fact to a closure with the arguments and body given

```
(DEFUN fact (n)
   "returns factorial of the non-negative integer n"
   (IF (= n 0))
        1
        (* n (fact (- n 1))))
(fact 1) \rightarrow 1
(fact 4) \rightarrow 24
```

(四) (日) (日)

Recursive Factorial in Semi-pure Lisp

The DEFUN form assigns the global function symbol fact to a closure with the arguments and body given

```
(DEFUN fact (n)
   "returns factorial of the non-negative integer n"
   (IF (= n 0))
        (* n (fact (- n 1))))
(fact 1) \rightarrow 1
(fact 4) \rightarrow 24
```

Be careful not to clobber a function with the same name or unintentionally use a previously defined predicate!

(四) (日) (日)

▶ Define a function "contains(s,a)" which returns true ⇔ the atom a is contained in list s.

・ロト ・ 日本・ ・ 日本・ ・ 日本・

-2

- ▶ Define a function "contains(s,a)" which returns true ⇔ the atom a is contained in list s.
- Can we see shared subproblems here?

・ 同 ト・ ・ ヨート・ ・ ヨート

- ▶ Define a function "contains(s,a)" which returns true ⇔ the atom a is contained in list s.
- Can we see shared subproblems here?

```
(contains '() 3) \rightarrowNIL
(contains '(3) 3) \rightarrowT
(contains '(2 3) 3)
(contains '(1 2 3) 3)
```

- Can we see shared subproblems here?

```
(contains '() 3) \rightarrowNIL
(contains '(3) 3) \rightarrowT
(contains '(2 3) 3)
(contains '(1 2 3) 3)
;(OR (EQ 1 3) (contains '(1 2) 3)
```

- Can we see shared subproblems here?

```
(contains '() 3) \rightarrowNIL
(contains '(3) 3) \rightarrowT
(contains '(2 3) 3)
(contains '(1 2 3) 3)
;(OR (EQ 1 3) (contains '(1 2) 3)
```

As Lisp code

```
(DEFUN contains (s a)
 (COND ((NULL s) nil)
        ((EQUAL (CAR s) a) t)
        ( t (contains (CDR s) a)))))
```

Original Version

・ 同 ト・ ・ ヨート・ ・ ヨート

-2

Original Version

Alternative Version emphasizing functional perspective

Original Version

Alternative Version emphasizing functional perspective

Effectively, we are using or to compose value of subproblems

Original Version

Alternative Version emphasizing functional perspective

Effectively, we are using or to compose value of subproblems

Boolean functions can be written in compact intuitive form

> The very last recursive call to contains determines its value

```
(contains '(1 2 3) 3)
(contains '(2 3) 3)
(contains '(3) 3)
\rightarrow T
\rightarrow T
\rightarrow T
```

< ロト (四) (三) (三) (三)

The very last recursive call to contains determines its value

```
(contains '(1 2 3) 3)
     (contains '(2 3) 3)
         (contains '(3) 3)
         \rightarrow T
    \rightarrow T
\rightarrow T
(contains '(1 2 3) 4)
     (contains '(2 3) 4)
         (contains '(3) 4)
              (contains '() 4)
              \rightarrowNIL
         \rightarrowNIL
    \rightarrow \text{NIL}
\rightarrow \text{NIL}
```

-22

Modern compilers

- Detect "Tail recursion"
- Convert the computation to an iteration
- Eliminate the recursive function calls

▲撮♪ ▲ 国 ▶ ▲ 国 ♪

Modern compilers

- Detect "Tail recursion"
- Convert the computation to an iteration
- Eliminate the recursive function calls

Results in highly efficient code

・ 同 ト・ ・ ヨート・ ・ ヨート

Modern compilers

- Detect "Tail recursion"
- Convert the computation to an iteration
- Eliminate the recursive function calls
- Results in highly efficient code
- We can write code in a functional style obtaining freedom from side-effects and elegant formulations while obtaining the efficiency of highly-optimized compiled code

(周) (ヨ) (ヨ)

Three Types of Simple List Recursions

Three types of recursions on a single list:

- CAR recursion
- CDB recursion
- ► CAR/CDR recursion

イロト イポト イヨト イヨト

Three Types of Simple List Recursions

Three types of recursions on a single list:

- CAR recursion
- CDR recursion
- ► CAR/CDR recursion

Type of recursion identified by reductions employed

< **∂** ► < **≥** ►

Three Types of Simple List Recursions

Three types of recursions on a single list:

- ▶ CAB recursion
- CDR recursion
- CAR/CDR recursion

Type of recursion identified by reductions employed

contains uses "CDR" for reduction

```
(DEFUN contains (s a)
   (COND ((NULL s)
                             nil)
         ((EQUAL (CAR s) a) t)
         ( t
                             (contains (CDR s) a))))
```

(D) (A) (A)

Typical Structure of Recursions We'll See

Recursive Analysis

イロト イヨト イヨト イヨト

Typical Structure of Recursions We'll See

- Recursive Analysis
 - 1. Identify trivial (base) cases with immediate answers (e.g. atom, (), nil, 0, 1, ...)

