CMPUT 325: Abstract Programming

Dr. B. Price and Dr. G. Greiner

19th October 2004

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming
Abstract Programming

ACalculus has precise semantics, simple syntax, simple
evaluation

lts also extremely tedious
Standard idioms for many high-level control constructs

Use abstract idioms in place of A-calculus

» Easy to read
» Guaranteed semantics and simple evaluation

Simple parser converts abstractions to idioms

Acalculus solves problem

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

Abstract Programming: Datatypes

» Numbers: use Church’s 2 arg function representation
> Integers: n= (\ s z | sk 2)
where s¥ is a string of k s's
» Boolean values: T =(Ac d| ¢) and F=(Ac d | d)
» List

» Cons cell (M. N)=(Az|zmn)
» List (abc0): (Az]|]za(Az|zb(Az]|zc0)))

v

String: treat chars as an integer in base 256

» Each char replaced by ASCII value
» HELLO = H*256*+E*2563+L*2562+L*2561+0*256°

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

Abstract Programming: Functions

» Assume primitive operators on datatypes defined

» Mathematical ops: add, sub, mul, div, zerop
» List ops: cons, car, cdr
» Boolean operators: and, or, not

» Allow standard mathematical notations

» Infix notation:

1+2 =(+ 1 2)
=Axy |l szl xs(ysz)))12

» Functional notation:
f(x) = Wy | ...)x

square(2) = (A\y | (x y y)) 2
= (A\y | (multiplication-idiom)) 2

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

Conditionals

IF x<0 THEN -x ELSE x

A-calculus translation?

(Axyzlxyz) x<0 -x x

NOTE: must have both THEN and ELSE clauses. Why?

A-calculus predicates resolve to T or F

» T chooses first argument
» F chooses second argument

Must have an argument for each case or program will behave
strangely

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

Special Forms: LET by Examples

In abstract programming we define “ LET AND IN" special
form

LET x=5 IN x+1 — 6
LET x=2 IN LET y=2 IN x+y — 4
LET x=2 AND y=2 IN x+y — 4
LET f(x)=x*x AND y=3 IN

LET x=f(y) IN

X

— 9

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

Special Forms: LET Semantics |

LET x = (E) IN (BODY)

» A\ calculus translation? (Ax | (BODY)) (E)
LET x = (E) IN

LET y = (F) IN (BODY)
» A\ calculus translation?
(Ax| (Ayl (BODY)) (E)) (F)

LET x = (E) AND y = (F) IN (BODY)

» A calculus translation? Parallel

substitution

(Axy| (BODY)) (E)(F)

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

Special Forms: LET Semantics |l

LET x = (E) IN LET x = (F) IN (BODY)
» A\ calculus translation?
(Ax| (x| (BODY)) (E)) (F)
LET x =(E)
LET x = (F) AND y = x IN (BODY)
» A\ calculus translation?
(Ax| (Axyl| (BODY)) (F) x) (E)
LET f(x) = (E) IN (BODY)
» A\ calculus translation?
» Closer: LET f = (\x| (E)) IN (BODY)

(Af| (BODY)) (Ax I(E))

» A-calculus gives precise meaning to each case of LET

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

Special Forms: LET and Self-reference

LET f(n) =
IF zerop(n) THEN 1 ELSE n*f(n-1)
IN (BODY)

» A calculus translation? Approximately:
(Af | (BODY))
((A\xyzlxyz) zerop(n) 1 n*f(n-1))

(Af | (BODY))
((Axyzlxyz) zerop(n) 1 nx f (n-1))
T
» What does the recursive call to f point to? It is a free variable!

» |s this correct? Yes.
Otherwise LET x=2 IN LET x=2%x IN <BODY> would fail:
(Ax] (Ax[(BODY)) 2*x) 2

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

Special Forms: LETREC

LETREC f(n) =
IF zerop(n)
THEN 1
ELSE n*f(n-1)

IN (BODY)

» Sometimes we want vars in definition to refer to their labels
» Different semantics than LET — needs different name

» M-calculus translation?Use combinator operator Y

(Af|(BODY)) (Y (Af| (Anl| zerop(n) 1 n*f(n-1))))
(/\\f/|<BODY>) (v (Afl1 (Anl zerop(n) 1 nx £ (n-1))))
T T
» Are 2 f's the same? No. f in function def is not free!

