
Fast Parallel Association Rule Mining Without Candidacy Generation

Osmar R. Za¨ıane Mohammad El-Hajj Paul Lu
University of Alberta, Edmonton, Alberta, Canada
{zaiane, mohammad, paullu}@cs.ualberta.ca

Abstract

In this paper we introduce a new parallel algorithm
MLFPT (Multiple Local Frequent Pattern Tree) [11] for
parallel mining of frequent patterns, based on FP-growth
mining, that uses only two full I/O scans of the database,
eliminating the need for generating the candidate items, and
distributing the work fairly among processors. We have de-
vised partitioning strategies at different stages of the mining
process to achieve near optimal balancing between proces-
sors. We have successfully tested our algorithm on datasets
larger than 50 million transactions.

1. Introduction
Association rule mining algorithms currently proposed

in the literature are not sufficient for extremely large
datasets and new solutions still have to be found. In par-
ticular there is a need for algorithms that do not depend on
high computation and repeated I/O scans. Parallelization is
a viable solution. However, distributing and balancing the
mining tasks between the processors without jeopardizing
the global solution is not trivial. The problem of mining as-
sociation rules over market basket analysis was introduced
in [1]. Association rules are not limited to market basket
analysis, but the analysis of sales, or what is known as bas-
ket data, is the typical application often used for illustration.
The problem consists of finding associations between items
or itemsets in transactional data. The data could be retail
sales in the form of customer transactions or even medi-
cal images [12]. Association rules have been shown to be
useful for other applications such as recommender systems,
diagnosis, decision support, telecommunication, etc. This
association-mining task can be broken into two steps: A
step for finding all frequent k-itemsets known for its associ-
ated extreme I/O and a straightforward step for generating
confident rules from the frequent itemsets.

1.1 Related Work

Several algorithms have been proposed in the literature
to address the problem of mining association rules. One
of the key algorithms, which seems to be the most pop-

ular in many applications for enumerating frequent item-
sets, is the apriori algorithm [3] the foundation of most
known algorithms whether sequential or parallel. Park et
al. have proposed the Dynamic Hashing and Pruning al-
gorithm (DHP) [9]. However, the trimming and the pruning
properties caused some problems that made it impractical in
many cases [13]. The partitioning algorithm proposed in [5]
reduced the I/O cost dramatically . However, this method
has problems in cases of high dimensional itemsets, and it
also suffers from the high false positives of frequent items.
FP-growth, was recently proposed by Han et al. [8]. This
algorithm creates a relatively compact tree-structure that al-
leviates the multi-scan problem and improves the candidate
itemset generation. The algorithm requires only two full I/O
scans for the dataset. Our approach presented in this paper
is based on this idea. In spite of the significance of the asso-
ciation rule mining and in particular the generation of fre-
quent itemsets, few advances have been made on paralleliz-
ing association rule mining algorithms [6, 2]. Most of the
work on parallelizing association rules mining on Shared-
memory MultiProcessor (SMP) architecture was based on
apriori-like algorithms.

Parthasarathy et al. [10] have written an excellent re-
cent survey on parallel association rule mining with shared-
memory architecture covering most trends, challenges and
approaches adopted for parallel data mining. All ap-
proaches spelled out and compared in this extensive sur-
vey are apriori-based. These methods not only require re-
peated scans of the dataset, they also generate extremely
large numbers of candidate sets easily approaching1030

candidates in common cases [7].

1.2 Contribution

In this paper, we introduce a new parallel association
rules mining algorithm MLFPT, which is based on the FP-
growth algorithm [8]. We have implemented this algorithm
on a 64 processor SGI 2400 Origin machine, where all ex-
periments were tested using high dimensionality data that
are of a factor of hundreds of thousands of items, and trans-
actional sizes that range in tens of gigabytes. A special opti-
mization step is added to achieve better load balancing with



the goal of distributing the work fairly among processors for
the mining process

2 Multiple Local Parallel Trees

The MLFPT approach we propose consists of two main
stages. Stage one is the construction of the parallel frequent
pattern trees (one for each processor) and stage two is the
actual mining of these data structures, much like the FP-
growth algorithm. However, in order to avoid false neg-
atives, where locally infrequent itemsets are pruned inad-
vertently while they are frequent globally, we need global
counters. Though global counters necessitate locking mech-
anisms for mutual exclusion, that would add significant
overhead and waiting time. Our approach with interlinked
local counters avoids the need for locking. Thus, we evade
the famous ping-pong problem in parallel programs.