・ 同 ト・ ・ ヨート・ ・ ヨート

Typical Structure of Recursions We'll See

Recursive Analysis

- 1. Identify trivial (base) cases with immediate answers (e.g. atom, (), nil, 0, 1, ...)
- 2. Find reduction operator(s) to transform general towards trivial

(e.g. CAR, CDR, −1, ÷, ...)

Typical Structure of Recursions We'll See

Recursive Analysis

- 1. Identify trivial (base) cases with immediate answers (e.g. atom, (), nil, 0, 1, ...)
- 2. Find reduction operator(s) to transform general towards trivial

 $(e.g. CAR, CDR, -1, \div, ...)$

3. Create a composition operator to calculate answers in terms of reduced cases

(e.g. AND, CONS, +, MAX, MIN, ...)

Recursive Version of my-length

Can we see shared substructure?

```
(my-length '() ) \rightarrow 0
(my-length '(a) ) \rightarrow 1
(my-length '(a b) ) \rightarrow 2
```

イロト イポト イヨト イヨト

Recursive Version of my-length

Can we see shared substructure?

(my-length '())
$$\rightarrow 0$$

(my-length '(a)) $\rightarrow 1$
(my-length '(a b)) $\rightarrow 2$

Analysis

(日) (四) (王) (王) (王)

Recursive Version of my-length

Can we see shared substructure?

(my-length '())
$$\rightarrow 0$$

(my-length '(a)) $\rightarrow 1$
(my-length '(a b)) $\rightarrow 2$

Analysis

1. What is trivial (base) case?

(D) (A) (A)

Recursive Version of my-length

Can we see shared substructure?

Analysis

1. What is trivial (base) case?
'()
$$\rightarrow 0$$

(日) (四) (王) (王) (王)

Recursive Version of my-length

Can we see shared substructure?

```
(my-length '() ) \rightarrow 0
(my-length '(a) ) \rightarrow 1
(my-length '(a b) ) \rightarrow 2
```

Analysis

- 1. What is trivial (base) case? **'**() →0
- 2. How can we reduce toward this case?

・ 同 ト・ ・ ヨ ト・ ・ ヨ ト

Recursive Version of my-length

Can we see shared substructure?

```
(my-length '() ) \rightarrow 0
(my-length '(a) ) \rightarrow 1
(my-length '(a b) ) \rightarrow 2
```

Analysis

- 1. What is trivial (base) case? **'**() →0
- 2. How can we reduce toward this case? (CDR the-list)

Recursive Version of my-length

Can we see shared substructure?

```
(my-length '() ) \rightarrow 0
(my-length '(a) ) \rightarrow 1
(my-length '(a b) ) \rightarrow 2
```

Analysis

- 1. What is trivial (base) case? **'**() →0
- 2. How can we reduce toward this case? (CDR the-list)
- 3. How to compose value of problem from value of reduced problem?

Recursive Version of my-length

Can we see shared substructure?

```
(my-length '() ) \rightarrow 0
(my-length '(a) ) \rightarrow 1
(my-length '(a b) ) \rightarrow 2
```

Analysis

- 1. What is trivial (base) case? **'**() →0
- 2. How can we reduce toward this case? (CDR the-list)
- 3. How to compose value of problem from value of reduced problem?
 - (+ 1 reduced-value)

```
(defun my-length (any-list)
   "returns length of 'any-list'"
   (COND ( (NULL any-list) 0)
           ( t (+ 1 (my-length (CDR any-list)) ) )
         )
```

```
(defun my-length (any-list)
   "returns length of 'any-list'"
   (COND ( (NULL any-list) 0)
           ( t (+ 1 (my-length (CDR any-list)) ) )
         )
Base case
```

```
(defun my-length (any-list)
   "returns length of 'any-list'"
   (COND ( (NULL any-list) 0)
           ( t (+ 1 (my-length (CDR any-list)) ) )
         )
```