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

10

Special Forms: Nested LETREC

LETREC
f(n) = IF zerop(n) THEN 1 ELSE n*f(n-1) IN
LETREC
g(n) = IF zerop(n) THEN O ELSE f(n)+g(n-1) IN
(BODY)

What does this do? Sums first n factorials. Translation?

(A
(Mgl
(BODY)
) (Y (Agl (Anl| zerop(n) 0 f(n)+g(n-1))))
) (Y (Af] (Anl| zerop(n) 1 nxf(n-1))))

What does each f in this definition refer to?

Functions can refer to themselves and to earlier definitions

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

Special Forms: Parallel LETREC

LETREC
even(n) IF zerop n THEN T ELSE odd(n-1)

AND odd(n) IF zerop n THEN F ELSE even(n-1) IN
(BODY)

In mutually recursive functions, earlier functions also refer to
later functions
Translation? Need pair of combinators that generate either

function

Y1=(Afg|RRS) Y2=(Afg|SRS)
Where R=(Ars|f(rrs)(srs)), S=(Arslg(rrs) (srs))

Combinator Properties

F (YL FG) (Y2 F G)
G (Y1 FG) (Y2 F G)

YIFG
Y2 F G

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

Special Forms: Parallel LETREC

» Given the following definitions for F and G

F=even(n) IF zerop n THEN T ELSE odd(n-1)
G=odd(n) IF zerop n THEN F ELSE even(n-1)

» LETREC Expansion using pair of combinators

(Mgl (BODY))

(Y1 (g | F) (\fglG))
(Y2 (Mg | F) (\fgl®))

» Why can’t | use 2 independent combinators?

» Each copy of the function F has to also be able to reference G

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming 13

Abstract Programming: BNF

(identifier):= (alpha-char){(alpha-char)|(number)}
(constant):=(number) | (boolean) | (char-string)
(expression):=(constant)|(identifier)

(A(identifier) "|" (expression))

((expression)™)

(identifier)((expression){, (expression)}*)

let (definition) in (expression)

letrec (definition) in (expression)

if (expression) then (expression) else (expression)
(arithmetic expression)

(definition):=(header)=(expression)

| (definition) {and (definition)l}*

(header):=(identifier)

| (identifier) ((identifier) {, (identifier)}*)

(abstract-program):=(expression)

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming 14

Convenience: WHERE and WHEREREC

Sometimes convenient to put definitions after usage

(BODY) WHERE (DEFINITION)

Example
LET a(r) = pi * r IN
a(10)
WHERE pi = 3.1415

Do we need brackets? No.

» LET's (BODY) is a single term
» Abstract Programming is Left-associative

WHEREREC is analogous to LETREC

WHERE and WHEREREC do not add expressive power, just
convenience

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

Performance Considerations

LET and LETREC mean different things
LET x=x+2 IN (BODY) % LETREC x=x+2 IN (BODY)
Meaning overlaps when there is no self-reference
LET x=2 IN (BODY) = LETREC x=2 IN (BODY)
LET y=2 IN = LETREC y=2 IN
LET x=y IN (BODY) LETREC x=y IN (BODY)

Depending on compiler, may be more efficient to use LET
when possible

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

15

16

Higher-order Functions

Abstract language looks like traditional languages
Underlying semantics does not distinguish data and functions

Higher-order function has at least one of these properties

» Accepts a function as an argument
» Returns a function as its value

Can treat functions as arguments or return values

LET map(f,L) =
IF null(L)
THEN nil
ELSE cons(f(car(L)) , map(cdr(L))) 1IN

LET square(x)=x*x IN

map(square, [1 2 3 4])

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

Other Traditional Higher-order Functions

Filter: apply a predicate to each item and return those items
that satisfy

(filter ’even [1 2 3 4])—[2 4]

Reduce: combine elements of list with given function left
associatively
(common Lisp: reduce)

(reduce #’- (1 2 3 4))
=(((1 - 2) - 3) - 4)
=((-1 - 3) - 4)

=(-4 -4)

=-8

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

17

18

Global Definitions

In principle, there aren’t any: no DEFUN or SETF
There are only nested LET statements

In principle, integers and primitives defined by LET

LET T = (Axylx)
AND F = (Axyly)
AND + = .

