
CMPUT101 Introduction to Computing

Chapter 5 The Von Neumann Architecture 1

Computer Architecture
(part 2)

Topics: Machine Organization
Machine Cycle

Program Execution
Machine Language
Types of Memory & Access

2

CMPUT101 Introduction to Computing

Chapter 5 The Von Neumann Architecture 2

3

Arithmetic Logic Unit (ALU)

The ALU (Arithmetic/Logic Unit)

 Circuits for performing….
 mathematical operations (+, -, x, /, …)

 logic operations (=, <, >, and, or, not, ...)

Registers

Buses connecting CPU registers and ALU registers

4

Structure of the ALU
• Registers:

– Very fast local memory cells, that
store operands of operations and
intermediate results.

– CCR (condition code register), a
special purpose register that stores
the result of <, = , > operations

• ALU circuitry:
– Contains an array of circuits to do

mathematical/logic operations.

ALU circuitry

GTEQ LT

R0
R1
R2

Rn

CMPUT101 Introduction to Computing

Chapter 5 The Von Neumann Architecture 3

5

A concrete example traced
through the architecture’s datapath

Question: What happens to execute this pseudocode ?

Set bankbalance to bankbalance + deposit

Needed:

a particular machine instruction set

6

Instruction Set for Textbook’s
Simplified Von Neumann Machine

R - CON(X) --> RSUBTRACT X0101

Stop program executionHALT1111
Output, in decimal notation, content of mem. loc. XOUT X1110
Input an integer value and store in XIN X1101

xx = LT / EQ / NEQJUMPxx X...

Get next instruction from memory loc. X if GT=1JUMPGT X1001

Get next instruction from memory location XJUMP X1000

If CON(X) > R then GT = 1 else 0
If CON(X) = R then EQ = 1 else 0
If CON(X) < R then LT = 1 else 0

COMPARE X
0111

CON(X) - 1 --> CON(X)DECREMENT X0101

CON(X) + 1 --> CON(X)INCREMENT X0100
R + CON(X) --> RADD X0011
0 --> CON(X)CLEAR X0010
R --> CON(X)STORE X0001

CON(X) --> RLOAD X0000

MeaningOperationOpcode

CMPUT101 Introduction to Computing

Chapter 5 The Von Neumann Architecture 4

7

Stepping through the Machine Cycle: Adding
two numbers

(To simplify, we use decimal notation rather than binary for addresses
and contents)

Set bankbalance to bankbalance plus deposit

variable names memory cell address cell contents

 bankbalance 100 500

 deposit 200 250

8

Adding 2 numbers...

Machine level instructions (using textbook’s machine lang.)
load content of memory location 100 to register

R0
add contents of memory location 204 to register

R0
store the contents of R0 in memory location 100

Memory Cell Cell contents
34 Load 100
36 Add 204
38 Store 100

CMPUT101 Introduction to Computing

Chapter 5 The Von Neumann Architecture 5

9

Address Contents
 34 Load 100

36 Add 204
38 Store 100

100 500
204 250

Program Counter

34

Decode the opcode found in Instruction Register
 (“load”, source address)

Execute
address 100 MAR
set fetch/store controller to fetch
contents of 100 MDR
MDR contents R0

Fetch
PC’s contents MAR
Instruction at 34 MDR
MDR Instruction Reg

advance PC 36

10

Address Contents
 34 Load 100

36 Add 204
38 Store 100

100 500
204 250

Program Counter

36

Decode the opcode found in Instruction Register
 (“add”, location in memory to register in ALU)

Execute
contents of register and mem location

 accessed by ALU circuits
ALU circuits perform add

Fetch
PC’s contents MAR
Instruction at 36 MDR
MDR Instruction Reg

advance PC 38

CMPUT101 Introduction to Computing

Chapter 5 The Von Neumann Architecture 6

11

Address Contents
 34 Load 100

36 Add 204
38 Store 100
40 ...

100 500 750
204 250

Program Counter

38

Decode the opcode found in Instruction Register
 (“store”, CPU register, RAM address)

Execute
address 100 MAR
set fetch/store controller to store
contents of R0 MDR
MDR contents address 100

Fetch
PC’s contents MAR
Instruction at 38 MDR
MDR Instruction Reg

advance PC 40

12

Machine Instruction Set (revisited again):
Instruction Set design….

Address
Field 1

Address
Field 2

Address

Field 3

Operation

Code

8 bits 16 bits 16 bits 16 bits

 Hypothetical example...

OpCode Operands Meaning
00000101 x add (contents at) x with contents of

R0, put result back into x

00000110 x, y add con(x) and con(y) and put
result in x

00000111 x, y, z add con(x) and con(y) and put
 result in z

CMPUT101 Introduction to Computing

Chapter 5 The Von Neumann Architecture 7

13

Instruction Set Design:
Do we need 3 ways to add?

• Reduced Instruction Set Computers (RISC)
• Instruction set as small and simple as possible.
• Minimizes amount of circuitry --> faster computers

• Complex Instruction Set Computers (CISC)
• More instructions, many very complex
• Each instruction can do more work, but requires more

circuitry.

