PRE-PRINT:
The Trellis Security Infrastructure

for Overlay Metacomputers and
Bridged Distributed File Systems

Paul Lu, Michael Closson, Cam Macdonell, Paul Nalos,
Danny Ngo, Morgan Kan, and Mark Lee

Department of Computing Science
University of Alberta
Edmonton, Alberta, T6G 2ES8, Canada
Email: paullu@cs.ualberta.ca

Abstract

Researchers often have non-privileged access to a variety of high-performance
computer (HPC) systems in different administrative domains, possibly across a
wide-area network.! Consequently, the security infrastructure becomes an impor-
tant component of an overlay metacomputer: a user-level aggregation of HPC sys-
tems.

The Trellis Security Infrastructure (TSI) is layered on top of the widely-deployed
Secure Shell (SSH) and systems administrators only need to provide unprivileged
accounts to the users. The contribution of TSI is in demonstrating that a single sign-
on (SSO) system, for a variety of use-case scenarios, can be implemented without
requiring a completely new security infrastructure. We describe the use of TSI for
a Canada-wide overlay metacomputer, for computational workloads (i.e., CISS-3)
that spanned 22 administrative domains, at its peak had over 4,000 concurrent jobs,
and included a new distributed file system (i.e., Trellis NFS).

Key words: security, single sign-on, metacomputing, computational science,
capacity computing, global job scheduler, distributed file system

! Please see http://dx.doi.org/10.1016/j.jpdc.2006.04.005 for the final, cor-
rected, camera-ready version. This version of the paper is provided for reference
only.

Preprint submitted to Elsevier Science



Overlay Metacomputer B

(e)

Overlay Metacomputer A
1

1

1

1

1

1

1

Server |
1

1

1

1

1

1

1

1

1

1

| (d)

1

: HPC Center 2
1

1

1

1

@

1

| Group HPC ssh—agent
! (b)

1

1

1 Dept. HPC
1

1

—— - ————

Fig. 1. Overlay Metacomputers and the Trellis Security Infrastructure

1 Introduction

Some workloads and experiments in computational science require large amounts
of resources, both in terms of capability and capacity. In capacity computing,
where high throughput is often the main goal, aggregating different high-
performance computing (HPC) systems is a common technique to provide the
needed capacity.

For example, Researcher A (Figure 1) has access to his group’s system, a de-
partmental system, and a system at a high-performance computing centre.
Researcher B has access to her group’s server and (perhaps) a couple of dif-
ferent high-performance computing centres, including one centre in common
with Researcher A. It would be ideal if all of the systems could be part of
one metacomputer. But, the different systems may be controlled by different
groups who may not run the same security software or may not have negoti-
ated cross-domain security policies. Yet, Researchers A and B would still like
to be able to exploit the aggregate power of their systems.

Some of the main requirements of the security infrastructure for a cross-
administrative domain situation include:

(1) Single Sign-On (SSO) across Multiple Administrative Domains: The user
wishes to authenticate (i.e., prove his identity) to the system only once,
and not once per-domain. The well-known Secure Shell (SSH) [1] system
can support SSO if the user properly sets up his private and public keys
and uses the ssh-agent for automated authentication.

(2) SSO Support for Background Jobs, Servers, and Multiple Users: Jobs or
servers left in the background need SSO (e.g., to get a unit of work, return
a result, move data).

(3) Security and Mitigation of Attacks: Secure Shell is already considered to
be reasonably secure. The challenge for this work is in maintaining that
security while not opening up new, significant avenues of attack.

At a high level, the Trellis Security Infrastructure (T'SI) addresses some of the



main issues in security as follows:

(1)

Basic Authentication and Authorization: TSI relies on the existing abil-
ity to use ssh-agent for automatic, non-interactive authentication. The
problems are: How can all processes find a valid agent? How can a server
support different users and their per-user agents?

Layered on top of Secure Shell, TSI makes it possible and convenient
to create a set of ssh-agents (Figure 1), such that for any node that
is the source of an outgoing ssh connection (e.g., Group HPC and HPC
Center 1), there will be an agent available at a well-known location
(i.e., indirectly find the agent’s Unix domain socket and process iden-
tity) (Figure 1, agents (a) for Researcher A and (c) for Researcher B,
respectively).

At the incoming end of the connection (e.g., Figure 1, HPC Center 1
and Server), the user (or a TSI tool) must have the public keys properly
set up in the authorized_keys configuration file of Secure Shell. The
forced command feature of the OpenSSH implementation of SSH (i.e., the
current de facto implementation) supports authorization and is useful to
mitigate certain classes of attacks.

