
Memory-Efficient A* Heuristics for Multiple Sequence Alignment

Matthew McNaughton and Paul Lu and Jonathan Schaeffer and Duane Szafron
Department of Computing Science

University of Alberta
Edmonton, Alberta
Canada T6G 2E8

fmcnaught,paullu,jonathan,duaneg@cs.ualberta.ca

Abstract

The time and space needs of an A* search are strongly in-
fluenced by the quality of the heuristic evaluation function.
Usually there is a trade-off since better heuristics may re-
quire more time and/or space to evaluate. Multiple sequence
alignment is an important application for single-agent search.
The traditional heuristic uses multiple pairwise alignments
that require relatively little space. Three-way alignments
produce better heuristics, but they are not used in practice
due to the large space requirements. This paper presents a
memory-efficient way to represent three-way heuristics as an
octree. The required portions of the octree are computed on
demand. The octree-supported three-way heuristics result in
such a substantial reduction to the size of the A* open list that
they offset the additional space and time requirements for the
three-way alignments. The resulting multiple sequence align-
ments are both faster and use less memory than using A* with
traditional pairwise heuristics.

Introduction
The problem of aligning s DNA/protein sequences of (av-
erage) length t is one of the most important problems in
computational biology today. Obtaining the optimal align-
ment can be expressed as a dynamic programming problem
over a lattice. However, a naı̈ve solution to this problem
has time and space complexities of O(ts), which are pro-
hibitively large for real-world alignments. There are sev-
eral algorithms in the literature that can reduce the space
needs to O(ts�1) but this is still unacceptably large. The
space issue has received attention from both the computing
science (Hirschberg 1975; Korf 1999; Korf & Zhang 2000;
Yoshizumi, Miura, & Ishida 2000) and the biology commu-
nities (Spouge 1989; Myers & Miller 1988; Chao, Hardison,
& Miller 1994).

A* (and its variants) have been used for this problem. The
exponential time concerns are dampened by the elimination
of irrelevant portions of the search space. The need for space
is determined by the size of the open list, and it varies con-
siderably with the quality of the heuristic function (h) used
by A*. Nevertheless, it is not unusual for A* to rapidly con-
sume all available memory.

Copyright c
 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Most space-related single-agent-search research concen-
trates on the search algorithm. This is appealing since it
can generally be done in an application-independent way.
In contrast, evaluation function discussions tend to be either
too general to be useful, or too specific so that it is appli-
cation dependent. However, a better h results in a more
focused A* search and, hence, a smaller open list. Using
space to improve the heuristic evaluation function quality in
exchange for a (presumably) smaller open list is an impor-
tant issue. For example, the pattern database work applied to
the sliding-tile puzzles used large tables of heuristic values
to reduce the search tree sizes by many orders of magnitude
(Culberson & Schaeffer 1998; Korf 2000).

This paper shows how the dynamic (re-)computation of
heuristic information can reduce the space requirements for
A*-based search. Specifically, multiple sequence alignment
(MSA) is used to illustrate these ideas. The standard heuris-
tic used is the sum of pairwise alignments (see Section 2).
Using three-way alignments can improve the quality of the
evaluation function, but this is usually not feasible because
of the space requirements. In this paper we show how an oc-
tree can be used to dynamically calculate relevant portions of
three-way (or more) alignments. By saving this information
in a storage-efficient way and recomputing parts as needed,
the overall space requirements for large multiple alignment
problems are dramatically reduced.

Note that the memory technique presented in this pa-
per provides space/time tradeoffs for computing A* bounds.
The search algorithm—A* or one of its variants—is orthog-
onal. Hence, one could use one of the recent AI algorithms
for solving these types of problems, such as Divide-and-
Conquer Frontier Search (Korf & Zhang 2000) or Partial-
Expansion A* (Yoshizumi, Miura, & Ishida 2000), to further
enhance performance.

This research makes the following contributions:

1. a new, memory-efficient algorithm for computing and re-
computing heuristics for lattice computations on an as-
needed basis,

2. application of this algorithm to the optimal MSA problem,
reducing both the time and memory requirements needed
for large alignments, and

3. a case study showing that for heuristic functions which
require a significant amount of space, a better evaluation



function can lead to both a time and space improvement.

