
Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

CMPUT 325 - Language Paradigms

Dr. B. Price & Dr. R. Greiner

7th September 2004

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 1

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Programming Paradigms

I Real languages draw upon multiple paradigms

I We consider pure programming paradigms

I First, we survey the major paradigms

I Then, we examine a subset of paradigms in detail

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 2

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Programming Paradigms

I Real languages draw upon multiple paradigms

I We consider pure programming paradigms

I First, we survey the major paradigms

I Then, we examine a subset of paradigms in detail

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 2

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Programming Paradigms

I Real languages draw upon multiple paradigms

I We consider pure programming paradigms

I First, we survey the major paradigms

I Then, we examine a subset of paradigms in detail

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 2

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Programming Paradigms

I Real languages draw upon multiple paradigms

I We consider pure programming paradigms

I First, we survey the major paradigms

I Then, we examine a subset of paradigms in detail

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 2

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

The Procedural Paradigm

I First computer languages were procedural

(assembly, Fortran, etc.)

I Emphasized in introductory courses and

I Form basis of the majority of real-world programming

I The key concept: altering a value

I altering variables by assignment
I altering variables by transformation (applying multiplication)
I altering environments (procedure call)
I altering I/O (assign values to outputs, assigning vars to inputs)

I a.k.a imperative: you tell the program which (altering) actions
to take

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 3

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

The Procedural Paradigm

I First computer languages were procedural

(assembly, Fortran, etc.)

I Emphasized in introductory courses and

I Form basis of the majority of real-world programming

I The key concept: altering a value

I altering variables by assignment
I altering variables by transformation (applying multiplication)
I altering environments (procedure call)
I altering I/O (assign values to outputs, assigning vars to inputs)

I a.k.a imperative: you tell the program which (altering) actions
to take

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 3

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

The Procedural Paradigm

I First computer languages were procedural

(assembly, Fortran, etc.)

I Emphasized in introductory courses and

I Form basis of the majority of real-world programming

I The key concept: altering a value

I altering variables by assignment
I altering variables by transformation (applying multiplication)
I altering environments (procedure call)
I altering I/O (assign values to outputs, assigning vars to inputs)

I a.k.a imperative: you tell the program which (altering) actions
to take

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 3

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

The Procedural Paradigm

I First computer languages were procedural

(assembly, Fortran, etc.)

I Emphasized in introductory courses and

I Form basis of the majority of real-world programming

I The key concept: altering a value

I altering variables by assignment
I altering variables by transformation (applying multiplication)
I altering environments (procedure call)
I altering I/O (assign values to outputs, assigning vars to inputs)

I a.k.a imperative: you tell the program which (altering) actions
to take

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 3

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

The Procedural Paradigm

I First computer languages were procedural

(assembly, Fortran, etc.)

I Emphasized in introductory courses and

I Form basis of the majority of real-world programming

I The key concept: altering a value

I altering variables by assignment
I altering variables by transformation (applying multiplication)
I altering environments (procedure call)
I altering I/O (assign values to outputs, assigning vars to inputs)

I a.k.a imperative: you tell the program which (altering) actions
to take

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 3

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Procedural Sorting

I Sort an array of elements set T procedurally:

void naive_bubble_sort(int *T, int n) {

for(int i=0; i< n; i++)

for(int j=0; j<n-1; j++)

if(T[j] < T[j+1]) {

int tmp = T[j];

T[j] = T[j+1];

T[j+1] = tmp; }

}

I We loop by repeatedly altering indicies

I We sort by pair-wise altering elements that are out of order

I Original array is altered to contain new elements

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 4

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Procedural Sorting

I Sort an array of elements set T procedurally:

void naive_bubble_sort(int *T, int n) {

for(int i=0; i< n; i++)

for(int j=0; j<n-1; j++)

if(T[j] < T[j+1]) {

int tmp = T[j];

T[j] = T[j+1];

T[j+1] = tmp; }

}

I We loop by repeatedly altering indicies

I We sort by pair-wise altering elements that are out of order

I Original array is altered to contain new elements

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 4

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Procedural Sorting

I Sort an array of elements set T procedurally:

void naive_bubble_sort(int *T, int n) {

for(int i=0; i< n; i++)

for(int j=0; j<n-1; j++)

if(T[j] < T[j+1]) {

int tmp = T[j];

T[j] = T[j+1];

T[j+1] = tmp; } }

I We loop by repeatedly altering indicies

I We sort by pair-wise altering elements that are out of order

I Original array is altered to contain new elements

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 4

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Procedural Sorting

I Sort an array of elements set T procedurally:

void naive_bubble_sort(int *T, int n) {

for(int i=0; i< n; i++)

for(int j=0; j<n-1; j++)

if(T[j] < T[j+1]) {

int tmp = T[j];

T[j] = T[j+1];

T[j+1] = tmp; } }

I We loop by repeatedly altering indicies

I We sort by pair-wise altering elements that are out of order

I Original array is altered to contain new elements

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 4

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Procedural Languages

I New computations destroy results of old computations

I Procedure1 can inadvertently modify data that violates the
assumptions of Procedure2

I Dominant computational metaphors are:

I Sequence (statements in list)
I Conditional (if then else)
I Iteration (for, do, while)

I Key to understanding a pure procedural progam:
"How does program alter the data?"

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 5

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Procedural Languages

I New computations destroy results of old computations

I Procedure1 can inadvertently modify data that violates the
assumptions of Procedure2

I Dominant computational metaphors are:

I Sequence (statements in list)
I Conditional (if then else)
I Iteration (for, do, while)

I Key to understanding a pure procedural progam:
"How does program alter the data?"

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 5

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Procedural Languages

I New computations destroy results of old computations

I Procedure1 can inadvertently modify data that violates the
assumptions of Procedure2

I Dominant computational metaphors are:

I Sequence (statements in list)
I Conditional (if then else)
I Iteration (for, do, while)

I Key to understanding a pure procedural progam:
"How does program alter the data?"