Authentication and Delegation of Actions for Servers and Multiple Users:
As with, for example, the Trellis NFS distributed file system [2] (see also
Section 4) it is also possible for the server to access different agents,
belonging to different users, such that the user can delegate an action
(e.g., data movement) to the server.

Key Management: Creation, Dissemination, Loading: With public-key
authentication systems, such as SSH and TSI, public and private key
pairs must be created. Neither SSH nor (currently) TSI enforces good
key creation methodology, but TSI makes it convenient to follow “best
practices”.

Understandably, systems administrators desire modern and effective cross-
domain mechanisms for authentication, authorization, and data management.
For example, grid computing and the Globus Project [3] include wide-ranging
efforts to define new service and software standards for sharing general com-
puter resources (not just HPC systems) across different organizations. The
Grid Security Infrastructure (GSI) [4,5] and, more generally, the Globus
Toolkit, use Web services, X.509 certificates, and other well-known standards
to build a scalable, cross-domain security infrastructure. However, for cross-
domain situations (e.g., virtual organizations) GSI requires a substantial amount
of privilege to install, configure, and it requires human-negotiated organization-
to-organization security agreements at the administrator-level (and up) to de-
cide on the trusted certification authorities (CA) and how to map global user
identities to local user identities.

But, there is one cross-domain security tool that is both widely trusted (from



both technical and social perspectives) and is almost universal across HPC and
personal computing systems: the Secure Shell (SSH), especially the OpenSSH
implementation [1]. SSH supports public-key authentication, secure channels
using strong encryption, and can use familiar local protection mechanisms
for data sharing and other aspects of authorization. Consequently, the Trellis
Project has proposed that a practical and portable security architecture based
on SSH can create an overlay metacomputer (Figure 1): a user-level aggrega-
tion of HPC systems [6,7]. The overlay metacomputer is per-user and can be
as simple as one computer, or as complicated as thousands of computers in
many administrative domains (Section 4). Working entirely at the user-level
with unprivileged accounts, TSI forms the basis for all the other Trellis Project
efforts in global scheduling, data movement, and distributed file systems.

As with an earlier paper on the Trellis Security Infrastructure (TSI) [8], we
do not claim that TSI is a general-purpose security infrastructure. Explicitly,
TSI is designed to support capacity-oriented HPC workloads and their related
needs, such as the need for distributed file systems.

2 Trellis System Overview and Background

The Trellis system is a thin layer of software that allows a set of jobs to
be load balanced (i.e., via a scheduler [6,9]) across multiple HPC systems
while also allowing the jobs to access their data (i.e., via a distributed file
system [2,10,11]). A user submits jobs to the Trellis scheduler and it automates
the placement of jobs, movement of data, and collection of the results. The
Trellis Project, along with many partners, performed the first two Canadian
Internetworked Scientific Supercomputer (CISS) experiments in 2002 and 2003
[7], with 18 different administrative domains at 16 different institutions. Since
the publication of the original TSI paper [8], the security infrastructure has
evolved, the CISS-3 experiment of 2004 has been completed, and we include
extensive discussion of TSI and that experiment in Section 4.

Of course, the basic idea of using a collection of HPC resources has been
around for decades. In various forms, and with important distinctions, it has
also been known as distributed computing, batch scheduling, cycle stealing,
peer-to-peer systems, and (most recently) grid computing. Some well-known
application-oriented examples in this area include SETI@home and Project
RC5/distributed.net. But, the contemporary challenge is in supporting arbi-
trary applications across administrative domains. Related examples of mid-
dleware infrastructure include Condor [12], and the projects associated with
the Globus Alliance and the Open Grid Service Architecture (OGSA) [3].
SETI@home and RC5 (and similar projects) are targeted at single applica-
tions (e.g., signal processing) with low resource needs (e.g., can run on a lap-



top), whereas Condor, Globus, and Trellis target arbitrary applications with
large resource requirements. Of course, there are many other related projects
around the world, including some in Canada (for example, Grid Canada and
the University of Victoria Grid Testbed).

Of the recent systems and security infrastructure for grid computing, Globus
and GSI are the best known examples. Authentication in GSI is based on the
cryptographic signing of credentials and keys by a CA [4]. CA-signed keys can
be used to securely identify a user or a process acting on behalf of a user.
Therefore, if different administrative domains have at least one trusted CA
in common, it is possible for a user to authenticate once, create a proxy or
proxies as necessary, and then login and access resources across the domains.
This is the SSO aspect of GSI.