Although this paper uses the MSA problem as a sample ap-
plication, the ideas are not restricted to this problem. The
message of this paper, that the investment of time and space
for the generation of better quality heuristics can result in a
win/win situation, has received little attention in the litera-
ture.

Section 2 motivates the multiple sequence alignment
problem and the need for better quality heuristics. Section
3 introduces the octree and an algorithm for selecting a set
of heuristics for the search. Section 4 analyzes the perfor-
mance of our algorithm. Finally, Section 5 presents future
work.

Multiple Sequence Alignment
Each DNA or protein sequence is represented by a sequence
of letters over a restricted alphabet. For example, DNA uses
A, T, G, and C to represent the four nucleic acids. During se-
quence alignment, gaps (denoted by -) can be inserted into
the sequences to make more letters in the sequences align
with each other. An optimal alignment is one that minimizes
a scoring function that assigns scores to corresponding let-
ters and/or gaps in the sequences. A simple scoring function
assigns -2 for an exact match, +1 for a mismatch and +2
for each gap. For example, the optimal alignment of the se-
quences s1 = GATAGTC and s3 = AGGTGCA is:

-GATAGTC
AGGT-GCA

since this alignment has a score of +1(3 matches, 3 mis-
matches, and 2 gaps) (Table 1(c)) and all other alignments
have a higher score.

There are efficient dynamic programming (DP) solutions
to this problem. Given two sequences of length j and k, the
naı̈ve DP algorithms require an array of size O(j�k). They
require timeO(j�k), to compute the array score entries, and
then timeO(j+k) to identify the minimum-score path in the
matrix. Unfortunately, O(j � k) space can be limiting, es-
pecially given that a DNA sequence can be millions of char-
acters long. Even aligning two (small) sequences of 10,000
requires a prohibitive amount of storage (i.e., 100,000,000
entries).

Hirschberg was first to report a way of aligning two
sequences using linear space (Hirschberg 1975), by re-
computing some values in a classic space-time tradeoff.

In multiple sequence alignment, three or more se-
quences must be aligned, so even with Hirschberg-style one-
dimensional space reductions, DP algorithms still require
too much storage. There are two approaches to solving
the multiple-alignment problem. The most popular algo-
rithms used by biologists are based on a series of progres-
sive pairwise alignments to generate non-optimal multiple
alignments (e.g., DCA (Reinert, Stoye, & Will 2000) and
CLUSTAL W (Thompson, Higgins, & Gibson 1994)). In
contrast, the large space requirement of the optimal mul-
tiple alignment problem is viewed as a research challenge
by AI researchers interested in heuristic search (Korf 1999;
Korf & Zhang 2000; Yoshizumi, Miura, & Ishida 2000).

s

s 3 s 4

s 21

(d)

s

s 3 s 4

s 21

(e)

s

s 3 s 4

s 21

(a) (c)(b)

s

s 3 s 4

s 21 s

s 3 s 4

s 21

Figure 1: Covering a 4-way MSA with 2-way (solid line)
and 3-way (dashed line) Alignments.

s1; s2; s3; s4 s1; s2 s1; s3 s1; s2; s3

s1 GATAGT-C- GATAGTC -GATAGTC GATAG-TC-

s2 -ATAG-GC- -ATAGGC -ATAG-GC-

s3 -A-GGTGCA AGGT-GCA -A-GGTGCA

s4 -A-ATTGCA

(a) (b) (c) (d)

Table 1: Optimal 4-way MSA, Example 2-way Alignments,
and an Example 3-way MSA.

In A*, we want the lowest score for a goal node, where
f(n) = g(n)+h(n) of node n, g(n) is the known score from
the root node to n, and h(n) is a heuristic score from n to
the goal node. For the heuristic h(n) to be admissible, for all
nodes n, it must never be more than the actual value h�(n).
As the search approaches a goal node, f(n) approaches the
actual score from below. For search efficiency, h(n) should
be a tight bound on h�(n).

