
PBSWEB: A WEB-BASED INTERFACE TO THE
PORTABLE BATCH SYSTEM

GEORGEMA PAUL LU

Departmentof ComputingScience
Universityof Alberta

Edmonton,Alberta,T6G2E8
Canada�

george|paullu � @cs.ualberta.ca

Abstract

Theresourcemanagers(e.g., batch queueschedulers)
usedat manyparallel and distributed computingcenters
can be complicatedsystemsfor the average user. A large
numberof command-lineoptions,environmentvariables,
and site-specificconfiguration parameters can be over-
whelming. Therefore, we havedevelopeda simpleWeb-
basedinterface, calledPBSWeb,to thePortableBatch Sys-
tem(PBS),which is our local resourcemanager system.

We describe the design and implementation of
PBSWeb. By using a Web browser and serversoftware
infrastructure, PBSWeb supportsboth local and remote
users, maintainsa simplehistorydatabaseof pastjob pa-
rameters,andhidesmuch of thecomplexitiesof theunder-
lying scheduler. Thearchitectureandimplementationtech-
niquesusedin PBSWeb can be applied to other resource
managers.

Keywords: job management,batch scheduler, Portable
Batch System(PBS),Web-basedGUI, clusterandparallel
computing

1 Introduction

Parallelanddistributedcomputingoffersthepromise
of high performancethrough the aggregation of individ-
ualcomputersinto clustersandmetacomputers(e.g.,wide-
areanetworks of computers). Fastnation-widenetworks
also make it possiblefor usersto remotelyaccesshigh-
performancecomputing(HPC) resourceproviders (RP).
However, that potential cannot be fulfilled without the
propersoftwareinfrastructureto accesstheRPsin aconve-
nientandefficientmanner.

Oneof the mostbasicandcommontasksfor a user
of an RP is submittinga job to the local resourceman-
ager. AlthoughsystemssuchasthePortableBatchSystem
(PBS) [9] and Load SharingFacility (LSF) [8] automate
CPUandresourcescheduling,themany command-lineop-
tions, scriptableparameters,and different tools presenta
steeplearningcurve for thetypical user.

Althoughtoolsandsystemsto supportapplicationde-
velopment(rightly) receive a lot of researchattention,the
problemof applicationexecutionandmanagementis often
overlooked.In a typical workgroup,a smallnumberof de-
velopersmaywrite thecode(or install downloadedcode),
but everyonemustexecutethe applications,whetherit is
for testingor productionruns. In otherwords,runningap-
plicationsis thecommoncase.Also, thesameapplication
is often run with many differentparameters,andpossibly
by differentmembersof the sameworkgroup. Customiz-
ing, sharing,andrevision controlof the job controlscripts
canquickly becomeunwieldy.

To simplify the commontasksof submittingjobs to
a resourcemanager, re-runningjobs, andmonitoringjobs
in queues,we have developeda Web-basedinterface to
PBS called PBSWeb. The systemprovidesa job history
databasesothatpreviousjob scriptscanbere-usedas-isor
with smallchanges.We feel that thecombinationof func-
tionality in PBSWebfulfills a needin theusercommunity.

More importantly, the architectureof PBSWeb is
designedto evolve and support the emerging model of
wide-areametacomputingwith remoteusers,transparent
job placementacrossmany differentRPs,andend-to-end
workflow management.Eachof theseenhancementsin-
volvesthesolutionof outstandingresearchproblems.PB-
SWeb will be the developmentandevaluationframework
for our researchin theseareas.



Resource Provider 1’s
Scheduler (e.g., PBS)

Resource Provider 2’s
Scheduler (e.g., PBS)

Resource Provider 3’s
Scheduler

User 1

User 2

PBSWeb Server

N
et

w
or

k

Application A

Application B

Application C

Application A

Application B

Code, History

Code, History

Code, History

Code, History

Code, History

User’s Web Browser

N
et

w
or

k

User 1

User 2

Figure 1. PBSWeb: Architecture

1.1 Portable Batch System

ThePortableBatchSystem(PBS)is oneof a number
of differentbatchqueueschedulersfor processorresources.
Resourcemanagersand schedulersare software systems
thatallocateresourcesto differentuserrequests(i.e., jobs)
while attemptingto maximizeresourceutilizationandmin-
imize interferencebetweendifferentjobs. Individualusers
submitjobsto PBS,theschedulerenqueuesthejobsof the
varioususers,and jobs are executedas the requestedre-
sourcesbecomeavailableandaccordingto thejob’squeue
priority.