However, GSI does have pragmatic, inter-related weaknesses, including: (1)
the a priori need for GSI software on all the systems, to be installed by sys-
tems administrators and configured according to a (human) security agree-
ment, such as the trust accorded to CAs, (2) relative complexity, due to the
wide spectrum of potential application domains, and (3) the relative lack of
widespread deployments. GSI is a technically strong system, but there are
significant social factors that affect the adoption of any new system.

As overlay systems, Trellis and the TSI are designed to run on top of any
platform, including GSI itself. One disadvantage of the SSH-based approach
is that the user (not the systems administrator) assumes the responsibility
of managing the various keys, identities, and configuration. The burden on
the user is roughly comparable to the current need for users to manage their
different identities for different Web sites, and also solvable with similar tools
and techniques. Consequently, it might be argued, the basic SSH-based archi-
tecture may not scale to large numbers of systems. But, with the right tools
and “best practices”, as provided by TSI, we have shown that it is possible
to scale up to thousands of processors and tens of domains. For truly large
user bases (e.g., multi-thousands of users) with regular and dynamic resource
sharing, the more comprehensive approach of GSI may be better, despite the
initial complexity curve. However, we believe that there will be an on-going
need for smaller overlay metacomputers, which is the niche targeted by TSI.

3 The Trellis Security Infrastructure

The Trellis Security Infrastructure (TSI) relies on the existing SSH mecha-
nisms of public-key authentication and agents. In combination with the ssh-agent
program, it is possible to use public-key authentication and not require the
user to type in passwords or passphrases multiple times.



dngo@st-brides hosts>createHost -i

Create Host Script - Interactive Mode Enabled

What is the name of the host you would like to create data for? st-brides.cs.ualberta.ca
What is your user name on st-brides.cs.ualberta.ca? [dngo]
What type of host is this (linux, solaris, etc.)? linux
What type of batch scheduler does this host have?

1. Zero Infrastructure

2. PBS Infrastructure

>1

<snip>

dngo@st-brides hosts>ls -1 ~/.trellis/hosts

total 16

drwx--S--- 2 dngo man 4096 Jan 19 11:22 dngo@lattice.westgrid.ca/
drwx--S--- 2 dngo man 4096 Jan 19 11:21 dngo®nexus.westgrid.ca/
drwx--S--- 2 dngo man 4096 Jan 19 11:19 dngo@st-brides.cs.ualberta.ca/
drwx--S--- 2 dngo man 4096 Jan 19 11:20 pbsweb@lindale.cs.ualberta.ca/

Fig. 2. Adding and configuring hosts to the SSH overlay

The high-level strategy to provide SSO is to configure and launch ssh-agent
processes on all the hosts such that any of the user’s processes can, without
human intervention or manual authentication, access any other remote host.
The low-level implementation issues are related to making TSI easier to con-
figure for the different hosts, how to launch the ssh-agents, and how to check
for (and fix) common connectivity problems. Specifically, TSI’s SSO relies on
the agent on each system being set up and configured correctly beforehand
(Figure 1).

Configuring, Launching, and Testing the SSH Overlay: Creating and
maintaining an SSH overlay has three basic steps. First, we specify and config-
ure all the hosts that we want as part of the overlay. We use the Trellis-provided
createHost tool to interactively add an entry for each host, as shown in Fig-
ure 2. In this example, we have created four hosts in multiple administrative
domains. A host entry is simply a directory named as user@host in the user’s
standard ~/.trellis/hosts directory (similar to the ~/.gnome directory for
configuring the popular GNOME desktop). Note that the user’s identity on
the different hosts can be different (i.e., dngo versus pbsweb). Once a host has
been configured, it does not need to be re-configured (not shown) between
sessions, unless there is a change.

Second, we need to launch an SSH agent and leave it running on each of the
hosts. Recall that the well-known ssh-agent process is the existing SSH mech-
anism to allow a process to authenticate, via a public-private key, to a (pos-
sibly) remote host without requiring a password or passphrase [1]. Whenever
a Trellis process, whether interactive or background, needs to make a remote
connection, it uses a configuration file to find the per-host ssh-agent, set the
appropriate environment variables (e.g., SSH.AGENT_PID and SSH_AUTH _SOCK),
and authenticate without human intervention.