2.1 Construction of the Multiple Local Parallel
Trees

The goal of this stage is to build the compact data struc-
tures called Multiple Local Parallel Trees (MLPT). This
construction is done in two phases, where each phase re-
quires a full I/O scan for the dataset.

A first initial scan of the database identifies the frequent
1-itemsets. In order to enumerate the frequent items effi-
ciently, we divide the datasets among the available proces-
sors. Each processor is given an approximately equal num-
ber of transactions to read and analyze. As a result, the
dataset is split inp equal sizes. Each processor locally enu-
merates the items appearing in the transactions at hand. Af-
ter enumeration of local occurences , a global count is nec-
essary to identify the frequent items. This count is done in
parallel where each processor is allocated an equal number
of items to sum their local supports into global count. Fi-
nally, in a sequential phase infrequent items with a support
less than the support threshold are weeded out and the re-
maining frequent items are sorted by their frequency. This
list is organized in a table, called header table, where the
items and their respective global support are stored along
with pointers to the first occurrence of the item in each fre-
quent pattern tree. Phase 2 would construct a frequent pat-
tern tree for each available processor.

Phase 2 of constructing the MLPT structures is the ac-
tual building of the individual local trees. This phase re-
quires a second complete I/O scan from the dataset where
each processor reads the same number of transactions as
in the first phase. Using these transactions, each proces-
sor builds its own frequent pattern tree that starts with a
null root. For each transaction read by a processor only the
set of frequent items present in the header table is collected
and sorted in descending order according to their frequency.

TID Items Bought Processor Number

1 A, B, C, D, E
2 F, B, D, E, G → P0
3 B, D, A, E, G
4 A, B, F, G, D
5 B, F, D, G, K → P1
6 A, B, F, G, D
7 A, R, M, K, O
8 B, F, G, A, D → P2
9 A, B, F, M, O

Table 1. Transactional database example.

A
B
C
D
E
F
G
K
R
M

2
3
1
3
3
1
2
0
0
0
0

3
2
0
1
0
2
1
1
1
2
2O

2
3
0
3
0
3
3
1
0
0
0

Item
P0 P1 P2

Counters

Step 1

P0

P1

P2

A
B
C
D
E
F
G
K
R
M
O

7
8
1
7
3
6
6
2
1
2
2

Item
Counter
GlobalProc. #

Step 2

A
B
D
F
G

7
8
7
6
6

Item Counter
Global

Step 3

B
A
D
F
G

8
7
7
6
6

Item Counter
Global

Step 4

Figure 1. Steps of phase 1.

These sorted transaction items are used in constructing the
local FP-Trees as follows: for the first item on the sorted
transactional dataset, check if it exists as one of the children
of the root. If it exists then increment the support for this
node. Otherwise, add a new node for this item as a child
for the root node with 1 as support. Then, consider the cur-
rent item node as the newly temporary root and repeat the
same procedure with the next item on the sorted transaction.
During the process of adding any new item-node to a given
local FP-Tree of a processorp, a link is maintained between
this item-node in the tree and its entry in the global header
table corresponding to processorp. The header table holds
as many pointers per item as there are available processors.

For illustration, we use an example with the transactions
shown in Table 1. Let the number of available processors
be 3 and the minimum support threshold set to 4. The four
steps in phase 1 are shown in Figure 1 and Figure 2 shows
the result of the tree building process. For the sake of sim-
plicity, only links from the items A and B are drawn from
the header table.

2.2 Mining Parallel Frequent items using MLPT
Trees

Building the trees in the first stage is not a final goal but a
means with the purpose of uncovering all frequent patterns
without resorting to additional scans of the data. The min-
ing process starts with a bottom up traversal of the nodes
on the MLPT structures, where each processor mines fairly
equal amounts of nodes. The distribution of this traversal
work is predefined by a relatively small sequential step that
precedes the mining process. This step sums the global sup-

2



8

7

6

7

6

Root 0

D:1

B:3

A:2

D:2

G:1 G:1

F:1

B:3

A:2

D:2

F:2

G:2

D:1

F:1

G:1

Root 1

F:1

Root 2

A:1 B:2

A:2

F:1

D:1

G:1

B 0

1

2

A 0

1

2

D

F

G

0

1

2

0

1

2

0

1

2

Figure 2. Phase 2 of the construction of the
MLPT structure.