Assuming there are s sequences to align, one technique
for computing h(n) is to align strict subsets of the original
s sequences and combine the scores of the subsets. We call
the s-way MSA the full-sized alignment and k-way align-
ments, where k < s, lower-dimensional optimal alignments
(Reinert & Lermen 2000).

It is a theorem that the (locally) optimal alignment of
any lower-dimensional k-way alignment of the sequences,
where k < s, has a score that is no worse than the score
attributed to the same k sequences in the full-sized s-way
MSA (Carrillo & Lipman 1988). In particular, one way to
construct h(n) is to sum the optimal alignment scores of
each pair of sequences. By the preceding, this sum is guar-
anteed to be an admissible value. To improve the quality of
h(n) and still be admissible, we may incorporate a larger,
3-way MSA.

Consider a 4-way MSA where s1 = GATAGTC, s2 =
ATAGGC, s3 = AGGTGCA, and s4 = AATTGCA. We can rep-
resent the four sequences as the nodes of a graph, where the
arcs are alignments between specific sequences (Figure 1).
We denote the 3-way MSA of s1; s2; and s3 as s1; s2; s3
and similarly for 2-way alignments. The standard definition
for the score of a 4-way MSA is the sum of the constituent
pairwise alignments. In other words, the scoring function
for a 4-way MSA is composed of only 2-way alignments



and does not include any 3-way alignment scoring functions.
Therefore, the optimal 4-way MSA is the alignment with the
lowest score when all possible pairwise alignments are con-
sidered. In particular, for a 4-way MSA, there are

�
4

2

�
= 6

different pairwise alignments that cover the four sequences
(Figure 1(a), solid lines).

In our example, the optimal MSA s1; s2; s3; s4 has a score
of -12 and the alignment is shown in Table 1(a). Note how, in
the context of a 4-way MSA, the alignment between s1 and
s3 (in Table 1(a)) is different than s1; s3 (Table 1(c)). The
locally optimal s1; s3 is not necessarily globally optimal for
the 4-way MSA.

Now, suppose we want to compute the heuristic value
h(n) for the root node of the search tree (i.e., g(root) = 0)
by summing the optimal alignment scores of each pair of
sequences. s1; s2 (Table 1(b)) has a score of -7, and s1; s3
(Table 1(c)) has a score of 1. s1; s4, s2; s3, s2; s4, and s3; s4
have scores of -2, -1, -1, and -8, respectively (not shown).
The sum of all the optimal pairwise alignments is -18 (Fig-
ure 1(a)): h(n) =

P
1�i<j�4 si; sj = �18. As discussed

earlier, the optimal 4-way MSA has an actual score of -12,
but h(n) = �18 is still an admissible heuristic value.

To improve the quality of h(n) and still be admissible,
we can incorporate a larger, 3-way MSA into our exam-
ple. Therefore, instead of requiring six 2-way alignments
to cover our 4-way problem (Figure 1(a)), we only need one
3-way and three 2-way alignments (Figure 1(b)). In fact, for
a 4-way MSA, there are

�
4

3

�
= 4 possible 3-way MSAs and

their corresponding 2-way alignments that cover the graph
(Figure 1(b), (c), (d), (e)). Intuitively, a 3-way MSA better
captures global trade-offs when aligning multiple pairs of
sequences, and therefore 3-way MSAs should provide better
h(n) values than 2-way alignments.

Consider the optimal 3-way MSA s1; s2; s3 (Table 1(d)),
which has has a score of -4. Using this 3-way MSA, we
estimate h(n) to be -15: h(n) = s1; s2; s3+s1; s4+s2; s4+
s3; s4 = �15 (Figure 1(b)). Although -15 with a single 3-
way MSA is still not ideal, it is a better h(n) than the score
of -18 obtained using only 2-way alignments. The closer
h(n) comes to the optimal value, the smaller the A* search
tree becomes.

Since different choices of 3-way MSAs can result in dif-
ferent values of h(n), the quality of the heuristic can de-
pend on the specific choice of the 3-way MSA. For exam-
ple, if we had used s1; s2; s4 = �10, we would have ob-
tained h(n) = �18 (Figure 1(c)). For s1; s3; s4 = �6,
h(n) = �15 (Figure 1(d)). Finally, for s2; s3; s4 = �6,
h(n) = �18 (Figure 1(e)). Therefore, for our example,
using either s1; s2; s3 or s1; s3; s4 would give us the best
h(n) = �15. However, choosing either of the two remain-
ing possible 3-way MSAs results in a h(n) estimate that is
no better than using only 2-way alignments.