In part,PBSis a popularsystembecauseit is power-
ful, customizable,andit canbedownloadedfreeof charge.
For example,theMultimediaAdvancedComputationalIn-
frastructure(MACI) project [7] usesPBSto managetwo
SGI Origin 2000multiprocessors(with a total of 112pro-
cessors)at the University of Alberta, and a cluster of
Alpha-basedworkstations(with 130processors)attheUni-
versityof Calgary.

AlthoughPBShasmany technicalmerits,it canbea
difficult systemto learnanduse.Thesystemconsistsof a
numberof differentprograms(e.g.,qsub, qstat, qdel,
qhold, qalter), eachwith many different command-
line optionsand configurationparameters.Furthermore,
jobs (or runs)aresubmittedto the systemin the form of
a job control script containingper-job parameters.Each
run requiresits own job control script, which leadsto the
problemof how thevariousscriptscanbeeasilymodified
andsharedbetweendifferentuserswith revisioncontrol.

xpbs andxpbsmon aretwo graphicaluserinterfaces
(GUI) distributedwith PBS.AlthoughtheseGUI toolsare
easierto usethancommand-lineprograms,they do not ad-
dresstheproblemof managingjob controlscripts.

1.2 Overview

We begin with a descriptionof thePBSWebarchitec-
tureandhow it is designedto supportremoteaccess,to pro-
vide userauthentication,andto maintainjob controlscript
histories. A detaileddescriptionof the PBSWeb interface
andfunctionality is followed by an overview of how PB-
SWeb is implemented.SincePBSWeb is part of a larger
C3.caprojectto improve the sharingof high-performance
computingresources[4], we thendiscussthe longer-term
goalsof theprojectandput it in context with relatedwork
from othergroups.

2 PBSWeb

We have built a prototypefront-endinterfaceto PBS.
Beta testingbeganin August2000,with a wider deploy-
mentamongMACI usersto follow. By layeringon top of
PBS,we hopeto make resourcemanagementandresource
sharingmoreconvenientin thecommoncase.

PBSWebis intendedto simplify thetaskof submitting
jobsto RPsthatarecontrolledby ascheduler. It is assumed
that theapplicationsourcecodeitself is alreadydeveloped
andnow theuserwould like to run jobs. If theuseris only
runningexistingapplicationcode,thenhedoesnotneedto



Figure 2. PBSWeb: Main Page

know anything aboutinteractive shellsor how to develop
code.PBSWebmakesit easyfor remoteusersto accessan
RP without having to sharefilesystemsandwithout hav-
ing to log onto the systemjust to submita job. PBSWeb
alsomaintainsa per-userandper-applicationhistory (and
repository)of sourcecodefiles,jobssubmittedto PBS,and
pastpreferencesfor varioususer-selectablePBS parame-
ters(e.g.,time limits, emailaddresses)(Figure1).

To begin, an authorizeduserconnectsto the relevant
Web server. The server doesnot have to be on the same
systemaswherethejobswill eventuallyrun. OnePBSWeb
servercanbethefront-endto severaldifferentRPsor each
RP canrun its own instanceof the PBSWeb server. After
supplyingavalid usernameandpassword,themainpageis
presented(Figure2). Sincethe interfaceis basedon Web
pages,thereis noneedto understandsite-specificoperating
systemconfigurations.

To run a new application,the usermustfirst upload
the sourcecodethroughPBSWeb. To submita job using
anexisting application,theuserselectsthepreviously up-
loadedsourcecodefrom a menuandsubmitsthejob from
a Webpage.PBSWebsimplifiesthebuilding (i.e., compil-
ing) of the executablecodeon the target machineandthe
selectionof PBSparameterseitherbasedon theuser’shis-
tory (comparableto commandhistoriesin Unix shellssuch
astcsh) or reasonablesystemdefaults.

Four basicfunctionsarecurrently supportedby PB-
SWeb:

1. Uploadsourcecodein a tarfile.

2. Compilesourcecodealreadyuploadedto PBSWeb.

3. Submita job to PBS(with PBSWebassistingin writ-
ing thejob script).

4. Checkon jobsin thePBSqueue(s).

Figure 3. PBSWeb: Upload Tar File and Make

We expectthat functions(3) and(4) will be themost
frequentlyused.