- Base case
- Recursive case
 - Reduction
 - Composition

```
(defun my-length (any-list)
   "returns length of 'any-list'"
   (COND ( (NULL any-list) 0)
           ( t (+ 1 (my-length (CDR any-list)) ) )
```

- Base case
- Recursive case
 - Reduction
 - Composition
- What type of recursion?

```
(defun my-length (any-list)
   "returns length of 'any-list'"
   (COND ( (NULL any-list) 0)
           ( t (+ 1 (my-length (CDR any-list)) ) )
```

- Base case
- Recursive case
 - Reduction
 - Composition
- What type of recursion? CDR-recursion

Recursive Version of my-append

Samples of behavior:

(日) (四) (王) (王) (王)

Samples of behavior:

(日) (四) (王) (王) (王)

Samples of behavior:

Analysis

1. What is trivial (base) case?

Samples of behavior:

Analysis

1. What is trivial (base) case? () a
$$\rightarrow$$
(a)

(日) (四) (王) (王) (王)

Samples of behavior:

Analysis

1. What is trivial (base) case?

() a
$$\rightarrow$$
(a)

2. How can we reduce toward this case?

(D) (A) (A) (A)

Samples of behavior:

Analysis

- 1. What is trivial (base) case? () a \rightarrow (a)
- How can we reduce toward this case? (CDR first-list)

Samples of behavior:

Analysis

1. What is trivial (base) case?

() a
$$\rightarrow$$
(a)

- 2. How can we reduce toward this case? (CDR first-list)
- 3. How to compose value of problem from value of reduced problem?

・ 同 ト・ ・ ヨート・ ・ ヨート

Samples of behavior:

Analysis

1. What is trivial (base) case?

() a
$$\rightarrow$$
(a)

- How can we reduce toward this case? (CDR first-list)
- 3. How to compose value of problem from value of reduced problem?

```
(CONS (FIRST first-list) reduced-value)
```

리아 소문에 소문에 드문

)

```
(defun my-append (first-list second-list)
   (COND ( (NULL first-list) second-list)
           ( t (CONS (CAR first-list)
                     (my-append (CDR first-list)
```

second-list)))

同下 イヨト イヨト

3

))

Lisp Implementation of my-append

)

```
(defun my-append (first-list second-list)
   (COND ( (NULL first-list) second-list)
           ( t (CONS (CAR first-list)
                     (my-append (CDR first-list)
```

second-list)))

同下 イヨト イヨト

3

Base case

))

```
(defun my-append (first-list second-list)
   (COND ( (NULL first-list) second-list)
           ( t (CONS (CAR first-list)
                     (my-append (CDR first-list)
```

second-list)))

- Recursive case
 - Reduction
 - Composition

)

```
(defun my-append (first-list second-list)
   (COND ( (NULL first-list) second-list)
           ( t (CONS (CAR first-list)
                     (my-append (CDR first-list)
```

```
second-list)))
```

A (1) < (1) < (1) </p>

))

- Recursive case
 - Reduction
 - Composition
- What type of recursion?

)

```
(defun my-append (first-list second-list)
   (COND ( (NULL first-list) second-list)
           ( t (CONS (CAR first-list)
                     (my-append (CDR first-list)
```

```
second-list)))
```


- Recursive case
 - Reduction
 - Composition

)

What type of recursion? CDR-recursion

Recursive Analysis of my-equal

Suppose we want to implement 'equal' with eq

A (1) > (1) > (1)

æ

Recursive Analysis of my-equal

Suppose we want to implement 'equal' with eq

► Analysis

A (1) > (1) > (1)

Recursive Analysis of my-equal

Suppose we want to implement 'equal' with eq

Analysis

1. What is trivial (base) case?

A (1) > (1) > (1)

Recursive Analysis of my-equal

Suppose we want to implement 'equal' with eq

Analysis

1. What is trivial (base) case? (EQ \times y) where x,y atoms

A (1) > (1) > (1)

Recursive Analysis of my-equal

Suppose we want to implement 'equal' with equal'

Analysis

- 1. What is trivial (base) case? (EQ \times y) where x,y atoms
- 2. How can we reduce toward this case?

Recursive Analysis of my-equal

Suppose we want to implement 'equal' with equal'

Analysis

- 1. What is trivial (base) case? (EQ \times y) where x,y atoms
- 2. How can we reduce toward this case?