We know of only one work that attempts to use a 3-way
alignment heuristic (Reinert & Lermen 2000). However,
they only use part of a single 3-way alignment (due to stor-
age constraints).

Representing Heuristics as an Octree
A sequence alignment heuristic that uses 3-way alignments
is desirable but requires too much storage (t3 for strings
of length t). We use an octree to efficiently represent the
three-dimensional (3D) dynamic programming tables of 3-
way alignments. An octree stores only those portions of the
table that are needed by the search, and efficiently regen-
erates omitted portions as they are needed. Octrees have
been used traditionally in CAD, GIS, fluid dynamics simu-
lations, and other 3D image processing applications to com-
press grid representations of space containing large uniform
volumes.

An octree is a tree data structure that represents a 3D
space using rectangular blocks (Figure 2). Each node in the
octree represents a rectangular portion of the full dynamic
programming table for three sequences. An internal node
has eight children, each of which represents one octant (cor-
ner) of its parent’s space in more detail. A leaf node is ei-
ther ‘empty’ or ‘full’. A ‘full’ leaf node contains all of the
values of the dynamic programming matrix for the portion
of the space it represents. An ‘empty’ leaf node contains
only the values over the surface of the volume, so that the
contents may be regenerated as needed. Obviously, the root
node represents the entire table. The pseudo-code for octree
construction is in Figure 3.

Figure 2: Octree Data Structure.

At the start of the A* search, the octree contains only in-
ternal nodes and ‘empty’ leaf nodes. As table values are re-
quested by the search, ‘empty’ leaves containing the queried
position are converted to internal nodes with new children.
Children for areas beneath a threshold volume � are created
as ‘full’ nodes, and those above, as ‘empty’ nodes. ‘Full’
children can answer queries without further computation.

Our implementation uses 10; 000 for the leaf type thresh-
old � . Experiments indicate that this is a good trade-off be-
tween the fixed memory overhead for each node, the storage
of unneeded table cells in excessively large ‘full’ nodes, and
the time to traverse deep trees.

As Figure 1 shows, many 3-way alignments may be used.
The program must decide which 2- and 3-way alignments to
use for its heuristic function. To maintain admissibility, opti-
mal 3-way alignments used in the heuristic are not permitted
to have a pair of sequences in common, because each pair of
sequences must contribute a score to the heuristic at most
once (eg., in a set of five sequences, only two optimal 3-way
alignments may be used). We determine which combination
is best by evaluating each candidate heuristic at the root node
and picking the one with the highest score. This heuristic is



Lookup(node,x,y,z):
if node is Internal then
octant o = octantFor(node.bounds,x,y,z)
return Lookup(node.child[o],x,y,z)

else if node is Full Leaf then
return node.table[x][y][z]

else if node is Empty Leaf then
Node n = allocateInternal(node.bounds)
addChildren(n)
// regenerate table from node.surface
node = n
return Lookup(node,x,y,z)

endif
end Lookup

addChildren(node):
for each octant o of node.bounds
if volume(o) > tau then

node.child[o] = allocateEmptyLeaf(o)
else

node.child[o] = allocateFullLeaf(o)
endif

endfor
end addChildren

Figure 3: Pseudo-code for Octree Construction.

used for the rest of the search. Experiments indicate that for
two such heuristics h1 and h2, there is a good correlation
between the fact h1(r) > h2(r) and h1(n) > h2(n) for the
root node r and any node n. That is, the heuristic which is
best at the root node tends to be better at other nodes in the
search space.

The octree conserves memory by storing a leaf as ‘full’
only once a table cell from that leaf’s volume is demanded
by the A* search. In the worst case that the search demands
table values from every region of the space, the octree would
be forced to store the entire table, and if carefully imple-
mented to take advantage of the A* search’s access pattern,
would recompute the table once.