To uploadatarfile, astandardWebbrowserfile selec-
tor is usedto specifythefile (not shown). By default,once
thetar file is sentfrom thebrowserto thePBSWebserver,
it is untaredandamake commandis issued.Theoutputis
reportedbackto theuser(Figure3). At this point, theuser
canproceedwith submittinga job, uploadanothertar file,
or returnto themainpage.

PBS (and similar systems)allow the userto control
the job usinga job script model. Therefore,the usermay
enter the commandsfor the script in the Execution
Commands text field (Figure4). For eachapplication(i.e.,
tar file) that hasbeenuploaded,PBSWeb remembersthe
recentlyexecutedcommandsso that the userdoesnot al-
wayshave to reproduceanddebug complicatedsequences



of operations.Instead,the usermay selectthe commands
using� theCommand History pop-upmenu.If theappli-
cationhasalreadybeenexecutedusingPBS,thenthepre-
viousjob scriptscanalsobeselectedusinga pop-upmenu
(not shown).

Whethercomposinga new job script or modifying a
previous job script, the user is free to selectamongany
of the valid parametersto PBS.For parameterswith only
a few valid options,radio buttonsareused,asshown for
thejob queueoptionsof dque, Sequential, andPar-
allel (Figure 4). Therefore,the userdoesnot have to
memorizeall of thevalid optionsfor, say, thejob queue.

More complicatedparametersthatcannotbeselected
from a menu,suchas the nameof the job and the email
addressto notify upon job completion,areenteredusing
text fields. Whenever possible,the text fields areinitially
filled in with reasonabledefault valuesor valuesprovided
by theuserin thepast.

Parameterswith many possibleoptions,suchas the
Number of processors to use for thejob,arese-
lectableusinga pop-upmenu. The goal is to reducethe
needto memorizewhatparametervaluesarevalidandwhat
valuesaregoodchoicesfor defaultsata givenRP.

When the job script parametershave beenfinalized,
the user clicks the Submit Job button and PBSWeb
calls the proper command(i.e., qsub) with the proper
command-lineargumentsandjob script(Figure5).

Again, excluding situationswhere compiles fail or
jobsterminateunderabnormalconditions,it is possiblefor
anauthorizeduserto upload,configure,andsubmitjobsto
PBSwithout ever loggingontotheRP’s system.Also, the
usercancheckthe statusof jobs in the PBSqueuesusing
thePBSWebinterface(Figure6).

Furthermore, with a properly designed makefile
(which is, admittedly, non-trivial), it is possiblefor a user
to utilize the samePBSWeb interfaceand tar file to run
jobson, say, theMACI SGI Origin 2000sin Edmontonor
theMACI Alpha Clusterin Calgary. In thefuture,thePB-
SWebinterfacewill beableto monitorthemachineloadsin
EdmontonandCalgaryandautomatically(with the user’s
permission)run a message-passingjob on either the SGI
or cluster, dependingon whichever will give the fastest
turnaroundtime.

3 Implementation of PBSWeb

A Web-basedapproachwas taken in designingthe
PBSWebinterfacebecauseWebbrowsersarepervasiveand
area consistentandplatform-independentway of interfac-
ing with PBS.HTML documents,an Apacheserver, and
CommonGateway Interface(CGI) scriptswritten in Perl,
arethebasicelementsof theimplementationof PBSWeb.

Again,therearefour mainoperationsin PBSWeband
eachis handledby a differentsetof CGI scripts:

Figure 4. PBSWeb: PBS Job Submission and
Script

1. Uploadfiles

2. Compileprograms

3. Generatescriptsandsubmitjobs

4. View thequeuestatusof ahost

First, the file uploadoperationis intended,typically,
to uploadtar files of programsourcecode.Uploadedfiles
are placedin a subdirectory(pbswebdir) of the user’s
homedirectory, which is reservedfor PBSWeb’s use.The
tar file is thenextractedto a separatesubdirectoryof pb-
swebdir. Therefore,theuserstill requiresanaccountand
homedirectoryat theRPto accesssecondarystorage.

Second,programcompilationishandledwith asimple
make command.Thus,successfulprogramcompilationis
dependentuponthe usersupplyinga suitablemakefile. If
the userdoesnot chooseto compile the sourcecodedi-
rectly after file uploadandextraction,compilationcanbe
performedatalatertimeby choosingthecompileprograms
operation.