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 5

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Procedural Languages

I New computations destroy results of old computations

I Procedure1 can inadvertently modify data that violates the
assumptions of Procedure2

I Dominant computational metaphors are:

I Sequence (statements in list)
I Conditional (if then else)
I Iteration (for, do, while)

I Key to understanding a pure procedural progam:
"How does program alter the data?"

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 5

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Commonly Associated Features

Typically but not necessarily:

I User is responsible for allocating space for variables

I Space is often rigidly typed - it can only be used for one type
of data

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 6

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Commonly Associated Features

Typically but not necessarily:

I User is responsible for allocating space for variables

I Space is often rigidly typed - it can only be used for one type
of data

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 6

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Commonly Associated Features

Typically but not necessarily:

I User is responsible for allocating space for variables

I Space is often rigidly typed - it can only be used for one type
of data

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 6

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Examples of Procedural Languages

How many can you name?

I Assembly Languages: used to implement low-level drivers &
interfaces

I Mainstream languages:
I Fortran (used in sciences)
I C (general & systems programming)
I ADA (used in military and research)
I PERL, Basic & Javascript (used in scripting and interfaces)
I APL, S, M: highly specialized languages for mathematics
I LOGO: used in children's education

I Scripting languages: csh, bash, tcl, etc.

I Other languages: Pascal, COBOL, PL/I, Algol

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 7

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Examples of Procedural Languages

How many can you name?

I Assembly Languages: used to implement low-level drivers &
interfaces

I Mainstream languages:
I Fortran (used in sciences)
I C (general & systems programming)
I ADA (used in military and research)
I PERL, Basic & Javascript (used in scripting and interfaces)
I APL, S, M: highly specialized languages for mathematics
I LOGO: used in children's education

I Scripting languages: csh, bash, tcl, etc.

I Other languages: Pascal, COBOL, PL/I, Algol

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 7

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Object-Oriented Paradigm

I Extension of procedural paradigm

I Emphasis is objects and their relationships (not processes).

I Encapsulates procedures and associated data into unit

I allows guarantees of invariant properties of the unit

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 8

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Object-Oriented Paradigm

I Extension of procedural paradigm

I Emphasis is objects and their relationships (not processes).

I Encapsulates procedures and associated data into unit

I allows guarantees of invariant properties of the unit

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 8

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Object-Oriented Paradigm

I Extension of procedural paradigm

I Emphasis is objects and their relationships (not processes).

I Encapsulates procedures and associated data into unit

I allows guarantees of invariant properties of the unit

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 8

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Object-Oriented Paradigm

I Extension of procedural paradigm

I Emphasis is objects and their relationships (not processes).

I Encapsulates procedures and associated data into unit

I allows guarantees of invariant properties of the unit

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 8

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Object-Oriented Sorting

I New class: SortedSet

I Data and operations of SortedSet's are de�ned together

I Inserting and removing elements, importing sets, etc. presever
sortedness property

I To sort elements, we simply insert the elements of T into the
SortedSet

SortedSet S = new SortedSet();

S.import(T);

int max = S.first()

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 9

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Object-Oriented Sorting

I New class: SortedSet

I Data and operations of SortedSet's are de�ned together

I Inserting and removing elements, importing sets, etc. presever
sortedness property

I To sort elements, we simply insert the elements of T into the
SortedSet

SortedSet S = new SortedSet();

S.import(T);

int max = S.first()

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 9

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Object-Oriented Sorting

I New class: SortedSet

I Data and operations of SortedSet's are de�ned together

I Inserting and removing elements, importing sets, etc. presever
sortedness property

I To sort elements, we simply insert the elements of T into the
SortedSet

SortedSet S = new SortedSet();

S.import(T);

int max = S.first()

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 9

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Object-Oriented Approach I

I Underlying implementation will typically be expressed in
procedural terms

I Procedural: sorted array can become unsorted

I Change value of element in array
I Not possible on a sorted set

I Objects control how data is altered

I Encapsulation can improve maintainability and veri�ability

I Encapsulation can be broken by derived subclasses

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 10

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Object-Oriented Approach I

I Underlying implementation will typically be expressed in
procedural terms

I Procedural: sorted array can become unsorted

I Change value of element in array
I Not possible on a sorted set

I Objects control how data is altered

I Encapsulation can improve maintainability and veri�ability

I Encapsulation can be broken by derived subclasses

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 10

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Object-Oriented Approach I

I Underlying implementation will typically be expressed in
procedural terms

I Procedural: sorted array can become unsorted

I Change value of element in array

I Not possible on a sorted set

I Objects control how data is altered

I Encapsulation can improve maintainability and veri�ability

I Encapsulation can be broken by derived subclasses

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 10

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Object-Oriented Approach I

I Underlying implementation will typically be expressed in
procedural terms

I Procedural: sorted array can become unsorted

I Change value of element in array
I Not possible on a sorted set

I Objects control how data is altered

I Encapsulation can improve maintainability and veri�ability

I Encapsulation can be broken by derived subclasses

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 10

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Object-Oriented Approach I

I Underlying implementation will typically be expressed in
procedural terms

I Procedural: sorted array can become unsorted

I Change value of element in array
I Not possible on a sorted set

I Objects control how data is altered

I Encapsulation can improve maintainability and veri�ability

I Encapsulation can be broken by derived subclasses

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 10

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Object-Oriented Approach I

I Underlying implementation will typically be expressed in
procedural terms

I Procedural: sorted array can become unsorted

I Change value of element in array
I Not possible on a sorted set

I Objects control how data is altered

I Encapsulation can improve maintainability and veri�ability

I Encapsulation can be broken by derived subclasses

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 10

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Object-Oriented Approach I

I Underlying implementation will typically be expressed in
procedural terms

I Procedural: sorted array can become unsorted

I Change value of element in array
I Not possible on a sorted set

I Objects control how data is altered

I Encapsulation can improve maintainability and veri�ability

I Encapsulation can be broken by derived subclasses

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 10

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Object-Oriented Approach II

I Di�cult issues: multiple inheritance

I Typically but not necessarily object-oriented languages have:

I Garbage collection: language allocates and deallocates
variables as necessary

I Free typing: parameters and variables are not statically typed
I Polymorphism: the same procedure (method) can be applied

to various data types

I Inconsistency of polymorphic de�nitions can make code
maintenance di�cult (di�erent objects interpret a method in
very di�erent ways)

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 11

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Object-Oriented Approach II

I Di�cult issues: multiple inheritance

I Typically but not necessarily object-oriented languages have:

I Garbage collection: language allocates and deallocates
variables as necessary

I Free typing: parameters and variables are not statically typed
I Polymorphism: the same procedure (method) can be applied

to various data types

I Inconsistency of polymorphic de�nitions can make code
maintenance di�cult (di�erent objects interpret a method in
very di�erent ways)

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 11

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Object-Oriented Approach II

I Di�cult issues: multiple inheritance

I Typically but not necessarily object-oriented languages have:

I Garbage collection: language allocates and deallocates
variables as necessary

I Free typing: parameters and variables are not statically typed
I Polymorphism: the same procedure (method) can be applied

to various data types

I Inconsistency of polymorphic de�nitions can make code
maintenance di�cult (di�erent objects interpret a method in
very di�erent ways)

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 11

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Object-Oriented Approach II

I Di�cult issues: multiple inheritance

I Typically but not necessarily object-oriented languages have:

I Garbage collection: language allocates and deallocates
variables as necessary

I Free typing: parameters and variables are not statically typed

I Polymorphism: the same procedure (method) can be applied
to various data types

I Inconsistency of polymorphic de�nitions can make code
maintenance di�cult (di�erent objects interpret a method in
very di�erent ways)

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 11

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Object-Oriented Approach II

I Di�cult issues: multiple inheritance

I Typically but not necessarily object-oriented languages have:

I Garbage collection: language allocates and deallocates
variables as necessary

I Free typing: parameters and variables are not statically typed
I Polymorphism: the same procedure (method) can be applied

to various data types

I Inconsistency of polymorphic de�nitions can make code
maintenance di�cult (di�erent objects interpret a method in
very di�erent ways)

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 11

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Comments on Object-Oriented Approach II

I Di�cult issues: multiple inheritance

I Typically but not necessarily object-oriented languages have:

I Garbage collection: language allocates and deallocates
variables as necessary

I Free typing: parameters and variables are not statically typed
I Polymorphism: the same procedure (method) can be applied

to various data types

I Inconsistency of polymorphic de�nitions can make code
maintenance di�cult (di�erent objects interpret a method in
very di�erent ways)

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 11

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Examples of Object-Oriented Languages

How many do you know?

I Java: the best known and most successful

I C++ & STL: the �exibility and e�ciency (and some might say
obscurity and error-prone features) of C combined with the
encapsulation power of objects

I Smalltalk: the �rst wide-spread object-oriented language

I Ei�el: an object oriented language concerned with veri�cation

I CLOS: common lisp object system (very powerful features
including the ability to de�ne your own notions of inheritance,
accessors, etc.)

I Many languages support objects: PYTHON, Matlab

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 12

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Historical Procedural ParadigmObject-Oriented Programming

Examples of Object-Oriented Languages

How many do you know?

I Java: the best known and most successful

I C++ & STL: the �exibility and e�ciency (and some might say
obscurity and error-prone features) of C combined with the
encapsulation power of objects

I Smalltalk: the �rst wide-spread object-oriented language

I Ei�el: an object oriented language concerned with veri�cation

I CLOS: common lisp object system (very powerful features
including the ability to de�ne your own notions of inheritance,
accessors, etc.)

I Many languages support objects: PYTHON, Matlab
Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 12

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Functional Paradigm

I Computation is expressed as functions of data

I In Pure Functional Programming there are

I No explicit assignment or �variables�
I No explicit control structures such as IF, FOR or WHILE

I Functional languages are Turing equivalent to procedural
languages

I The key to understanding a functional program is to ask
�What value does it return?�.

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 13

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Functional Paradigm

I Computation is expressed as functions of data

I In Pure Functional Programming there are

I No explicit assignment or �variables�
I No explicit control structures such as IF, FOR or WHILE

I Functional languages are Turing equivalent to procedural
languages

I The key to understanding a functional program is to ask
�What value does it return?�.

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 13

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Functional Paradigm

I Computation is expressed as functions of data

I In Pure Functional Programming there are

I No explicit assignment or �variables�
I No explicit control structures such as IF, FOR or WHILE

I Functional languages are Turing equivalent to procedural
languages

I The key to understanding a functional program is to ask
�What value does it return?�.

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 13

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Functional Paradigm

I Computation is expressed as functions of data

I In Pure Functional Programming there are

I No explicit assignment or �variables�
I No explicit control structures such as IF, FOR or WHILE

I Functional languages are Turing equivalent to procedural
languages

I The key to understanding a functional program is to ask
�What value does it return?�.

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 13

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Functional Sorting

I We could express a sort of set T functionally:

S = mergeSort(T) {

(empty(T) || singleton(T)) ?

T : merge(

mergeSort(firsthalf(T))

,

mergeSort(secondhalf(T)))

I Find value of condition

I Empty and single-item lists are already sorted

I Break up problem and solve pieces

I Partition list l into 2 sublists
I Sort each sublist
I Merge sorted sublists

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 14

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Functional Sorting

I We could express a sort of set T functionally:

S = mergeSort(T) {

(empty(T) || singleton(T)) ?