We have created two OpenSSH-based tools, ssh-agent-remote and ssh-add-remote,
to help launch and load the remote agents with the appropriate keys, respec-
tively. Both tools are wrappers around their original, non-remote counterparts
and allow for the set-up and control of an ssh-agent on a remote host. Fig-



dngo@st-brides hosts>ssh-agent-remote nexus.westgrid.ca

Agent for dngo@nexus.westgrid.ca started (PID 881635)

dngo@st-brides hosts>ssh-add-remote nexus.westgrid.ca ~/.ssh/keyfile
Enter passphrase for /usr/brule2/guest/dngo/.ssh/keyfile:

Identity added: Using Stdin (Using Stdin)

Fig. 3. Starting an SSH agent on nexus from st-brides

ure 3 shows how an ssh-agent is started on nexus from st-brides. Note
that the ssh-agent on nexus is given a private key (from ~/.ssh/keyfile
on st-brides) without that private key ever being saved on nexus; we have
a modified version of ssh-add that reads a private key from standard in
(i.e., stdin) instead of from a file. Since the stdin of ssh-add on nexus
is connected to the ssh channel from st-brides, this means that the private
key is always encrypted until it arrives at the ssh-agent process on nexus,
thus maintaining security. Another tool, launchAgents (not shown), invokes
ssh-agent-remote and ssh-add-remote for all the hosts in ~/.trellis/
hosts and loads the remote ssh-agent processes with a common key. There-
fore, with one tool and after typing in only one passphrase, a user can launch
the whole SSH overlay.

The common use-case scenario is to set up the overlay, launch all the agents
using launchAgents, and then to begin using the SSO and other capabilities
of TSI for a computational workload.

Empirical Results: Basic Overheads: The common use-case for TSI is
in establishing SSH connections in support of Trellis’s placeholder schedul-
ing and distributed file system. Therefore, to stress-test the system we can
do a simple microbenchmark. In our experiment, we compare: (1) TSI with
the unmodified SSH implementation from OpenSSH (version 3.6pl), which
uses public-key authentication, and (2) GSI via the GSIl-enabled version of
OpenSSH (version 3.6.1p2). Specifically, we measure the amount of time it
takes to make 100 connections between nexus and lattice on the WestGrid
network. Using GSI-enabled SSH, 100 connections to run the date command
takes 100 seconds. Using TSI and the unmodified SSH, the same 100 con-
nections takes 120 seconds, which represents a 20% additional overhead for
the TSI approach. Of course, both 1.0 and 1.2 seconds of overhead per con-
nection is somewhat high compared to connections on a local network, but
cross-domain authentication across a wide-area network (WAN) is typically
more expensive.

We suspect that TSI’s additional overheads, which are not onerous, may be
due to the more-complicated baseline SSH protocol for authenticating the host
(i.e., nexus authenticating lattice and vice versa, using public keys). Fortu-
nately, we have also developed a simple SSH proxy that creates per-host SSH
connections on demand and leaves the connection open until it times out due



to inactivity. The same 100 connections experiment took 9 seconds, again run-
ning the date command, between nexus and lattice using the unmodified
OpenSSH binary, with our proxy. Therefore, even the 20% overhead can be
avoided in the common case of Trellis’s operation. Independently of TSI, ver-
sion 4 of OpenSSH has newly added support for persistent SSH connections.

4 TSI In Practice

CISS Before TSI: As discussed above, TSI is targeted at HPC applica-
tions. In a series of on-line, Canada-wide, and production-oriented experi-
ments, the software and techniques developed by the Trellis Project have been
used to complete large (i.e., multiple CPU-year, thousands of jobs) compu-
tational science workloads. Using well-known scientific applications such as
MOLPRO [13], GROMACS [14], and CHARMM [15], these experiments have
been dubbed the Canadian Internetworked Scientific Supercomputer (CISS)
experiments. Although the CISS-1, CISS-2, and CISS-3 experiments have been
summarized previously from the point of view of throughput, scale, and the
file system mechanisms [2, 7], this is the first discussion of the security in-
frastructure and TSI in practice. For both CISS-1 and CISS-2, in 2002 and
2003, cross-domain security was handled by SSH, but many functions were
handled manually. Key management was done manually and, in some cases,
private keys were placed on remote nodes without passphrase protection for
reasons of expediency. It was clear, even at that time, that a better solution
was required.

TSI, CISS-3, and the Trellis Metascheduler: The TSI described in this
paper was developed between the CISS-2 and CISS-3 experiments, in direct
response to the limitations discussed above and the desire to support SSO and
distributed file systems. The support for multiple users was added after CISS-
3; although CISS-3 involved many administrative domains and two major
workloads, there was only a single user identity in the domains that Trellis
NF'S was deployed.