Third, thescriptgenerationoperationis implemented
usinga HTML-basedform. Heretheusercanspecifyvar-
ious job options,suchasthe numberof processorsto use
and the queueto which the job is to be submitted,sim-
ply anddirectly, without having to rememberthe compli-
catedsyntaxof a PBSscript. Also, theform givessensible



Figure 5. PBSWeb: Job Submitted

default valuesfor the most commonlyusedPBS job op-
tions. After thePBSWebform hasbeensuitablyfilled out,
the data is sent to a CGI script, which generatesa valid
PBSscript. PBSWeb thensubmitsthegeneratedscripton
theuser’s behalfto thespecifiedPBSqueue,or thedefault
queueif a queueis not specified.

PBSWeb doesmore than simply provide a template
form to generatePBS job scripts; the systemalso keeps
a history of the job option parametersandexecutedcom-
mands.Thus,eachPBSWebuserhasacustomform which
containsa history of previous jobs. The usercan recall
previously-generatedscriptfilesandusethemasa basefor
thenext job submission.Of course,if a moreexperienced
PBSuserwishes,he may uploada customscript file and
useit to submita job or edit the uploadedscript andthen
submitit.

The multi-user functionality of PBSWeb is accom-
plishedby usingtheSecureShell (ssh). Whena userfirst
createsa PBSWebaccount,theusermustcopy PBSWeb’s
secureshellpublicidentitykey into theuser’spersonalau-
thorized keys file. ThisallowsPBSWebto assumethe
identityof thePBSWebuser. Whenanew accountis being
created,PBSWeb doesa secureshell login into the user’s
systemaccountandcreatesthepbswebdir subdirectory
for PBSWebto work in. All of theuser’suploadedfilesare
storedin this directory, alongwith history files andinfor-
mationaboutthedirectorystructure.

Eachprogramis givenits own subdirectoryunderthe
PBSWebworkingdirectory. All of thescriptfilesgenerated
by PBSWeb are stored in theseprogramsubdirectories.
Thus,eachoneof the user’s programshasits own unique
history. WhenPBSWebgeneratesacustomjob scriptform,
it opensasecureshellsessionto theuser’saccount,goesto
the directoryof the programthat is to be executed,looks

Figure 6. PBSWeb: Queue Status

for themostrecentlyusedscript,andloadstheparameters
of that script into the form as startingvalues. Also, the
usercanchooseto loadany of thepreviousscripts.When
submittinga job script,PBSWeb opensa secureshell ses-
sion to theuser’s systemaccountandautomaticallyissues
aqsub commandwith thescriptfile generatedby theform
script.

To decreasethe execution time of the CGI scripts,
sometemporaryfiles are createdin the PBSWeb’s home
directory;fewer secureshellsessionsto theuser’s account
have to be openedandmany of the intermediatestepsare
donewithin PBSWeb’s own directory. For example,when
a useruploadsa file or runsa PBSscript generationCGI,
the files are first saved in PBSWeb’s directory and then
transferedto theuser’spbswebdir by usingsecurecopy
(scp). After, thefiles arecopied,PBSWebdeletesthere-
latedfiles in its own directory.

Although the secureshell providesa reasonableand
safemechanismto allow the PBSWeb server to compile,
submit,andmonitor jobs on behalfof a user, we arestill
investigatingotheroptions.In principle,theability of PB-
SWebto run anycommandasanotheruseris too omnipo-
tent. Ideally, a systemthat combinesthe authentication
functionalityof thesecureshellandtheper-executableper-
missioncontrolof, say, sudo, would beideal.

4 Future Work

A numberof desirablefeaturesarecurrentlymissing
from PBSWeb. After betatestingin the MACI environ-
ment,it is our goal to make PBSWeb into anopen-source
developmentproject.

On a metacomputinglevel, thereis a needfor com-



plete end-to-endworkflow managementso that multiple
jobscanbeco-ordinatedto solve theoverall problem.For
example,a computationmay involve pre-processinginput
data, a simulation, and post-processingof the resultsas
threeseparatejobs. Eachjob is independentlysubmitted
to a batchscheduler, possiblyat differentRPs,but thejobs
arelinkedby their inter-dependence.