14

Machine Instruction Set (revisited):
 4 classes of instructions

• Data Transfer Instructions, e.g.
– LOAD X Load content of memory location X to

R0
– STORE X Load content of R0 to memory location

X
– MOVE X, Y Copy content of memory location X to

location Y

a possible RISC approach to MOVE?

CMPUT101 Introduction to Computing

Chapter 5 The Von Neumann Architecture 8

15

Machine Instruction Classes (cont.)

• Arithmetic/Logic Instructions
– ADD X, Y, Z CON(Z) = CON(X) + CON(Y)
– AND
– OR

• Compare Instructions
– COMPARE X, Y

Compare and set the condition code register (CCR)
– If CON(X) = CON(Y) then set EQ=1, GT=0, LT=0

– These are “condition codes” that other instructions will
reference….namely...

16

Machine Instruction Classes (cont.)

• Branch Instructions - deviations from sequential control
– JUMP X Load next instruction from memory loc. X
– JUMPGT X Load next instruction from memory loc. X

only if GT condition code is set, otherwise
load statement from next sequence loc. as
usual.

– HALT
If (a > b) then
 set c to a
Else
 set c to b

50 compare 100,101

51 jumpgt 54

52 Move 101,102

53 Jump 55

54 Move 100, 102

55 <whatever next instr. Is>

100 value of a
101 value of b
102 value of c

CMPUT101 Introduction to Computing

Chapter 5 The Von Neumann Architecture 9

17

Instruction Set for Our Von Neumann Machine

R - CON(X) --> RSUBTRACT X0101

Stop program executionHALT1111
Output, in decimal notation, content of mem. loc. XOUT X1110
Input an integer value and store in XIN X1101

xx = LT / EQ / NEQJUMPxx X...

Get next instruction from memory loc. X if GT=1JUMPGT X1001

Get next instruction from memory location XJUMP X1000

If CON(X) > R then GT = 1 else 0
If CON(X) = R then EQ = 1 else 0
If CON(X) < R then LT = 1 else 0

COMPARE X
0111

CON(X) - 1 --> CON(X)DECREMENT X0101

CON(X) + 1 --> CON(X)INCREMENT X0100
R + CON(X) --> RADD X0011
0 --> CON(X)CLEAR X0010
R --> CON(X)STORE X0001

CON(X) --> RLOAD X0000

MeaningOperationOpcode

18

The rest of the architecture

• Input/Output
– Access to keyboard, screen, and secondary

memory
– Issue

• These devices are “remote” to the CPU
• A mismatch of speed in manipulating information

CPU RAM

Buffer

Control logic

I/O controller

To screen,
keyboard,
harddrive

Data
Interrupt Signal

CMPUT101 Introduction to Computing

Chapter 5 The Von Neumann Architecture 10

19

Check point…practice problems on p. 200

20

 Types of Memory: access and retrieval

•ROM - read only memory

RAM - volatile - retrieve no less than 1 cell

- each cell has unique address

- each cell accessed at same speed

Secondary Memory (hard drive, CDs, removable disks)

- non-volatile

- each memory location has unique address

- retrieve no less than 1 memory location

- different access times for memory locations

CMPUT101 Introduction to Computing

Chapter 5 The Von Neumann Architecture 11

21

Direct Access Memory Organization

Track + Sector Layout

tracks: concentric circles divided into sectors

sector: a block holding address plus data cells

Address for data location: a track # plus a sector #

Access to a data location is a mechanical process

22

Quantifying Data Retrieval Time
for Direct Access Memory

Retrieval time = access time + transfer time

Recall address is a particular track and particular sector
on that track

Access time = seek time + latency (rotational delay)

Transfer time:

time for entire sector to pass under read/write
head

CMPUT101 Introduction to Computing

Chapter 5 The Von Neumann Architecture 12

23

Example
Rotation speed: 2400 rev/min = 40 rev/sec

 time for 1 revolution?
 1 rev every 1/40 of a second or .025 sec
 so, 25 milliseconds for 1 revolution

Arm movement: .5 msec to go to next track

tracks : 100

sectors/track: 10

Seek time 0 99*.5ms

Rotational delay(latency) 0 ~.025 sec

Transfer time 1/10 (.025) same same

Best worst avg

24

Practice Problems on Memory Access/Storage-
pg. 189

CMPUT101 Introduction to Computing

Chapter 5 The Von Neumann Architecture 13

25

Machine Architecture: Key Ideas
1. Von Neumann design

stored program / sequential execution of
instructions

2. Machine instruction set (RISC/CISC; classes of
instructions; binary representation - op codes, operands)

3. Fetch/Decode/Execute Cycle
understand the basic architecture (PC, IR, ALU, MAR,
MDR, fetch/store controller)
especially “low level movement” of bits at each stage

review pg. 206
role of circuits for selecting, decoding

(multiplexors, decoders)

4. Types of Memory/ Access Operations

26

Machine Architecture: Key Skills

1. Write algorithms in machine language

(as per practice problems)

2. Be able to reason about notions like address
space, size of MAR, etc.

3. Be able to do simple calculations on accessing
direct access memory

(as per practice problems)

4. Be able to label/trace through the data-path on
our simplified architecture