The octree may be made to use O(t2)-bounded storage
by fixing the number of ‘full’ leaves available and recycling
them in LRU-order. For our experiments we allowed un-
bounded storage for the octree and never freed ‘full’ leaves
once constructed.

Note that the octree structure can be generalized to
any number of dimensions, with the two-dimensional case
known as a quadtree.

The idea of doing dynamic computations to improve
heuristic evaluation quality is not new. Examples include
hierarchical A* (Holte 1996) and pattern search (Junghanns
& Schaeffer 2001).

Experiments
Experiments were done using the Needleman-Wunsch
global optimal alignment algorithm (Needleman & Wun-
sch 1970) using the well-known Dayhoff PAM250 (Day-
hoff, Schwartz, & Orcutt 1979) scoring matrix with a lin-
ear gap cost of 8. For simplicity (and comparison with
the other computing-science related work), leading/trailing

blanks and affine gaps are not included in our implementa-
tion. The program uses A* without any enhancements. The
program is coded in C++ and was compiled with GNU CC
version 2.95.2. The experiments were run on a Sun E/420
with 4 GB of RAM and 4 CPUs running at 450 MHz. Runs
were stopped if they used more than 2 GB of RAM. The
octree used a parameter setting of � = 10; 000.

The experiments tested the following heuristic evaluation
functions: Pairwise (uses the conventional sum of all pairs
of sequences heuristic score), 1 Full (uses a single 3-way
alignment, storing the entire matrix in memory), 2 Full (uses
two 3-way alignments, storing both matrices in memory), 1
Octree (uses a single 3-way alignment stored as an octree),
and 2 Octree (uses two 3-way alignments, each stored as an
octree).

A data set of 74 real biological sequences was used
(Gallin 2001) with an average sequence length of 300. Ran-
dom combinations of five sequences were selected to see
which MSAs could be completed with the given space con-
straint. There were 161 5-way alignments attempted, of
which 41 were solved by both pairwise and octree versions,
27 were solved only by the octree version, and 93 were not
solved by any version. Note that there was no instance where
a pairwise heuristic solved an alignment but the octree did
not.

0

500

1000

1500

2000

2500

3000

3500

-8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0

T
im

e(
S

ec
on

ds
)

Score

Pairwise Heuristic w/ Failed Runs
Pairwise Heuristic w/o Failed Runs
2-Octree Heuristic

Figure 4: 5-way MSA Time.

Figure 4 shows the time used by the various A* searches
as a function of the alignment score; Figure 5 shows the
memory usage. The more negative the score is, the better
the alignment. The data has been grouped into buckets of
1,000. For example, all multiple alignments with a score
between -8000 and -7000 were averaged into a single data
point at -8000.

Figure 4 shows a positive correlation between the optimal
alignment score and the ease of computation. For sequences
with good optimal alignments (low scores), the pairwise
heuristic does a reasonable job of estimating the score and
the searches are small. For these easy alignments, the pair-
wise time may be marginally faster than the octree because
the cost of doing the 3-way alignment is not offset by the



0

500

1000

1500

2000

2500

-8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0

M
em

or
y 

U
sa

ge
 (

M
eg

ab
yt

es
)

Score

Pairwise Heuristic w/ Failed Runs
Pairwise Heuristic w/o Failed Runs
2-Octree Heuristic

Figure 5: 5-way MSA Memory.

savings in the A* search. As the quality of the score de-
creases (ie., the score increases), it becomes harder to find
the optimal solution. Beyond scores of -6000, the octree
dominates the pairwise results, with the performance gap
widening as the difficulty of the alignment increases. For
the -3000 bucket, the run time is roughly three times faster
for the data points where the pairwise heuristic completed.
The figure also shows an estimate of the pairwise time that
includes the cases where the octree finished but the pairwise
did not. Here the pairwise was conservatively assumed to
take exactly 2 GB and 3500 seconds (roughly the time it
took to exhaust memory). Clearly this is a lower bound, and
the performance gap is larger than what is portrayed in the
figure.

Even though the octree has the additional preprocess-
ing overhead of the 3-way alignments and the cost of re-
computing values, it still runs faster. For large problems, the
cost of the more expensive heuristic is more than offset by
the much smaller A* search.