In broad terms, CISS-3 demonstrated the functionality and scalability of the
Trellis Project designs, including TSI, the metascheduler, and the distributed
file system. From September 15 to 17, 2004, in a 48-hour production run, over
15 CPU-years of computation were completed, using over 4,100 processors,
from 19 universities and institutions, representing 22 administrative domains
[2]. At its peak, over 4,000 jobs were running concurrently.

It is beyond the scope of this paper to detail the design and implementation of
the metascheduler itself. The basic architecture and an earlier implementation
were covered elsewhere [6]. However, we sketch out the basic operations of the



1
| setenv SSH_AGENT_PID 763415; i
Lecho Agent pid 763415; H

—
trellis-ssh getNextJob —

sshENV
3 4 mySQL
> job queue
ssh
2 client:nexus < 5 server: scovil

Fig. 4. Example of Metascheduler and TSI (Job Queue is on scovil)

metascheduler in terms of how it interacts with TSI.

The basic idea of the Trellis metascheduler is that there is a background pro-
cess, called a placeholder, that is running on computational nodes (Figure 4,
client:nexus). The placeholder is a special job script submitted to a batch
scheduler (e.g., PBS, LoadLeveler, LSF) that, when it starts executing, queries
the global job queue (e.g., server:scovil) and pulls work to its nodes. Ini-
tially, the placeholder is started using TSI and Trellis tools.

In terms of TSI, the placeholder on nexus wishes to perform a trellis-ssh
user@scovil getNextJob ..., which will return the actual job that the
placeholder should run. getNextJob retrieves the job to bind to the place-
holder via a job queue database and returns the work specification via the
Unix Standard Out portion of the SSH connection. trellis-ssh is primar-
ily a wrapper for the real ssh executable. The placeholder needs to find
the previously initialized ssh-agent to be used to authenticate as user on
the server scovil. Specifically, trellis-ssh sources (i.e., reads) the file on
nexus (i.e., the source of the SSH connection) at ~/.trellis/hosts/user®@
scovil/sshENV (Figure 4, Step 1). The sshENV file contains the appropriate
SSH_AUTH_SOCK and SSH_AGENT_PID environment variables needed to find the
agent itself (Step 2). Previously, TSI tools (e.g., launchAgents) had been
used to launch the agents and to set up the contents of sshENV. Once the
appropriate agent has been found, the actual ssh command is executed (Step
3), the authentication succeeds thanks to the ssh-agent on nexus, and the
getNextJob command is executed on scovil (Step 4). The job specification
is returned over the same ssh connection (Step 5) and the placeholder begins
the job.

TSI, CISS-3, and Trellis NFS: If a job can be scheduled on a node that
is different than where its data is stored, then the job will need a method
to access its input and output data. In HPC, stage-in/stage-out (i.e., explicit
specification of the files required) is the de facto technique. However, with
the proper security mechanisms, a distributed file system would be highly
desirable.



T
'

cam's user space 1 closson's user space
'

'
Server-Side ssh closson@local User-Side
Proxy T Proxy

RERE 5 i

. ssh 6 5
Client authentication v

1

Unmodified NES RPC| Trellis

Client | Server

ssh-agent

ssh

11 y Y
10 /‘ 8,9 23 Server

secure SSH channel

y A
sshd

gridstore.westgrid.ca

Fig. 5. Trellis NFS Supporting Multiple Users with TSI

Trellis NFS [11] is a new distributed file system based on the notion of bridg-
ing unmodified clients (and local area network (LAN) protocols) and unmod-
ified storage nodes (and WAN protocols) [2]. The key benefit of bridging is
that the LAN clients do not have to be modified, except for the creation of
mount points. On the LAN, the NFS security model (for better or worse)
is used. On the WAN, TSI is the security system. For CISS-3, Trellis NFS
was deployed across a subset of the CISS-3 nodes totaling four administrative
domains, to support two different clusters, two storage nodes, hundreds of
jobs, and dozens of simultaneous clients. Basically, Trellis NF'S works as fol-
lows: unmodified applications use a Secure Copy-like naming convention (e.g.,
/tfs/scp:gridstore.westgrid.ca:/data/filel) to name their files. Using
the unmodified NF'S RPC protocol, the client contacts the Trellis NFS server.
The Trellis NFS server then uses the name of the file to determine which re-
mote, home node (i.e., gridstore.westgrid.ca) to access using Secure Copy
(i.e., using trellis-scp, the T'SI wrapper script for scp) and copies the file
to a local disk-based cache. Subsequently, Trellis NFS services all LAN NFS
RPCs out of the cache. The cache is flushed at an appropriate time.