In theory, thedifferentHPCresourcesacrossa coun-
try canbeharnessedfor a singlecomputationaltask. This
conceptof metacomputing[1] hasattracteda lot of atten-
tion. Unfortunately, in practice,the lack of an appropri-
ateinfrastructuremakesit difficult to transparentlyperform
onephaseof a multi-phasecomputationon, say, a cluster
andanotherphaseon a shared-memorycomputer. Thus,
thepainfulreality is thatsharingresourcesgenerallymeans
that a useris allowed to log onto the differentmachines,
manuallytransferany neededdatafilesbetweenmachines,
manuallystartup the jobs, checkfor job completionand
the integrity of the output, and repeatfor eachplatform.
The many manualanderror-prone(both humanandtech-
nological) stepsrequiredto do this usually meansthat a
useralwaysstayson oneplatform and“makesdo.” This
defeatsthe purposeof sharingresourcesand can lead to
someoverloadedandotherunder-utilizedplatforms.

A long-termresearchgoal is the design,implemen-
tation, andevaluationof a workflow managerfor parallel
computations. Considerthe scenariowhere a computa-
tion is organizedas a pipeline or a sequenceof individ-
ual jobs. Ideally, if the pre-processingof input data is
near-embarrassinglyparallel,theclusterwould bethebest
platform for the computation.Then, the communication-
intensivephaseof thecomputationcanbeperformedonthe
parallelcomputer. From the user’s point of view, a job is
submittedto a workflow manager, which would thenauto-
maticallyinitiatethefirstphaseof thecomputation,transfer
the intermediateoutput to the secondhardwareplatform,
andtheninitiate thesecondphaseof thecomputation.The
useris only interestedin receiving the final output or an
errorreport.

The reliability of the end-to-endworkflow (i.e., start
of entirecomputationto endof computation)is an impor-
tantissue.Datavalidationbetweenphasesincreasesthere-
liability of theresultsby detectingcorrupteddatabeforeit
affectssubsequentphases.For example,in our experience,
althoughTCP/IPguaranteescorrectnetwork transfers,lost
connectionsandfull file systemscaneasily (andsilently)
truncatefiles and corrupt the workflow. Simple valida-
tion checksat theapplication-level areneeded.Abnormal
processterminationmustbedetectedandsubsequentjobs
mustbe suspendeduntil the situationis corrected. Inter-
mediatedatafilesmustbeloggedandarchivedsothatjobs
maybere-startedfrom themiddleof thepipeline(i.e., au-
tomaticcheckpointandrestart).

At the highestlevel of abstractionthereshouldbe a

graphicalWeb-basedinterfacethat allows a userto com-
municatewith theworkflow manager. Theuserconfigures
the workflow, specifiesthe input data, the computational
constraints,andthephasesusingtheuserinterface.At the
lowestlevels,theworkflow managerco-ordinatesthesite-
specificlocal schedulersandfile systemsat eachcomput-
ing site. The workflow managerreceivesa computational
taskin amannersimilar to abatchscheduler. But, theman-
ageris awareof the differentphasesof the computational
taskandit is awareof thedistributednatureof thecomput-
ing sites.Themanageris configuredto checkfor thelocal
availability andintegrity of thespecifiedinput data,it runs
optionaluser-specifiedscriptsto verify the pre- andpost-
conditionsanityof thedata,it submitstheappropriatejob
to thelocal scheduler, it checksthe integrity of theoutput,
andthenco-ordinateswith the local schedulerat the next
computingsite to performthe next phaseof the computa-
tion.

5 Related Work

There are a number of metacomputingresearch
projectsandsystems,includingLegion[6], Globus[5], Al-
batross[2], andNimrod/G[3]. BakerandFox survey some
of theprojectsandissues[1].

Our project targetsa higher-level of abstractionthan
mostof the currentprojects.For example,we arenot ad-
dressingthe issueof how to useheterogeneousand dis-
tributedresourceswithin a singleparallel job. Theserun-
time systemissuesare low-level problems. Instead,we
focus on the issuesof transparentdata sharingand co-
ordinationbetweenthe jobsandsites.We feel thata high-
levelapproachfocusesthescopeof thetechnicalchallenges
andmoredirectly addressesend-to-endissuesof reliabil-
ity andtransparency. It is easierto adaptto missingdata,
network outages,andoverloadedcomputersif a workflow
of jobs spansmultiple sites,insteadif a monolithic paral-
lel job spansmultiple sites.Notably, Nimrod/G[3] shares
thesehigh-level designgoalsandsupportsacomputational
economyapproachto resourcesharing.