IN (BODY)

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

Abstract Programming

Can be used to implement any functional language
Is equivalent in power to a Turing machine

Abstract programming language approximately equivalent to
Pure Lisp

» Parallel LET ~ Lisp LET
» Nested LET's ~Lisp LET*
» Parallel LETREC's ~Lisp LABELS

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

19

20

Partial application / Currying

In principle, \'s can be used anywhere in abstract programming
map((Ax| 2+x), [1 2 3]) — [3 4 5]

A more elegant method:

Let pa be the partial application operator
LET pa = (Af x| (Ayl £ x y)) IN (BODY)

Allows us to write:

LET inc = pa ’+ 1 IN ;3 1i.e. inc = Ayl (+ 1 y))
inc(1) —2

Or more impressively:
map(pa + 2, [1 2 3]) —I[3 4 5]
Partial application = currying

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming 21

Combinators as a Calculus

The central operation in A-calculus is the S-substitution

It requires

scanning expressions for variables

analyzing free vs. bound variables

renaming when conflicts are discovered

rebuilding substituted copies of expressions repeatedly

vV v v Yy

A-parameters just “steer” copies of expressions to places in
code

Define "combinators" which move, copy and delete arguments

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming 22

Combinators as Special Functions

» Suppose we had a library of useful combinators: X,Y,Z

> Intuitive example:

» Program =string of combinators:

ZXYZYY. ..

» Suppose 2 argument combinator Z reverses its arguments

ZXYZYY. ..

— YXZYY...

» Suppose 1 argument combinator Y duplicates its arguments

YXZYY. ..

—XXZYY..

.

» Suppose 1 argument combinator X deletes its second argument
XXZYY... —=XZYY...

» Combinators can be defined using A-calculus: X=(Axy|x)

» Given combinators, no \'s, formal parameters or substitution

required

Dr. B. Price and Dr. G. Greiner

CMPUT 325: Abstract Programming

Combinators as a Calculus

» Left-associative like A-caculus: ABCD...=(((AB)C)D)

» Proved that two combinators can generate all others

Symbol Name A ACalculus Def Semantics
s distribute | (Axyz|xz(yz)) | S AB C — AC (BC()
k constant (Axy|x) KAB—A

» Identity functionlI=S KK A=KA (KA)=A

Dr. B. Price and Dr. G. Greiner

CMPUT 325: Abstract Programming

23

24

Common Combinators

» Common combinators can be defined using S and K

Symbol Name | A ACalculus Def Semantics
B compose (Axyz|x(yz)) BABC— A(BQC)
C reversal (Axyz|xzy) CABC—-ACB
W duplicate (Axy|xyy) WMN —MNN
Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

Common Combinators

» There is a mechanical mapping between A-calculus and the
minimal SKI combinator language consisting of only S,K and |
combinators

» cons =B C (C I)
» car =C | K
» cdr=C1 (K1)

v

integers: zero= Kl, Zj= (s (s ...(s z)...)) with i copies of s

» successor(n) = (SB Z;)sz

v

Factorial: f(n)=(if (=n0) 1 (xn (1
=(S(C(B if (C=0)) 1) (Sx (B f(C-1))))

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming

Combinator Notes

Common subsequences can be compiled into
super-combinators

VLSI chips have been fabricated to directly implement
combinator logic

Haskell and Miranda define many high-level combinators
Another example

Divide every number in L by 2
MAP (/ SWAP 2) L

SWAP reverses arguments to / so we get

» each number divided by 2
» instead of 2 divided by each number

Dr. B. Price and Dr. G. Greiner CMPUT 325: Abstract Programming 27