Most relevant to this discussion, Trellis NFS uses TSI. For Trellis NFS to
successfully invoke trellis-scp to copy the files from the home nodes to
the local cache, Trellis NF'S needs access to a valid agent. The TSI solution
to the problem is (Figure 5): Each user (e.g., closson) that wishes to use
Trellis NFS must have a valid ssh-agent running on the same node as the
Trellis NFS server. That agent is expected to have been created using TSI.
Each user is expected to trust the Trellis NFS server enough to put the public
key of the server in his authorized_keys file, which allows the server to (in
loopback fashion to local) SSH into the server node as the user and access
his ssh-agent.

When a process belonging to closson requires a file to be transferred from

10



gridstore.westgrid.ca, the NFS RPC goes to the server (Figure 5, Step 1).
Before the server, running as user cam, can invoke trellis-scp, the server
sets up a server-side proxy since cam is not likely to have a valid ssh-agent
for accessing closson@gridstore.westgrid.ca. But, cam’s server-side proxy
can SSH into closson@local, as per the discussion above. In fact, the server-
side proxy starts up a user-side proxy, which finds the appropriate ssh-agent
using the well-known TSI location at ~closson/.trellis/hosts/closson@
gridstore.westgrid.ca.

When the server invokes trellis-scp (Step 2), the SSH daemon (sshd) at
gridstore will start the public-key authentication process (Step 3). All of
the challenge-response messages are passed verbatim to the server-side proxy
(Step 4), then to the client-side proxy, and finally to closson’s agent (Step
5). As far as the sshd and closson’s agent are concerned, they are speaking
directly to each other (Steps 6, 7, 8). And, assuming that closson’s agent has
been loaded with the right key, the authentication at gridstore will succeed,
then the file can be moved (Steps 9 and 10) and stored on the local disk
of the server (not shown). Note that the private keys of one user are never
revealed to other users. With the server-side proxy, the Trellis NF'S server can
support multiple, different users and still have T'SI-based secure access across
administrative domains.

When combined with the proper “best practices”, TSI provides the same over-
all level of security as SSH, mainly because TSI is closely coupled with SSH’s
design and mechanisms.

Basic Attacks: An attacker can gain access to a TSI-based overlay meta-
computer by either stealing the legitimate user’s password or the private key
itself. Of course, since both OpenSSH and TSI always transmit passwords
and keys over encrypted channels, the main points of the attack are where the
passwords and keys are stored (if any) and used. TSI through its automatic
ability to start and load remote ssh-agents with private keys, makes it easier
to manage the keys, as per SSO, without repeated entries of keywords and
passphrases at the keyboard, and without ever requiring the private key be
stored on the remote node’s disk. To ameliorate attacks based on privilege
escalation, the forced command feature of SSH can be used to provide only
restricted shells and restricted command authorization.

Windows of Vulnerability and Revocation: A well-known technique (e.g.,
GSI, Kerberos [16]) to limit the window of vulnerability is to limit the lifetime
of passwords, keys, or certificates. Admittedly, although OpenSSH provides
the ability to set a lifetime for a private key stored in an agent, it is not
currently utilized by TSI. As future work, we recognize the potential value of
limited-lifetime keys and will consider techniques to both provide this feature
and make it convenient to the user. In a related matter, simple key revocation

11



already exists in SSH and, therefore, T'SI. Access can be denied by deleting
the relevant public key in the authorized keys file of a given account.

High-Value Target: The Trellis NFS Server: Compromising the file
server gives the attacker immediate access to a lot of data in the Trellis NFS
cache on the server-local disk. There are no easy answers. The first line of de-
fense is to make it difficult to compromise the Trellis NF'S server by protecting
the password and key of the server. Note that TSI makes it possible for the
Trellis NF'S server account to not contain any private keys at all. The second
line of defense is to limit the damage, even if the server is compromised. Since
the server runs purely at the user-level, an attacker can have a great impact
on a single user, but unlike root-installed file systems, the attacker does not
have automatic access to other users. A third line of defense, which is not yet
implemented, is to use the forced command feature to automatically shutdown
the NF'S server, kill its ssh-agent, and clear out the cache whenever someone
Secure Shells into the server account or node. A legitimate user can easily
restart the server and agent.