We alsofeel thata high-level approachis betterable
to exploit existing technologiesandinfrastructureandpro-
ducea usablesystem. Although somecomponentsof a
workflow infrastructurealreadyexist in the form of dis-
tributedfile systems(e.g.,AFS)andbatchschedulers(e.g.,
PBS, LSF), they are not well integratednor transparent.
Settingup a distributedfile systemacrossmany sitesleads
to a variety of problemswith configurationandadminis-
tration, thus it may not alwaysbe possible. Political and
humanfactorsin co-ordinatingmultiple sitesmustalsobe
addressedwith flexible and customizablepolicies in the
workflow manager. However, if somesitessharean AFS
file system,thatcanbeexploitedby having thefile system
performthat datatransfersunderthe control of the work-



flow manager. Similarly, batchschedulershavemadegreat
progress� in schedulingindividual jobs,but they arenot de-
signedto handlecomputationaltasksrequiringa sequence
of jobs on differentcomputingplatformsandat different
sites. Thereare researchissueswith respectto efficient
global schedulingof tasksacrossa numberof distributed
computingsites,which would be an extensionof existing
work in optimizedbatchscheduling.

6 Concluding Remarks

In practice, effective high-performancecomputing
andmetacomputingrequiresa propersoftwareinfrastruc-
tureto supporttheworkflow managementof parallelcom-
putation.Currently, toomany manualanderror-pronesteps
are required to use HPC computing resources,whether
within oneRPor acrossmultiple RPs.

Somethingas simple as submittinga job to a batch
schedulerrequirestheuserto write a job controlscript,de-
fine several environmentvariables,andcall the right pro-
gramwith the right command-lineparameters.Resource
schedulers,suchas the PortableBatch System,are pow-
erful andnecessarysystems,but we feel that the learning
curve is too high. We alsofeel that thesystemshouldau-
tomaticallymanagejob control scriptsso that it is easyto
modify previouscontrolscriptsfor new runs.

Towardsthesegoals,we have developedan interface
to PBS called PBSWeb. By exploiting Web-basedtech-
nologies,PBSWeb makes it particularly easyto support
bothlocal andremoteusersusingdifferentplatforms.PB-
SWeb alsosupportsper-userandper-applicationjob con-
trol historiesandcoderepositoriesto makeit easierto man-
agelarge sequencesof productionruns. In the future, the
basicarchitectureandmodelof PBSWebwill beextended
to supporttheautomaticselectionof computingresources
and the co-ordinationof computationsthat spanmultiple
computingcenters.

Acknowledgements

Thankyou to Jośe NelsonAmaral, JonathanSchaef-
fer, andDuaneSzafronfor theirvaluablecommentsonthis
paper.

Thank you to the NaturalSciencesandEngineering
ResearchCouncil of Canada(NSERC), the Multimedia
AdvancedComputationalInfrastructure(MACI) project,
C3 (througha PioneerProject),the Universityof Alberta,
andthe CanadaFoundationfor Innovation (CFI) for their
financialsupportof this research.

References

[1] M. Baker and G. Fox. Metacomputing:Harnessing
informal supercomputers.In RajkumarBuyya,editor,
High PerformanceCluster Computing: Architectures
andSystems,Volume1, pages154–185.PrenticeHall
PTR,UpperSaddleRiver, New Jersey, 1999.

[2] H.E. Bal, A. Plaat,T. Kielmann, J. Maassen,R. van
Nieuwpoort,andR. Veldema. Parallel computingon
wide-areaclusters:the Albatrossproject. In Extreme
Linux Workshop, pages20–24, Monterey, CA, June
1999.

[3] R. Buyya,D. Abramson,andJ.Giddy. Nimrod/G:An
architecturefor aresourcemanagementandscheduling
systemin a globalcomputationalgrid. In Proceedings
of the 4th International Conferenceon High Perfor-
manceComputingin Asia-Pacific Region (HPC Asia
2000), Beijing, China,2000.

[4] C3.ca.http://www.c3.ca/.

[5] I. FosterandC. Kesselman.Globus: A metacomput-
ing infrastructuretoolkit. The International Journal
of SupercomputerApplicationsandHigh Performance
Computing, 11(2):115–128,Summer1997.

[6] A.S. Grimshaw andW.A. Wulf. TheLegion vision of
a worldwidevirtual computer. Communicationsof the
ACM, 40(1):39–45,January1997.

[7] MACI. Multimedia advancedcomputationalinfras-
tructure.http://www.maci.ca/.

[8] Platform Computing, Inc. Load sharing facility.
http://www.platform.com/.

[9] Veridian Systems. Portable batch system.
http://www.openpbs.org/.