The total memory used by the octree program is signif-
icantly smaller than the memory used by the pairwise pro-
gram (see Figure 5). Although the two 3-way octrees require
more memory than the pairwise heuristic tables, this is offset
by the substantially smaller A* open list that it produces.

As Figures 4 and 5 show, the time and memory for a
5-way sequence alignment grows with the difficulty of the
alignment. Extrapolating these curves indicates that there is
an exponential growth. This is expected, since the A* search
grows exponentially in the length of the solution path. The
octrees’s better-informed heuristics dampen the exponential
growth.

A more detailed study can be seen of the (-3000,-2000)
bucket (the bucket with the most data points). Figure 6
shows a breakdown of the alignment times for this bucket.
Figure 7 shows the number of A* nodes considered, bro-
ken down by number of open and closed nodes stored at the
end of the search. The first bar expresses only open nodes
because failed program runs did not report this information,
and the total number of nodes given here is an estimate based

on the running time. Figure 8 shows the total memory re-
quirements (heuristics and open list). There are some inter-
esting points to notice in these graphs:

1. The 2 octree implementation is almost 4 times faster than
the pairwise, and more than 6-fold faster if one includes
the pairwise data points that did not complete. These
numbers are similar for the memory usage. This is a clear
win/win situation for the octree. The program runs sub-
stantially faster and uses substantially less memory.

2. A full matrix is slightly faster than the octree. Compu-
tationally, the matrix should be faster since it has no re-
computations. However, the more compact octree gets
more favorable cache performance, almost completely
offsetting the re-computation costs.

3. Predictably, the octree uses less memory than the full ma-
trix. It is interesting to note that the total memory usage
for a search employing two full matrices or two octrees
is less than that of one of either! Clearly, they use more
memory to store the heuristics, but the better quality eval-
uation function reduces the size of the open list, resulting
in an overall reduction in space.

4. Compared to the pairwise scoring function, two 3-way
alignments reduce the open list size by at least a factor
of 4.

Pair w/
Failed
Runs

Pair w/o
Failed
Runs

1 Full 1 Octree 2 Full 2 Octree

T
im

e(
se

co
nd

s)

0

500

1000

1500

2000

Figure 6: Time (-3000 bucket).

Pair w/
Failed
Runs

Pair w/o
Failed
Runs

1 Full 1 Octree 2 Full 2 Octree

N
um

be
r 

of
 N

od
es

 (
in

 m
ill

io
ns

)

5

10

15

20

C
om

bi
ne

d 
E

st
im

at
e

Open Nodes
Closed Nodes

Figure 7: Search Space (-3000 bucket).



Pair w/
Failed
Runs

Pair w/o
Failed
Runs

1 Full 1 Octree 2 Full 2 Octree

M
em

or
y 

U
sa

ge
(M

eg
ab

yt
es

)

200

400

600

800

1000

1200

Figure 8: Memory (-3000 bucket).

The octree’s space savings come from a two-fold time
investment: computing the set of heuristics to use at the
start of the search, and dynamically computing octree val-
ues throughout the search. For the data sets used, our im-
plementation requires approximately 45 seconds to initially
compute the two dynamic programming matrices required
by the 2 octree heuristic set. It initially caches three lev-
els of the tree, that is, down to empty leaves of side length
one-quarter that of the root node.

Over 10 runs, an average of 20% of the table is recom-
puted by the octree, at an estimated time cost of 9 seconds.
Accurate measurement is confounded by the favorable cache
effects resulting from smaller dynamic programming tables
that hold spatially close table values closer together in mem-
ory, and the unfavorable slowdown from the several recur-
sive calls required to reach the table.

It is interesting to note that our implementation requires
70 seconds to compute and store the full matrix, 30% longer
than the O(t2)-space initial generation of the table for the
octree. We posit that poor cache behavior accounts for this
slower speed.