Admittedly, there are other forms of attack and other limitations of TSI not
discussed here and not (yet) directly addressed by the system. For example,
there are risks associated with using TSI on a system that is compromised.
With root access, it is possible to extract private keys from the address space
of an ssh-agent. We note that the same risk exists with SSH itself and a
proper defense, possibly through limited-lifetime keys, is a matter for future
work.

5 Other Related Work

Kerberos is a production-quality and well-known security infrastructure that
uses key servers (known as, in contemporary versions, Key Distribution Cen-
ters (KDC)) within realms to authenticate users with symmetric key crypto-
graphic techniques [16]. Kerberos uses limited-life “tickets” to perform authen-
tication and to limit the window of vulnerability to certain kinds of attacks.
Variations of Kerberos are used by the Windows, Mac OS X, and various Unix
operating systems. In the context of overlay metacomputing, cross-realm (or
cross-administrative domain) authentication is also possible if all domains are
running Kerberos and if other Kerberos key servers are trusted (and config-
ured as such) by a local realm or domain. However, it is not always the case
that all domains are running Kerberos in an overlay metacomputer, which
motivated our design decision to use SSH. Kerberos is a tested and powerful
system, but its need for homogeneous security systems (i.e., Kerberos) in all
domains or realms makes it an impractical choice for our application.

12



The Trellis NFS server is similar to the Self-certifying File Systems (SFS)
[17] in the use of a well-known LAN-based protocol (e.g., NFS) for the file
system, but a different security and WAN-based data movement protocol. In
SE'S, the self-certifying hostname strategy is a certificate-less technique that
cryptographically encodes the identity of the server into the user-visible name
of the host. The advantages of SFS, from a security point of view, is that
there is no need for certificates nor an extensive security infrastructure. The
disadvantages of SF'S include the fact that SF'S client and server software (i.e.,
their modified NF'S server and wrapper scripts) must be installed as root on
all local client and remote nodes. The need to avoid installing software as root
and the need to layer and support underlying software, such as SSH, results in
different design decisions for both TSI and the Trellis file systems. The Andrew
File System [18], typically, uses Kerberos for its cross-domain authentication,
with the same trade-offs discussed above.

Finally, it should be noted that Plan 9’s factotum [19] is similar to SSH’s
agent. As with SSH’s ssh-agents, factotums are also per-user “self-contained
agents”. Whereas ssh-agents are (currently) only used by SSH and TSI,
factotums are designed to be used directly by a variety of programs that
require authentication.

6 Concluding Remarks

The interest in aggregating HPC resources across a WAN has been growing as
the capacity needs of computational scientists have increased. Cross-domain
tools and security infrastructure are an important part of metacomputing and
grid computing. We have proposed a security infrastructure for HPC based on
the widely-deployed SSH, called the Trellis Security Infrastructure, or TSI. By
layering T'SI on top of SSH, it is possible to deploy an SSH overlay and an over-
lay metacomputer entirely at the user-level, without compromising security.
SSH is a well-known and trusted system with public-key authentication and
secure channels. The only human-negotiated agreement required for a TSI-
based overlay metacomputer is the user’s unprivileged account on the various
hosts.

The main contributions of this work are:

(1) Presented a proof-of-concept that TSI is a useful, user-level, and (reason-
ably) secure security infrastructure.

Specifically, TSI provides single-sign on and support for background
processes (e.g., servers). A user-level system based on Secure Shell max-
imizes the number of systems that can be aggregated and minimizes the
deployment effort.

13



(2) Described an experiment that tested the effectiveness and scalability of
TSI. For the CISS-3 overlay metacomputer, TSI scaled to over 4,000 pro-
cessors across 22 administrative domains and the Trellis metascheduler
used TSI to complete thousands of jobs in two computational science
workloads.

(3) Described a strategy that allows the user-level Trellis NFS distributed
file system server to have secure access to the data for multiple users on
home nodes in different administrative domains.

Acknowledgments

Thank you to the Alberta Science and Research Authority (ASRA), SGI,
C3.ca Association Inc, Alberta’s Informatics Circle of Research Excellence
(iCORE), Sun Microsystems, Inc., the Natural Sciences and Engineering Re-
search Council of Canada (NSERC), and the Canada Foundation for Inno-
vation (CFI) for their research support. We also gratefully acknowledge the
contributions of Jonathan Schaeffer, Chris Pinchak, Edmund Sumbar, Ron
Senda, Paul Masiar, Rob Lake, Aaron Davidson, George Ma, Victor Salamon,
Jeff Siegel, Jeremy Handcock, Vanessa Chung, and Yaling Pei to the Trellis
Project.