T

:

merge(

mergeSort(firsthalf(T))

,

mergeSort(secondhalf(T)))

I Find value of condition

I Empty and single-item lists are already sorted

I Break up problem and solve pieces

I Partition list l into 2 sublists
I Sort each sublist
I Merge sorted sublists

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 14

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Functional Sorting

I We could express a sort of set T functionally:

S = mergeSort(T) {

(empty(T) || singleton(T)) ?

T :

merge(

mergeSort(firsthalf(T))

,

mergeSort(secondhalf(T)))

I Find value of condition

I Empty and single-item lists are already sorted

I Break up problem and solve pieces

I Partition list l into 2 sublists
I Sort each sublist
I Merge sorted sublists

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 14

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Functional Sorting

I We could express a sort of set T functionally:

S = mergeSort(T) {

(empty(T) || singleton(T)) ?

T :

merge(

mergeSort(

firsthalf(T)

)

,

mergeSort(

secondhalf(T)

))

I Find value of condition

I Empty and single-item lists are already sorted

I Break up problem and solve pieces

I Partition list l into 2 sublists
I Sort each sublist
I Merge sorted sublists

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 14

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Functional Sorting

I We could express a sort of set T functionally:

S = mergeSort(T) {

(empty(T) || singleton(T)) ?

T :

merge(

mergeSort(

firsthalf(T)

)

,

mergeSort(

secondhalf(T)

))

I Find value of condition

I Empty and single-item lists are already sorted

I Break up problem and solve pieces
I Partition list l into 2 sublists

I Sort each sublist
I Merge sorted sublists

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 14

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Functional Sorting

I We could express a sort of set T functionally:

S = mergeSort(T) {

(empty(T) || singleton(T)) ?

T :

merge(

mergeSort(firsthalf(T)),

mergeSort(secondhalf(T))

)

I Find value of condition

I Empty and single-item lists are already sorted

I Break up problem and solve pieces
I Partition list l into 2 sublists
I Sort each sublist

I Merge sorted sublists

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 14

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Functional Sorting

I We could express a sort of set T functionally:

S = mergeSort(T) {

(empty(T) || singleton(T)) ?

T : merge(

mergeSort(firsthalf(T)),

mergeSort(secondhalf(T)))

I Find value of condition

I Empty and single-item lists are already sorted

I Break up problem and solve pieces
I Partition list l into 2 sublists
I Sort each sublist
I Merge sorted sublists

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 14

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Comments on Functional Paradigm I

I New data is computed from old data instead of modifying the
old data

I Facilitated by dynamic allocation and garbage collection

I Dominant computational metaphors are

I composition
I recursion

I breaking a problem down into simpler but similar problems
I solving them and then
I putting the results back together again

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 15

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Comments on Functional Paradigm I

I New data is computed from old data instead of modifying the
old data

I Facilitated by dynamic allocation and garbage collection

I Dominant computational metaphors are

I composition
I recursion

I breaking a problem down into simpler but similar problems
I solving them and then
I putting the results back together again

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 15

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Comments on Functional Paradigm I

I New data is computed from old data instead of modifying the
old data

I Facilitated by dynamic allocation and garbage collection

I Dominant computational metaphors are

I composition
I recursion

I breaking a problem down into simpler but similar problems
I solving them and then
I putting the results back together again

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 15

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Comments on Functional Paradigm II

I Also known as "Applicative" programming

I Use recursive structure (e.g. lists and trees)

I Easy to build from parts created recursively

I Sisal uses compiler tricks and clever datastructures to avoid
without copying data repeatedly

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 16

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Comments on Functional Paradigm II

I Also known as "Applicative" programming

I Use recursive structure (e.g. lists and trees)

I Easy to build from parts created recursively

I Sisal uses compiler tricks and clever datastructures to avoid
without copying data repeatedly

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 16

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Comments on Functional Paradigm II

I Also known as "Applicative" programming

I Use recursive structure (e.g. lists and trees)

I Easy to build from parts created recursively

I Sisal uses compiler tricks and clever datastructures to avoid
without copying data repeatedly

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 16

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Examples of Functional Languages

How many do you know?

I LISP & Scheme (First of its class)

I was used in AI
I still used in prototyping and symbolic processing
I can treat programs as data and data as programs
I used as a con�guration and scripting language

I CAD/CAM applications and EMACS customizable editor

I ML (non-pure functional language), Haskell (pure)

I Miranda (�rst functional language intended for commercial
applications)

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 17

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Examples of Functional Languages

How many do you know?

I LISP & Scheme (First of its class)

I was used in AI
I still used in prototyping and symbolic processing
I can treat programs as data and data as programs
I used as a con�guration and scripting language

I CAD/CAM applications and EMACS customizable editor

I ML (non-pure functional language), Haskell (pure)

I Miranda (�rst functional language intended for commercial
applications)

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 17

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Generic Functions

I Generic functions are to functional languages as class
polymorphism is to objected-oriented languages

I Functions are dispatched based on the types of the arguments
supplied to the function

I size-of(list), size-of(vector) and
size-of(hash-table) call di�erent underlying
implementations

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 18

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Generic Functions

I Generic functions are to functional languages as class
polymorphism is to objected-oriented languages

I Functions are dispatched based on the types of the arguments
supplied to the function

I size-of(list), size-of(vector) and
size-of(hash-table) call di�erent underlying
implementations

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 18

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Generic Functions

I Generic functions are to functional languages as class
polymorphism is to objected-oriented languages

I Functions are dispatched based on the types of the arguments
supplied to the function

I size-of(list), size-of(vector) and
size-of(hash-table) call di�erent underlying
implementations

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 18

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Sort with Generic Functions

I The sort "function" can have di�erent implementations for
di�erent types of arguments

I Integers and reals can be sorted using the ">" partial order
relation

I Vectors could be sorted using their length |V| with a partial
order relation

I Nodes in a graph could be sorted by their degrees

I Again, user doesn't need to understand the details

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 19

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Languages with Generic Functions

I C++ implement generic programming through the Standard
Template Library (STL)