We have solved a few difficult 6-way alignments. The re-
sults are not reported here since the (predictably) large pair-
wise runs could not complete. For one data set, the pair-
wise alignment heuristic gave an average score that was 558
from the optimal score. Enhancing the heuristic evaluation
to include a single 3-way alignment reduced this to 437,
and two 3-way alignments lowered it to 320. For a 6-way
alignment (but not a 5-way), it is possible to use three 3-
way alignments in the evaluation function. Here the average
score is off by only 265. In effect, the use of three 3-way
alignments decreases the error in the evaluation function by
more than a factor of 2. Korf’s analysis of IDA* shows that
halving the error in h results in halving the exponent of the
search growth (Korf & Reid 1998). IDA*’s search growth
is asymptotically the same as A*. Hence, the improvements
in h roughly correspond to reducing the search effort to the
square root in size.

Search effort is strongly tied to the sequences’ degree of
similarity (Figure 4) and the final alignment score: simi-
lar sequences yield alignments with low scores, few gaps
and mismatches, and the search space examined is smaller
than for dissimilar sequences that have optimal alignments
with higher scores and many gaps and mismatches. Conse-

quently, performance numbers for any MSA algorithm need
to be qualified by the quality of the alignment. For example,
this paper reports 5- and 6-way alignments. It would be easy
to dismiss these results, citing previous work that reports 7-
and 8-way alignments (Yoshizumi, Miura, & Ishida 2000).
However, the sequences aligned by (Yoshizumi, Miura, &
Ishida 2000) are in the “easy” category where the octrees are
of relatively little value since the search using the pairwise
heuristic can be completed before a 3-way heuristic table
can be computed (we have done the experiments).

Future Work
This paper does not use the cited work of partial-expansion
A* (Yoshizumi, Miura, & Ishida 2000) because it would
have complicated measuring the benefits of the octree
heuristic. Partial-expansion A* works by delaying putting
child nodes with poor scores onto the priority queue, with
the hope that the goal node will be found before they need
to be re-examined. Its efficacy is dependent upon the ability
of the heuristic to discriminate between nodes on the op-
timal path and irrelevant nodes. We implemented PEA*,
and found that the space savings and time costs realized var-
ied with the difficulty of the search and with the quality of
the heuristic. On a difficult problem instance with optimal
score -669, the 2-octree heuristic saved 62% of the search
space when using a cutoff of 0 instead of a cutoff at infin-
ity(normal A*), but on an easier instance with score -7605,
it saved 87%. In the latter case the search took nearly 10
times as long to perform when using the cutoff at 0. In
addition, we found that the 2-octree heuristic realized pro-
portionally more savings than the pairwise heuristic – where
the 2-octree heuristic saved 62% of the search space on the
difficult instance and took ten times as long, the pairwise
heuristic saved only 39%, and took twenty times as long.
This pattern was repeated on the easy instance. This makes
sense because using two three-way alignments in the heuris-
tic should allow better discrimination between nodes. Note
that both instances had 5 sequences, meaning they each had
a branching factor of 31. The lesson seems to be that PEA*
can realize substantial benefits with a strong heuristic, but
suffers when the problem becomes difficult. However, more
work is required to conclusively characterize the situations
where PEA* provides a benefit. Regardless, its use would
have complicated our analysis, though it seems likely that it
would have portrayed the octree in an even more favourable
light compared to the pairwise heuristic.

It has been difficult to compare the performance of search
techniques for sequence alignment that have come out of
the AI community because researchers have made up their
own data sets rather than using a standard benchmark of
sequences. Future results will be published against BAl-
iBASE (Thompson, Plewniak, & Poch 1999), a benchmark
set of alignments that covers a broad range of lengths and
degrees of similarity of interest to biologists, with hand-
verified reference alignments. Initial results indicate that
the linear gap cost function used in this paper and in others
from the AI community (Yoshizumi, Miura, & Ishida 2000;
Korf & Zhang 2000) does not typically produce high-quality
optimal alignments. Our future work will use the quasi-



natural affine gap model (Altschul 1989) which requires a
larger search space but produces better-quality alignments
according to initial tests on BAliBASE.