Use CAR and CDR

・ 同 ト・ ・ ヨート・ ・ ヨート

Recursive Analysis of my-equal

Suppose we want to implement 'equal' with eq

Analysis

- 1. What is trivial (base) case? (EQ \times y) where x,y atoms
- 2. How can we reduce toward this case? Use CAR and CDR
- 3. Composition operator?

< **∂** ► < **≥** ►

Recursive Analysis of my-equal

Suppose we want to implement 'equal' with eq

Analysis

- 1. What is trivial (base) case? (EQ \times y) where x,y atoms
- 2. How can we reduce toward this case? Use CAR and CDR
- 3. Composition operator? (AND reduced-car-value reduced-cdr-value)

```
(DEFUN my-equal (s1 s2)
  (COND ((AND (ATOM s1) (ATOM s2))
           (EQ s1 s2))
        ((AND (CONSP s1) (CONSP s2))
          (AND (my-equal (CAR s1) (CAR s2))
               (my-equal (CDR s1) (CDR s2))) )
        (t nil) ))
```

Base case

イロト イポト イヨト イヨト

-

```
(DEFUN my-equal (s1 s2)
  (COND ((AND (ATOM s1) (ATOM s2))
           (EQ s1 s2))
        ((AND (CONSP s1) (CONSP s2))
          (AND (my-equal (CAR s1) (CAR s2))
               (my-equal (CDR s1) (CDR s2))) )
        (t nil) ))
```

Base case

Recursive case

- Reduction
- Composition

```
(DEFUN my-equal (s1 s2)
  (COND ((AND (ATOM s1) (ATOM s2))
           (EQ s1 s2))
        ((AND (CONSP s1) (CONSP s2))
          (AND (my-equal (CAR s1) (CAR s2))
               (my-equal (CDR s1) (CDR s2))) )
        (t nil) ))
```

Base case

Recursive case

- Reduction
- Composition
- What type of recursion?

```
(DEFUN my-equal (s1 s2)
  (COND ((AND (ATOM s1) (ATOM s2))
           (EQ s1 s2))
        ((AND (CONSP s1) (CONSP s2))
          (AND (my-equal (CAR s1) (CAR s2))
               (my-equal (CDR s1) (CDR s2))) )
        (t nil) ))
```

Base case

Recursive case

- Reduction
- Composition
- What type of recursion? CAR-CDR-recursion

・ロト ・(引)ト ・(ヨ)ト ・(ヨ)ト ・

-1

Alternative Implementation of my-equal

Original Implementation

```
(DEFUN my-equal (s1 s2)
  (COND ((AND (ATOM s1) (ATOM s2))
            (EQ s1 s2))
        ((AND (CONSP s1) (CONSP s2))
          (AND (my-equal (CAR s1) (CAR s2))
               (my-equal (CDR s1) (CDR s2))) )
         (t nil) ))
```

Alternative version emphasizing functional perspective

```
(DEFUN my-equal (s1 s2)
   (OR (AND (ATOM s1) (ATOM s2) (EQ s1 s2))
       (AND (CONSP s1) (CONSP s2)
            (my-equal (CAR s1) (CAR s2))
            (my-equal (CDR s1) (CDR s2)) )))
```

Efficient Implementation of my-equal

Alternative version

```
(DEFUN my-equal (s1 s2)
  (OR (AND (ATOM s1) (ATOM s2) (EQ s1 s2))
      (AND (CONSP s1) (CONSP s2) ;; eliminate!
        (my-equal (CAR s1) (CAR s2))
        (my-equal (CDR s1) (CDR s2)) )))
```

Efficient Version

Other Problems to Try

 split(s) which returns a pair (s1 . s2) of lists jointly containing the original elements of s and the difference in length between s1 and s2 is at most 1

split('(a b c d)) \rightarrow ((a c) (b d)) split('(a b c d e)) \rightarrow ((a c e) (b d))

even-list(s) which returns true (e.g. T) if list s has even length

even-list('(a b c d)) $\rightarrow T$ even-list('(a b c d e)) \rightarrow nil

 flatten(s) which returns list containing atoms of s all at the top level

flatten('((a b) ((c) d))) \rightarrow (a b c d)

- ロト - 4 国 ト - 4 国 ト - 4 国 ト - 9 への

(DEFUN length (L) (IF (NULL L) 0 (+ 1 (length (CDR L))))

イロト イヨト イヨト イヨト

```
(DEFUN length (L)
(IF (NULL L) 0 (+ 1 (length (CDR L))))
```

Need n substitutions to evaluate n-element lists!

```
(LAMBDA (lst1)
(IF (NULL lst1) 0
(+ 1
```