References

[1] D. Barrett, R. Silverman, SSH, the Secure Shell: The Definitive Guide, O’Reilly
and Associates, 2001.

[2] M. Closson, P. Lu, Bridging Local and Wide Area Networks for Overlay
Distributed File Systems, in: Proc. 2nd Workshop on Real, Large Distributed
Systems (WORLDS ’05), San Francisco, California, U.S.A., 2005, pp. 49-54.

[3] I. Foster, C. Kesselman, J. Nick, S. Tuecke, The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration, Open
Grid Service Infrastructure WG, Global Grid Forum, http://www.globus.
org/ (2002).

[4] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, V. Welch,
A National-Scale Authentication Infrastructure, IEEE Computer 33 (12) (2000)
60-66.

[5] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor,
C. Kesselman, S. Meder, L. Pearlman, S. Tuecke, Security for Grid Services,

in: Proc. 12th Int’l Symposium on High Performance Distributed Computing
(HPDC-12), 2003.

14



[6] C. Pinchak, P. Lu, M. Goldenberg, Practical Heterogeneous Placeholder
Scheduling in Overlay Metacomputers: Early Experiences, in: Proc. 8th
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP),
Edinburgh, Scotland, UK, 2002, pp. 85-105.

[7] C. Pinchak, P. Lu, J. Schaeffer, M. Goldenberg, The Canadian Internetworked
Scientific Supercomputer, in: 17th Annual Int’l Symposium on High
Performance Computing Systems and Applications (HPCS), Sherbrooke,
Quebec, Canada, 2003.

[8] M. Kan, D. Ngo, M. Lee, P. Lu, N. Bard, M. Closson, M. Ding, M. Goldenberg,
N. Lamb, R. Senda, E. Sumbar, Y. Wang, The Trellis Security Infrastructure:
A Layered Approach to Overlay Metacomputers, in: The 18th International
Symposium on High Performance Computing Systems and Applications, 2004,
pp. 109-117.

[9] M. Goldenberg, P. Lu, J. Schaeffer, TrellisDAG: A System for Structured
DAG Scheduling, in: 9th Workshop on Job Scheduling Strategies for Parallel
Processing, Seattle, 2003, pp. 21-35.

[10] J. Siegel, P. Lu, User-Level Remote Data Access in Overlay Metacomputers, in:
Proceedings of the 4th IEEE Int’l Conference on Cluster Computing, 2002, pp.
480-483.

[11] M. Closson, The Trellis Network File System, Master’s thesis, Department of
Computing Science, University of Alberta (2004).

[12] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: the
Condor experience., Concurrency - Practice and Experience 17 (2-4) (2005)
323-356.

[13] MOLPRO Quantum Chemistry Package, http://www.molpro.net/.

[14] H. J. C. Berendsen, D. van der Spoel, R. van Drunen, GROMACS: A message-
passing parallel molecular dynamics implementation, Comp. Phys. Comm. 91
(1995)) 43-56.

[15] A. D. MacKerell, Jr., B. Brooks, C. L. Brooks, III, L. Nilsson, B. Roux, Y. Won,
M. Karplus, CHARMM: The Energy Function and Its Parameterization with
an Overview of the Program, The Encyclopedia of Computational Chemistry 1
(1998) 271-277.

[16] J. G. Steiner, B. C. Neuman, J. I. Schiller, Kerberos: An authentication service
for open network systems, in: Proceedings of the USENIX Winter Technical
Conference, USENIX Association, Berkeley, CA, 1988, pp. 191-202.

[17] M. Kaminsky, G. Savvides, D. Maziéres, M. F. Kaashoek, Decentralized user
authentication in a global file system., in: Proc. Symposium on Operating
System Principles (SOSP), 2003, pp. 60-73.

[18] J. Morris, M. Satyanarayanan, M. Conner, J. Howard, D. Rosenthal, F. Smith,
Andrew: A Distributed Personal Computing Environment, Communications of
the ACM 29 (4) (1986) 184-201.

15



[19] R. Cox, E. Grosse, R. Pike, D. Presotto, S. Quinlan, Security in Plan 9, in:
Proc. 11th USENIX Security Symposium, San Francisco, California, U.S.A.,
2002, pp. 3-16.

16