Conclusions
This paper illustrates that single-problem instances can ben-
efit from computing (large) heuristic tables. The cost in time
and space for the heuristics can be subsumed by the time and
space savings from a smaller open list. Many single-agent
search applications use generic heuristics that cover a wide
range of problem instances. Generic heuristics seem best,
since the cost of computing the heuristic can be amortized
over multiple problems. However, as the MSA problem
shows, a time and space investment in a problem-instance-
specific heuristic can provide a more focused, faster, and
space-efficient solution. This happens because there are two
ways to use memory in an A* search: the open/closed lists,
and heuristic evaluation function tables. This is not a zero-
sum game. Storage can be used (and reused) to improve
evaluation function quality. For the MSA application, the
octree provides a nice framework for increasing the quality
of a heuristic evaluation using a reasonable amount of space.

Acknowledgments
Financial support was provided by the Natural Sciences and
Engineering Research Council of Canada (NSERC), Al-
berta’s Informatics Circle of Research Excellence (iCORE)
and the Canadian Protein Engineering Network of Centres
of Excellence (PENCE). The authors would like to thank
Dr. Robert Holte for his comments.

References
Altschul, S. F. 1989. Gap costs for multiple sequence align-
ment. J. of Theoretical Biology 138:297–309.

Carrillo, H., and Lipman, D. 1988. The multiple sequence
alignment problem in biology. SIAM J. on Applied Mathe-
matics 48(5):1073–1082.

Chao, K.; Hardison, R.; and Miller, W. 1994. Recent de-
velopments in linear-space alignment methods: A survey.
J. of Computational Biology 1(4):271–291.

Culberson, J., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.

Dayhoff, M. O.; Schwartz, R. M.; and Orcutt, B. C. 1979.
A model of evolutionary change in proteins. In Dayhoff,
M. O., ed., Atlas of Protein Structure, volume 5(Suppl. 3).
Silver Spring, Md.: National Biomedical Reasearch Foun-
dataion. 345–352.

Gallin, W. 2001. A selection of
potassium channel protein sequences.
http://www.cs.ualberta.ca/ bioinfo/sequences/pchannel/.

Hirschberg, D. 1975. A linear space algorithm for comput-
ing maximal common subexpressions. CACM 18(6):341–
343.

Holte, R. 1996. Hierarchical A*: Searching abstraction
hierarchies efficiently. AAAI 530–535.

Junghanns, A., and Schaeffer, J. 2001. Enhancing single-
agent search using domain knowledge. Artificial Intelli-
gence 129(1-2):219–251.
Korf, R., and Reid, M. 1998. Complexity analysis of ad-
missible heuristic search. AAAI 305–310.
Korf, R., and Zhang, W. 2000. Divide-and-conquer frontier
search applied to optimal sequence alignment. AAAI 910–
916.
Korf, R. 1999. Divide-and-conquer bidirectional search:
First results. IJCAI 1184–1189.
Korf, R. 2000. Recent progress in the design and analysis
of admissible heuristic functions. AAAI 1165–1170.
Myers, E., and Miller, W. 1988. Optimal alignments in
linear space. CABIOS 4(1):11–17.
Needleman, S., and Wunsch, C. 1970. A general method
applicable to the search for similarities in the amino acid
sequences of two proteins. J. of Molecular Biology 48:443–
453.
Reinert, K., and Lermen, M. 2000. The practical use of the
A* algorithm for exact multiple sequence alignment. J. of
Computational Biology 7(5):655–671.
Reinert, K.; Stoye, J.; and Will, T. 2000. An iterative
method for faster sum-of-pairs multiple sequence align-
ment. Bioinformatics 16(9):808–814.
Spouge, J. 1989. Speeding up dynamic programming algo-
rithms for finding optimal lattice paths. SIAM J. of Applied
Mathematics 49(5):1552–1566.
Thompson, J.; Higgins, D.; and Gibson, T. 1994.
CLUSTAL W: Improving the sensitivity of progressive
multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice.
Nucleic Acids Research 22:4673–4680.
Thompson, J.; Plewniak, F.; and Poch, O. 1999. BAl-
iBASE: a benchmark alignment database for the evaluation
of multiple alignment programs. Bioinformatics 15(1):87–
88.
Yoshizumi, T.; Miura, T.; and Ishida, T. 2000. A* with par-
tial expansion for large branching factor problems. AAAI
923–929.