I Common LISP implements generic programming

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 20

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Functional ParadigmGeneric Functions

Languages with Generic Functions

I C++ implement generic programming through the Standard
Template Library (STL)

I Common LISP implements generic programming

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 20

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Declarative Paradigm

I Emphasis is on what the computation should achieve - not how

1. Enter facts and rules (a.k.a. axioms) to describe a
situation or domain.

2. Pose query as a statement to prove
3. Language searches for a proof of the query

I The language can return true, false or unproveable
I The language attempts to �nd assignments to variables in

order to make the statement true

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 21

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Declarative Paradigm

I Emphasis is on what the computation should achieve - not how

1. Enter facts and rules (a.k.a. axioms) to describe a
situation or domain.

2. Pose query as a statement to prove
3. Language searches for a proof of the query

I The language can return true, false or unproveable
I The language attempts to �nd assignments to variables in

order to make the statement true

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 21

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Declarative Paradigm

I Emphasis is on what the computation should achieve - not how

1. Enter facts and rules (a.k.a. axioms) to describe a
situation or domain.

2. Pose query as a statement to prove

3. Language searches for a proof of the query

I The language can return true, false or unproveable
I The language attempts to �nd assignments to variables in

order to make the statement true

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 21

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Declarative Paradigm

I Emphasis is on what the computation should achieve - not how

1. Enter facts and rules (a.k.a. axioms) to describe a
situation or domain.

2. Pose query as a statement to prove
3. Language searches for a proof of the query

I The language can return true, false or unproveable
I The language attempts to �nd assignments to variables in

order to make the statement true

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 21

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Declarative Paradigm

I Emphasis is on what the computation should achieve - not how

1. Enter facts and rules (a.k.a. axioms) to describe a
situation or domain.

2. Pose query as a statement to prove
3. Language searches for a proof of the query

I The language can return true, false or unproveable

I The language attempts to �nd assignments to variables in
order to make the statement true

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 21

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Declarative Paradigm

I Emphasis is on what the computation should achieve - not how

1. Enter facts and rules (a.k.a. axioms) to describe a
situation or domain.

2. Pose query as a statement to prove
3. Language searches for a proof of the query

I The language can return true, false or unproveable
I The language attempts to �nd assignments to variables in

order to make the statement true

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 21

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Example Facts, Rules and Queries

I Facts:

MATH322 is Boring.

Clyde is an elephant.

I Rules:

X is boring ⇒ X makes me sleepy

X is-an elephant ⇒ X is heavy

I Queries:

MATH322 is boring →true

CMPUT325 is boring → unproveable given what you know

There exists an X which is boring

→is true for X = MATH322

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 22

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Example Facts, Rules and Queries

I Facts:

MATH322 is Boring.

Clyde is an elephant.

I Rules:

X is boring ⇒ X makes me sleepy

X is-an elephant ⇒ X is heavy

I Queries:

MATH322 is boring →true

CMPUT325 is boring → unproveable given what you know

There exists an X which is boring

→is true for X = MATH322

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 22

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Example Facts, Rules and Queries

I Facts:

MATH322 is Boring.

Clyde is an elephant.

I Rules:

X is boring ⇒ X makes me sleepy

X is-an elephant ⇒ X is heavy

I Queries:

MATH322 is boring →true

CMPUT325 is boring → unproveable given what you know

There exists an X which is boring

→is true for X = MATH322

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 22

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Declarative Sort

I Expressing that S is a sort of set T declaratively:

T is-a-sort-of S

⇔ T contains each element of S

and for each element i of T, T(i) > T(i+1)

I Given a set of elements T , formulate a statement to prove

∃S .S is− a− sort− of T

I Let language search for an S that makes statement true

I The set of possible S 's that make the above query true are
exactly the legal ways to sort T .

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 23

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Declarative Sort

I Expressing that S is a sort of set T declaratively:

T is-a-sort-of S

⇔ T contains each element of S

and for each element i of T, T(i) > T(i+1)

I Given a set of elements T , formulate a statement to prove

∃S .S is− a− sort− of T

I Let language search for an S that makes statement true

I The set of possible S 's that make the above query true are
exactly the legal ways to sort T .

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 23

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Declarative Sort

I Expressing that S is a sort of set T declaratively:

T is-a-sort-of S

⇔ T contains each element of S

and for each element i of T, T(i) > T(i+1)

I Given a set of elements T , formulate a statement to prove

∃S .S is− a− sort− of T

I Let language search for an S that makes statement true

I The set of possible S 's that make the above query true are
exactly the legal ways to sort T .

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 23

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Declarative Sort

I Expressing that S is a sort of set T declaratively:

T is-a-sort-of S

⇔ T contains each element of S

and for each element i of T, T(i) > T(i+1)

I Given a set of elements T , formulate a statement to prove

∃S .S is− a− sort− of T

I Let language search for an S that makes statement true

I The set of possible S 's that make the above query true are
exactly the legal ways to sort T .

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 23

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Comments on Declarative Paradigm I

I Dominant computational metaphors are

I axiomatization (writing down rules and facts)
I inference

I Sometimes: Easier to say what we want than how to do it

I But, the computation may be ine�cient without constraints on
implementation

I Generic knowledge can sometimes be reused in powerful ways

I The concept of an ordered set could be used in a sort program,
but also reused in reasoning about time intervals or geometric
relationships or neighbours

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 24

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Comments on Declarative Paradigm I

I Dominant computational metaphors are

I axiomatization (writing down rules and facts)
I inference

I Sometimes: Easier to say what we want than how to do it

I But, the computation may be ine�cient without constraints on
implementation

I Generic knowledge can sometimes be reused in powerful ways

I The concept of an ordered set could be used in a sort program,
but also reused in reasoning about time intervals or geometric
relationships or neighbours

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 24

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Comments on Declarative Paradigm I