ports for all items and divides them by the number of pro-
cessors to find the average number of occurrences that ought
to be traversed by each processor. IfA is this found average,
this sequential step goes over the sorted list of items by their
respective support and assigns items consecutively for each
processors until the cumulated support is equal or greater
than the averageA. At this stage all frequent pattern trees
are shared by all processors. The task of the processors,
once assigned some items, is to generate what is called a
conditional pattern base starting from their respective items
in the header table. A conditional pattern base is a list of
items that occur before a certain item in the frequent pattern
tree up to the root of that tree in addition to the minimum
support of all the item supports along the list. Since an item
cannot only occur in many trees but also in many branches
of the same tree, many conditional pattern bases could be
generated for the same item. Merging all these conditional
pattern bases of the same item yields the frequent string,
a string also called conditional FP-Tree, that contains fre-
quent itemsets and their support in the presence of a given
item. The merge is based on the items in the patterns and
all the supports of the same items are added up in the same
manner as in [8]. If the support of an item is less than the
minimum support threshold, it is not added in the frequent
string.

Table 2 gives all conditional bases and conditional FP-
Trees generated from the example in Table 1.

3 Experimental Results

A shared memory SGI Origin 2400 with 64 processors
was used to conduct the experiments. We used synthetic
transactional databases generated using the IBM Quest syn-
thetic data generator [4]. The sizes of the input databases
vary from 1 million transactions to 50 million using dimen-
sions that are multiples of hundreds of thousands. Each

Items Conditional Pattern Base Conditional FP-Tree

G

(D:1, A:1, B:1)

(B:6, D:6, F:5, A:4)/G
(F:1, D:1, B:1)
(F:2, D:2, A:2, B:2)
(F:1, D:1, B:1)
(F:1, D:1, A:1, B:1)

F

(D:1, B:1)

(B:6, D:5)/F
(D:2, A:2, B:2)
(D:1, B:1)
(D:1, A:1, B:1)
(A:1, B:1)

D

(A:2, B:2)

(B:7, A:5)/D
(B:1)
(A:2, B:2)
(B:1)
(A:1, B:1)

A
(B2)

(B:6)/A(B:2)
(B:2)

B (∅)

Table 2. Conditional Pattern Bases and the
Conditional FPtrees (mining process).

0

5000

10000

15000

20000

25000

30000

1 proc. 4 proc. 8 proc. 16 proc. 32 proc. 48 proc. 64 proc.

Number of Processors

T
im

e
 in

 s
e

co
nd

s

without I/O Adjustement With I/O Adjustement

Figure 3. Comparison of execution time for 5
million transactions with and without I/O ad-
justement.

of these transactions has at least 12 items preceded by a
unique transactional ID. The largest dataset is in the order
10 Gbytes.

In our experiments we studied the MLFPT algorithm
with 4, 8, 16, 32, 48 and 64 processors and compared it to its
sequential version. The sequential version was, of course,
implemented without the summation phase and with only
one tree. Speedup measures the performance of parallel ex-
ecution compared to the sequential execution:Sp = T1/Tp

whereSp is the speedup achieved withp processors,T1 is
the sequential execution time andTp is the execution time
usingp processors.

I/O access is normally of an “embarrassingly parallel”
nature. For instance, when data is stored on parallel disks
with dedicated channels, twice as many processors should
read twice as much data. In other words, with appropriate
hardware, if it takest time for one processor to read some
data, it should taket/p for p processors to cover the same
data.

Since our parallel machine had a sequential disk with one

3



shared head, to assess the real speedup of MLFPT, which
does 2 I/O scans of the data regardless of the number of
processors, we adjusted the I/O time assuming an “embar-
rassingly parallel” I/O access.

In our results we decided to adjust the I/O time of our
algorithm as follows: The I/O time for parallel execution
was estimated using the I/O time for sequential execution
divided by the number of processors used. For instance,
if using p processors the total execution time isT and the
isolated I/O time ist, the execution time with I/O adjusted
is calculatedT ′ = T−t+(S/p), whereS is the isolated I/O
time for a sequential execution. In other words, we replaced
the 2 scans I/O time recorded with the expected real parallel
I/O time.

Due to the space limitation we will only present figure 3
that depicts the significant time reduction with the increase
of processors when mining 5 million transactions.