(D) (A) (A)

з

)

```
(DEFUN length (L)
(IF (NULL L) 0 (+ 1 (length (CDR L))))
```

Need n substitutions to evaluate n-element lists!

```
(LAMBDA (lst1)
(IF (NULL lst1) O
(+ 1 ( (LAMBDA (lst2)
(IF (NULL lst2) O
(+ 1)
```

) (CDR lst1)))

```
(DEFUN length (L)
(IF (NULL L) 0 (+ 1 (length (CDR L))))
```

Need n substitutions to evaluate n-element lists!

```
(LAMBDA (lst1)
(IF (NULL lst1) 0
(+ 1 ( (LAMBDA (lst2)
(IF (NULL lst2) 0
(+ 1 (LAMBDA (lst3)
(IF (NULL lst3) 0
(+ 1
```

```
) (CDR 1st2))
) (CDR 1st1)) )
```

```
(DEFUN length (L)
(IF (NULL L) 0 (+ 1 (length (CDR L))))
```

Need n substitutions to evaluate n-element lists!

```
(LAMBDA (lst1)
 (IF (NULL 1st1) 0
  (+ 1 ( (LAMBDA (lst2)
          (IF (NULL 1st2) 0
              (+ 1 (LAMBDA (lst3)
                     (IF (NULL 1st3) 0
                         (+ 1 (LAMBDA (lst4)
                                      • .
                              ) (CDR lst3))
                   ) (CDR lst2))
       ) (CDR lst1)) )
                               (D) (A) (A)
                                                 3
```

```
( (LAMBDA (dummy) (
```

-)) 'any-old-value)
- Local environment with dummy variable
- Write "length" which calls "dummy"
- Pass "length" to inner environment
- Set dummy to length so "length" calls itself
- Use recursive function in body and get result

```
( (LAMBDA (dummy)
```

```
(LAMBDA (L)
 (IF (NULL L) 0
        (+ 1 (funcall dummy (CDR L))) ))
) 'any-old-value )
```

- Local environment with dummy variable
- Write "length" which calls "dummy"
- Pass "length" to inner environment
- Set dummy to length so "length" calls itself
- Use recursive function in body and get result

((LAMBDA (dummy) ((LAMBDA (length)

>) (LAMBDA (L) (IF (NULL L) O (+ 1 (funcall dummy (CDR L))))))) 'anv-old-value)

- Local environment with dummy variable
- Write "length" which calls "dummy"
- Pass "length" to inner environment
- Set dummy to length so "length" calls itself
- Use recursive function in body and get result

```
( (LAMBDA (dummy)
    ( (LAMBDA (length)
          (SETF dummy length)
```

```
) (LAMBDA (L)
       (IF (NULL L) O
           (+ 1 (funcall dummy (CDR L))) ))
) ) 'anv-old-value )
```

- Local environment with dummy variable
- Write "length" which calls "dummy"
- Pass "length" to inner environment
- Set dummy to length so "length" calls itself
- Use recursive function in body and get result

- ((LAMBDA (dummy) ((LAMBDA (length) (SETF dummy length) (FUNCALL length '(a b c d))) (LAMBDA (L) (IF (NULL L) O (+ 1 (funcall dummy (CDR L))))))) 'any-old-value) $\rightarrow 4$
- Local environment with dummy variable
- Write "length" which calls "dummy"
- Pass "length" to inner environment
- Set dummy to length so "length" calls itself
- Use recursive function in body and get result

Self-reference requires a SETF

(日) (部) (目) (日)

- Self-reference requires a SETF
- But variable "dummy" is inside a LAMBDA closure so all side-effects are isolated

・ 同 ト・ ・ ヨート・ ・ ヨート

- Self-reference requires a SETF
- But variable "dummy" is inside a LAMBDA closure so all side-effects are isolated
- ▶ The LABELS construct performs the previous expansion for us

```
(LABELS ((length (L)
(IF (NULL L) 0
(+ 1 (length (CDR L))))))
(length '(a b c d))) \rightarrow 4
```

・ 同 ト・ ・ ヨ ト・ ・ ヨ ト

- Self-reference requires a SETF
- But variable "dummy" is inside a LAMBDA closure so all side-effects are isolated
- The LABELS construct performs the previous expansion for us

```
(LABELS ((length (L)
            (IF (NULL L) O
                 (+ 1 (length (CDR L))) )) )
   (length '(a b c d)) ) \rightarrow 4
```

Pure Lisp with LABELS is therefore sufficient to compute any function

(귀) (문) (문)