I Dominant computational metaphors are

I axiomatization (writing down rules and facts)
I inference

I Sometimes: Easier to say what we want than how to do it

I But, the computation may be ine�cient without constraints on
implementation

I Generic knowledge can sometimes be reused in powerful ways

I The concept of an ordered set could be used in a sort program,
but also reused in reasoning about time intervals or geometric
relationships or neighbours

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 24

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Comments on Declarative Paradigm II

I Correct speci�cation and sound solver implies correct
implementation

I The speci�cation of modules can be composed to create bug
free systems at a higher level

I Declarative knowledge is relational - not functional or causal
I The statement S is− a− sort− of T relates S and T
I We can �nd a sort S given a set T
I But, we can also �nd all sets T that can be sorted to produce

S

I Unlike functions which always calculate a result from an
argument, we say that declarative knowledge can be used in
forward or backward directions

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 25

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Comments on Declarative Paradigm II

I Correct speci�cation and sound solver implies correct
implementation

I The speci�cation of modules can be composed to create bug
free systems at a higher level

I Declarative knowledge is relational - not functional or causal
I The statement S is− a− sort− of T relates S and T
I We can �nd a sort S given a set T
I But, we can also �nd all sets T that can be sorted to produce

S

I Unlike functions which always calculate a result from an
argument, we say that declarative knowledge can be used in
forward or backward directions

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 25

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Comments on Declarative Paradigm II

I Correct speci�cation and sound solver implies correct
implementation

I The speci�cation of modules can be composed to create bug
free systems at a higher level

I Declarative knowledge is relational - not functional or causal
I The statement S is− a− sort− of T relates S and T
I We can �nd a sort S given a set T
I But, we can also �nd all sets T that can be sorted to produce

S

I Unlike functions which always calculate a result from an
argument, we say that declarative knowledge can be used in
forward or backward directions

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 25

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Comments on Declarative Paradigm II

I Correct speci�cation and sound solver implies correct
implementation

I The speci�cation of modules can be composed to create bug
free systems at a higher level

I Declarative knowledge is relational - not functional or causal
I The statement S is− a− sort− of T relates S and T
I We can �nd a sort S given a set T
I But, we can also �nd all sets T that can be sorted to produce

S

I Unlike functions which always calculate a result from an
argument, we say that declarative knowledge can be used in
forward or backward directions

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 25

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Examples of Declarative Languages

I PROLOG (widely used in AI especially in Europe)

I Did you know that there are object-oriented extensions to
Prolog?

I Implements a limited form of First Order Logic that can be
proved e�ciently through "resolution"

I SQL (the preeminent language for describing database queries)

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 26

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Constraint-Based Paradigm

I A restricted form of declarative programming

I One de�nes a set of variables (Item1, Item2)

I One de�nes domains for variables Item1∈{ a,d,e,f}

I One de�nes contraints on variables (Item1 < Item 2)

I Language attempts to �nd a satisfying assignment of variables

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 27

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Constraint-Based Paradigm

I A restricted form of declarative programming

I One de�nes a set of variables (Item1, Item2)

I One de�nes domains for variables Item1∈{ a,d,e,f}

I One de�nes contraints on variables (Item1 < Item 2)

I Language attempts to �nd a satisfying assignment of variables

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 27

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Constraint-Based Paradigm

I A restricted form of declarative programming

I One de�nes a set of variables (Item1, Item2)

I One de�nes domains for variables Item1∈{ a,d,e,f}

I One de�nes contraints on variables (Item1 < Item 2)

I Language attempts to �nd a satisfying assignment of variables

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 27

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Constraint-Based Paradigm

I A restricted form of declarative programming

I One de�nes a set of variables (Item1, Item2)

I One de�nes domains for variables Item1∈{ a,d,e,f}

I One de�nes contraints on variables (Item1 < Item 2)

I Language attempts to �nd a satisfying assignment of variables

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 27

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Constraint-Based Paradigm

I A restricted form of declarative programming

I One de�nes a set of variables (Item1, Item2)

I One de�nes domains for variables Item1∈{ a,d,e,f}

I One de�nes contraints on variables (Item1 < Item 2)

I Language attempts to �nd a satisfying assignment of variables

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 27

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Constraint-Based Sorting

I We start with a list T = (i1, . . . , in) and desire a sorted list
S = (s1, . . . , sn)

I Each element of S is a variable which can contain any element
of the original list si ∈ T .

I Set up two constraints on each variable si
I No element may contain the same element as another slot

si 6= sj
I Each element must have a greater valued entry than its

sucessor val(si) ≥ val(si+1)

I Any satisying assignment of values to variables corresponds to
a sort of T

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 28

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Constraint-Based Sorting

I We start with a list T = (i1, . . . , in) and desire a sorted list
S = (s1, . . . , sn)

I Each element of S is a variable which can contain any element
of the original list si ∈ T .

I Set up two constraints on each variable si
I No element may contain the same element as another slot

si 6= sj
I Each element must have a greater valued entry than its

sucessor val(si) ≥ val(si+1)

I Any satisying assignment of values to variables corresponds to
a sort of T

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 28

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Constraint-Based Sorting

I We start with a list T = (i1, . . . , in) and desire a sorted list
S = (s1, . . . , sn)

I Each element of S is a variable which can contain any element
of the original list si ∈ T .

I Set up two constraints on each variable si
I No element may contain the same element as another slot

si 6= sj
I Each element must have a greater valued entry than its

sucessor val(si) ≥ val(si+1)

I Any satisying assignment of values to variables corresponds to
a sort of T

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 28

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Constraint-Based Sorting

I We start with a list T = (i1, . . . , in) and desire a sorted list
S = (s1, . . . , sn)

I Each element of S is a variable which can contain any element
of the original list si ∈ T .