MLFPT operations are divided into two stages where
most of the computation in the MLFPT algorithm is done
during building the MLPT trees, and then mining them.
Building the frequent pattern trees, which utilize most of the
processing time, is shown to be of “embarrassingly parallel”
nature and this indeed was the reason for the several-fold
improvements achieved as we increased the number of pro-
cessors in our experiments. This is due to the fact that the
work is evenly partitioned among the processors and each
unit of work is completely independent of each other where
each processor builds a sub-tree representing its partition of
transactions. There is no ping-pong effect where processors
are waiting for each other.

Our experiments have shown that this creation and min-
ing is almost linearly proportional to the number of pro-
cessors and the size of the transactional datasets, where the
speedup of the MLFPT algorithm increases as the problem
size increases. These results suggest that the MLFPT algo-
rithm would achieve speedups for extremely large datasets
as well.

4 Conclusion and Future Work

In this paper, we have introduced an efficient parallel
implementation of an FP-Tree-based association rule min-
ing algorithm and have proposed a solution for load bal-
ancing among processors and resource sharing with min-
imum mutual-exclusion locking. We have discussed our
experiments with this new parallel algorithm, MLFPT, for
mining frequent patterns without candidate generation. The
MLFPT algorithm overcomes the major drawbacks of par-
allel association rule mining algorithms derived from apri-
ori, in particular the need fork I/O passes over the data.

Our experiments showed that with I/O adjusted, the
MLFPT algorithm could achieve an encouraging many-fold
speedup improvement.

The implementation of our algorithm and the experi-
ments conducted were on a shared memory and shared hard
drive architecture. We have recently acquired a cluster with
8 dual processor nodes and we plan to investigate the same
approach with shared nothing architecture and devise a new
protocol for sharing global resources while minimizing the
message passing overhead. We are in the process of experi-
menting our algorithms with up to 1 billion transactions.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining associa-
tion rules between sets of items in large databases. InProc.
1993 ACM-SIGMOD Int. Conf. Management of Data, pages
207–216, Washington, D.C., May 1993.

[2] R. Agrawal and J. C. Shafer. Parallel mining of association
rules: Design, implementation, and experience.IEEE Trans.
Knowledge and Data Engineering, 8:962–969, 1996.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining as-
sociation rules. InProc. 1994 Int. Conf. Very Large Data
Bases, pages 487–499, Santiago, Chile, September 1994.

[4] I. Almaden. Quest synthetic data generation code.
http://www.almaden.ibm.com/cs/quest/syndata.html.

[5] S. Brin, R. Motwani, J. D. Ullman, and S.Tsur. Dynamic
itemset counting and implication rules for market basket
data. InProc. 1997 ACM-SIGMOD Int. Conf. Management
of Data, pages 255–264, Tucson, Arizona, May 1997.

[6] D. Cheung, J. Han, V. Ng, A. Fu, and Y. Fu. A fast dis-
tributed algorithm for mining association rules. InProc.
1996 Int. Conf. Parallel and Distributed Information Sys-
tems, pages 31–44, Miami Beach, Florida, Dec. 1996.

[7] J. Han and M. Kamber.Data Mining, Concepts and Tech-
niques. Morgan Kaufmann, 2001.

[8] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. InACM-SIGMOD, Dallas, 2000.

[9] J. Park, M. Chen, and P. Yu. An effective hash-based al-
gorithm for mining association rules. InProc. 1995 ACM-
SIGMOD Int. Conf. Management of Data, pages 175–186,
San Jose, CA, May 1995.

[10] S. Parthasarathy, M. J. Zaki, and M. Ogihara. Parallel
data mining for association rules on shared-memory sys-
tems. Knowledge and Information Systems: An Interna-
tional Journal, 3(1):1–29, February 2001.

[11] O. R. Za¨ıane, M. El-Hajj, and P. Lu. Fast paral-
lel association rule mining without candidacy genera-
tion. Technical Report TR01-12, Department of Com-
puting Science, University of Alberta, Canada, August
2001. ftp://ftp.cs.ualberta.ca/pub/TechReports/2001/TR01-
12/TR01-12.pdf.

[12] O. R. Za¨ıane, J. Han, and H. Zhu. Mining recurrent items in
multimedia with progressive resolution refinement. InInt.
Conf. on Data Engineering (ICDE’2000), pages 461–470,
San Diego, CA, February 2000.

[13] M. J. Zaki. Parallel and distributed association mining: A
survey.IEEE Concurrency, Special Issue on Parallel Mech-
anisms for Data Mining, 7(4):14–25, December 1999.

4