I Set up two constraints on each variable si
I No element may contain the same element as another slot

si 6= sj
I Each element must have a greater valued entry than its

sucessor val(si) ≥ val(si+1)

I Any satisying assignment of values to variables corresponds to
a sort of T

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 28

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Comments on Constraint Paradigm

I There are often many constraints required to de�ne a problem

I Clever techniques can sometimes be used to avoid computing
all constraints

I Can do optimization with constraints

I Common techniques: Linear and Quadratic programs

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 29

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Comments on Constraint Paradigm

I There are often many constraints required to de�ne a problem

I Clever techniques can sometimes be used to avoid computing
all constraints

I Can do optimization with constraints

I Common techniques: Linear and Quadratic programs

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 29

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Comments on Constraint Paradigm

I There are often many constraints required to de�ne a problem

I Clever techniques can sometimes be used to avoid computing
all constraints

I Can do optimization with constraints

I Common techniques: Linear and Quadratic programs

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 29

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Probabilistic Inference Paradigm

I An extension of declarative programming

I Logics represent uncertainty by disjunction: a ∨ b, existential
quanti�cation: ∃x .tall(x) and negation: ¬X = fred

I Probabilistic models represent uncertainty with numbers:
Pr(a) = 1

4 , Pr(¬a) = 3
4

I Can specify conditional probabilities
I Pr(sparrow(aBird)) = 0.80 - prior probability ≡ fact
I Pr(�ies(B)|penguin(B)) = 0 - conditional probability ≡rule
I Pr(�ies(B)|sparrow(B)) = 0.9

I Language assigns probabilities to statements:
Pr(�ies(aBird)) → 0.72

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 30

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Probabilistic Inference Paradigm

I An extension of declarative programming

I Logics represent uncertainty by disjunction: a ∨ b, existential
quanti�cation: ∃x .tall(x) and negation: ¬X = fred

I Probabilistic models represent uncertainty with numbers:
Pr(a) = 1

4 , Pr(¬a) = 3
4

I Can specify conditional probabilities
I Pr(sparrow(aBird)) = 0.80 - prior probability ≡ fact
I Pr(�ies(B)|penguin(B)) = 0 - conditional probability ≡rule
I Pr(�ies(B)|sparrow(B)) = 0.9

I Language assigns probabilities to statements:
Pr(�ies(aBird)) → 0.72

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 30

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Probabilistic Inference Paradigm

I An extension of declarative programming

I Logics represent uncertainty by disjunction: a ∨ b, existential
quanti�cation: ∃x .tall(x) and negation: ¬X = fred

I Probabilistic models represent uncertainty with numbers:
Pr(a) = 1

4 , Pr(¬a) = 3
4

I Can specify conditional probabilities
I Pr(sparrow(aBird)) = 0.80 - prior probability ≡ fact
I Pr(�ies(B)|penguin(B)) = 0 - conditional probability ≡rule
I Pr(�ies(B)|sparrow(B)) = 0.9

I Language assigns probabilities to statements:
Pr(�ies(aBird)) → 0.72

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 30

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Probabilistic Inference Paradigm

I An extension of declarative programming

I Logics represent uncertainty by disjunction: a ∨ b, existential
quanti�cation: ∃x .tall(x) and negation: ¬X = fred

I Probabilistic models represent uncertainty with numbers:
Pr(a) = 1

4 , Pr(¬a) = 3
4

I Can specify conditional probabilities
I Pr(sparrow(aBird)) = 0.80 - prior probability ≡ fact
I Pr(�ies(B)|penguin(B)) = 0 - conditional probability ≡rule
I Pr(�ies(B)|sparrow(B)) = 0.9

I Language assigns probabilities to statements:
Pr(�ies(aBird)) → 0.72

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 30

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Probabilistic Inference Paradigm

I An extension of declarative programming

I Logics represent uncertainty by disjunction: a ∨ b, existential
quanti�cation: ∃x .tall(x) and negation: ¬X = fred

I Probabilistic models represent uncertainty with numbers:
Pr(a) = 1

4 , Pr(¬a) = 3
4

I Can specify conditional probabilities
I Pr(sparrow(aBird)) = 0.80 - prior probability ≡ fact
I Pr(�ies(B)|penguin(B)) = 0 - conditional probability ≡rule
I Pr(�ies(B)|sparrow(B)) = 0.9

I Language assigns probabilities to statements:
Pr(�ies(aBird)) → 0.72

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 30

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Comments of Probabilistic Paradigm

I Dominant Constructs

I De�nition of prior and conditional probabilities
I Probabilistic inference

I Result is a distribution over possible answers

I Pr(�ies(aBird)) → 0.72 and Pr(¬�ies(aBird)) → 0.28

I Can be computationally expensive

I Probabilities + utilities →expected values

I Choose actions with highest expected values

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 31

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Comments of Probabilistic Paradigm

I Dominant Constructs

I De�nition of prior and conditional probabilities
I Probabilistic inference

I Result is a distribution over possible answers

I Pr(�ies(aBird)) → 0.72 and Pr(¬�ies(aBird)) → 0.28

I Can be computationally expensive

I Probabilities + utilities →expected values

I Choose actions with highest expected values

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 31

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Comments of Probabilistic Paradigm

I Dominant Constructs

I De�nition of prior and conditional probabilities
I Probabilistic inference

I Result is a distribution over possible answers

I Pr(�ies(aBird)) → 0.72 and Pr(¬�ies(aBird)) → 0.28

I Can be computationally expensive

I Probabilities + utilities →expected values

I Choose actions with highest expected values

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 31

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Comments of Probabilistic Paradigm

I Dominant Constructs

I De�nition of prior and conditional probabilities
I Probabilistic inference

I Result is a distribution over possible answers

I Pr(�ies(aBird)) → 0.72 and Pr(¬�ies(aBird)) → 0.28

I Can be computationally expensive

I Probabilities + utilities →expected values

I Choose actions with highest expected values

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 31

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Declarative Paradigm (Logic)Constraint-Based ParadigmProbabilistic Paradigm

Comments of Probabilistic Paradigm

I Dominant Constructs

I De�nition of prior and conditional probabilities
I Probabilistic inference

I Result is a distribution over possible answers

I Pr(�ies(aBird)) → 0.72 and Pr(¬�ies(aBird)) → 0.28

I Can be computationally expensive

I Probabilities + utilities →expected values

I Choose actions with highest expected values

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 31

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Concurrent Paradigm

I Many di�erent processes
All running �at same time�
Each executing a di�erent instruction

I Issues:

I Allocation of resources
I Partitioning of computations
I Communication overhead
I Synchronization
I Deadlock, Starvation, . . .

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 32

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Concurrent Paradigm

I Many di�erent processes
All running �at same time�
Each executing a di�erent instruction

I Issues:

I Allocation of resources
I Partitioning of computations
I Communication overhead
I Synchronization
I Deadlock, Starvation, . . .

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 32

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Examples of Concurrency

I Multiplying two n × n matrices R = AB

I Need to compute n3 independent values:
Rij =

∑
k A(i , k)× B(k , j)

I Parallelize this to speed up computation

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 33

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Concurrent Sorting

I The best algorithm for concurrent sorting depends on the
architecture of the parallel platform

I For grid processors, we might use a "snake sort"

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 34

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Paradigm Summary

I Procedural

I Tell computer to alter data
I a.k.a. "Imperative"

I Object-oriented

I Extension of procedural
I Encapsulation provides control over alteration

I Functional

I Result is a function of data
I Data never altered

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 35

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Paradigm Summary

I Procedural

I Tell computer to alter data
I a.k.a. "Imperative"

I Object-oriented

I Extension of procedural
I Encapsulation provides control over alteration

I Functional

I Result is a function of data
I Data never altered

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 35

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Paradigm Summary

I Procedural

I Tell computer to alter data
I a.k.a. "Imperative"

I Object-oriented

I Extension of procedural
I Encapsulation provides control over alteration

I Functional

I Result is a function of data
I Data never altered

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 35

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Paradigm Summary

I Procedural

I Tell computer to alter data
I a.k.a. "Imperative"

I Object-oriented

I Extension of procedural
I Encapsulation provides control over alteration

I Functional

I Result is a function of data
I Data never altered

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 35

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Paradigm Summary

I Procedural

I Tell computer to alter data
I a.k.a. "Imperative"

I Object-oriented

I Extension of procedural
I Encapsulation provides control over alteration

I Functional

I Result is a function of data
I Data never altered

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 35

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Paradigm Summary

I Procedural

I Tell computer to alter data
I a.k.a. "Imperative"

I Object-oriented

I Extension of procedural
I Encapsulation provides control over alteration

I Functional

I Result is a function of data
I Data never altered

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 35

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Paradigm Summary

I Declarative

I De�ne properties of solution
I Theorem prover �nds satisfying answers

I Contraints

I Simpli�cation of logical declarative paradigm

I Probabilistic

I Declarative paradigm with uncertainty

I Concurrent

I Simultaneous execution instructions
I Requires locking, sychronization, etc.

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 36

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Paradigm Summary

I Declarative

I De�ne properties of solution
I Theorem prover �nds satisfying answers

I Contraints

I Simpli�cation of logical declarative paradigm

I Probabilistic

I Declarative paradigm with uncertainty

I Concurrent

I Simultaneous execution instructions
I Requires locking, sychronization, etc.

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 36

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Paradigm Summary

I Declarative

I De�ne properties of solution
I Theorem prover �nds satisfying answers

I Contraints

I Simpli�cation of logical declarative paradigm

I Probabilistic

I Declarative paradigm with uncertainty

I Concurrent

I Simultaneous execution instructions
I Requires locking, sychronization, etc.

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 36

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Paradigm Summary

I Declarative

I De�ne properties of solution
I Theorem prover �nds satisfying answers

I Contraints

I Simpli�cation of logical declarative paradigm

I Probabilistic

I Declarative paradigm with uncertainty

I Concurrent

I Simultaneous execution instructions
I Requires locking, sychronization, etc.

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 36

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Paradigm Summary

I Declarative

I De�ne properties of solution
I Theorem prover �nds satisfying answers

I Contraints

I Simpli�cation of logical declarative paradigm

I Probabilistic

I Declarative paradigm with uncertainty

I Concurrent

I Simultaneous execution instructions
I Requires locking, sychronization, etc.

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 36

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Paradigm Summary

I Declarative

I De�ne properties of solution
I Theorem prover �nds satisfying answers

I Contraints

I Simpli�cation of logical declarative paradigm

I Probabilistic

I Declarative paradigm with uncertainty

I Concurrent

I Simultaneous execution instructions
I Requires locking, sychronization, etc.

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 36

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Paradigm Summary

I Declarative

I De�ne properties of solution
I Theorem prover �nds satisfying answers

I Contraints

I Simpli�cation of logical declarative paradigm

I Probabilistic

I Declarative paradigm with uncertainty

I Concurrent

I Simultaneous execution instructions
I Requires locking, sychronization, etc.

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 36

Programming ParadigmsThe Procedural ParadigmFunctional ParadigmDeclarative ParadigmConcurrent ParadigmSummary

Paradigm Summary

I Declarative

I De�ne properties of solution
I Theorem prover �nds satisfying answers

I Contraints

I Simpli�cation of logical declarative paradigm

I Probabilistic

I Declarative paradigm with uncertainty

I Concurrent

I Simultaneous execution instructions
I Requires locking, sychronization, etc.

Dr. B. Price & Dr. R. Greiner CMPUT 325 - Language Paradigms 36

	Programming Paradigms
	The Procedural Paradigm
	Historical Procedural Paradigm
	Object-Oriented Programming

	Functional Paradigm
	Functional Paradigm
	Generic Functions

	Declarative Paradigm
	Declarative Paradigm (Logic)
	Constraint-Based Paradigm
	Probabilistic Paradigm

	Concurrent Paradigm
	Summary

