
Multi -Dispatch in theJava Virtual Machine: Design and Implementation

ChristopherDutchyn
�

Paul Lu
�

DuaneSzafron
�

StevenBromling
�

Wade Holst
�

�
Dept. of Computing Science

University of Alberta
Edmonton,Alberta,Canada,T6G2E8�
dutchyn,paullu,duane,bromling � @cs.ualberta.ca

�
Dept.of Computer Science

TheUniversity of Western Ontario
London,Ontario, Canada, N6A5B7

wade@csd.uwo.ca

Abstract

Mainstream object-oriented languages, such as C++
and Java1, provide only a restrictedform of polymor-
phic methods, namely uni-receiver dispatch. In com-
mon programming situations, developers must work
around this limitation. We describe how to extend the
Java Virtual Machine to support multi-dispatchand ex-
amine the complications that Java imposes on multi-
dispatch in practice. Our technique avoids changesto
theJava programming language itself, maintains source
code and library compatibility, and isolatesthe perfor-
mance penalty and semantic changes of multi-method
dispatchto theprogramsectionswhich useit. We have
micro-benchmark and application-level performancere-
sults for a dynamic Most Specific Appli cable (MSA)
dispatcher, a framework-based Single Receiver Projec-
tions (SRP)dispatcher, andatunedSRPdispatcher. Our
general-purposetechniqueprovidessmaller dispatchla-
tency than programmer-written double-dispatch code
with equivalent functionali ty.

1 In tr oduction

Object-oriented(OO) languagesprovide powerful tools
for expressing computations. One key abstraction is the
concept of a typehierarchywhich describestherelation-
ships among types. Objectsrepresentinstancesof these
differenttypes.Most existing object-orientedlanguages
require each object variable to have a programmer-
assigned static type. Thecompiler usesthis information
to recognize some coding errors. The principle of sub-
stitutability mandatesthat in any locationwhere typeT
is expected, any sub-typeof T is acceptable.But, substi-
tutability allows that object variable to have a different
(but related)dynamic typeat runtime.

Another key facility found in OO languagesis method
1Java isa trademarkof SunMicrosystems,Inc.

selectionbasedupon the typesof the arguments. This
method selection process is known as dispatch. It can
occur at compile-time or at execution-time. In the for-
mer case, where only the static type information is
available, we have static dispatch (method overload-
ing). The latter case is known as dynamic dispatch
(dynamic method overriding or virtual functions) and
object-oriented languages leverage it to provide poly-
morphism — the execution of type-specific program
code.

We candivide OO languagesinto two broad categories
based upon how many argumentsare considereddur-
ing dispatch. Uni-dispatch languagesselecta method
based upon the type of one distinguished argument;
multi-dispatch languages consider more than one, and
potentially all, of the arguments at dispatch time. For
example, Smalltalk [14] is a uni-dispatch language.
CLOS [23] and Cecil [6] are multi-dispatch languages.
Other terms, like multiple dispatch, are usedin the liter-
ature. However, thetermmultiple dispatchis confusing
sinceit canmeaneither successive uni-dispatchesor a
single multi-dispatch.In fact, in this paper, we compare
multi-dispatchto double dispatch, which usestwo uni-
dispatches.

C++ [24] and Java [15] are dynamic uni-dispatch lan-
guages. However, for both languages, the compiler
considers the static types of all arguments when com-
piling method invocations. Therefore, we can regard
theselanguagesassupporting staticmulti-dispatch.Fig-
ure1 depictsboth dynamicuni-dispatchand staticmulti-
dispatchin Java.

Uni-dispatch limits themethod selection processto con-
sideronly a single argument, usually the receiver. This
is asubstantiallimitation and standard programming id-
ioms exist to overcomethis restriction. As a motivation
for multi-dispatch, we describe one programming idiom
that demonstratesthe needfor multi-dispatch,describe

class Point �
int x, y;
void draw(Canvas c) � // Point-specific code �
void translate(int t) � x+=t; y+=t; �
void translate(int tX,int tY) � x+=tX; y+=tY; �
�
class ColorPoint extends Point �
Color c;
void draw(Canvas C) � // ColorPoint code �
�
// same static type, different dynamic types
Point Pp = new Point();
Point Pc = new ColorPoint();

// static multi-dispatch
Pp.translate(5); // one int version
Pp.translate(1,2); // two int version

// dynamic uni-dispatch
Pp.draw(aCanvas); // Point::draw()
Pc.draw(aCanvas); // ColorPoint::draw()

Figure1: DispatchTechniquesin Java

how it can be replacedby multi-dispatch, list the ad-
vantagesof using multi-dispatchto replacetheidiomatic
code,and measure the cost of usingmulti-dispatchwith
one of our current multi-dispatchalgorithms.

1.1 Double Dispatch

Doubledispatch occurswhenamethod explicitly checks
an argument type and executesdifferent code as a re-
sult of this check. Double dispatchis il lustratedin Fig-
ure2(a)(from Sun’sAWT classes)wheretheprocess-
Event(AWTEvent) method mustprocessevents in dif-
ferent ways, since event objectsareinstancesof dif fer-
ent classes.Sinceall of theeventsareplaced in a queue
whosestatic element type is AWTEvent, the compiler
losesthemorespecificdynamictypeinformation. When
anelement is removedfromthequeuefor processing, its
dynamic type mustbe explicitly checkedto pick theap-
propriateaction. This is anexample of thewell-known
container problem[5].

Double dispatchsuffers from a number of disadvan-
tages. First, double dispatch has the overhead of in-
voking a second method. Second, the double-dispatch
program is longer and more complex; this provides
more opportunity for coding errors. Third, the double-
dispatch program is more difficult to maintain since
adding a new event type requires not only the code to
handle the new event, but another cascaded else if

statement.

The needfor double dispatchdevelopsnaturally in sev-
eral common situations.Consider binary operations [4],
suchasthecompareTo(Object) methoddefinedin in-
terfaceComparable. The programmer must ascertain

the type of the Object argument before continuing to
perform a type-specific comparison. Another common
usefor doubledispatchis in drag-and-drop applications,
wheretheresultof auseraction dependsonboththedata
object draggedandon thetarget object. A generic drag-
and-drop schema forces the programmer to test data
typesand re-dispatchto amorespecific method. A third
example is in event-driven programming. As we saw
in Figure 2, applications are written usingbaseclasses
suchasComponent andEvent, but we need to take ac-
tion basedupon the specific typesof both Component

and Event. Indeed, theneedfor multi-dispatchis ubiq-
uitous enough that two of the original design patterns,
Visitor and Strategy, arework-arounds to supply multi-
dispatchfunctionality within uni-dispatch languages.

Consider how the AWT example could be re-written if
dynamic multi-dispatchwasavailable in Java. An equiv-
alent program,partially usingmulti-dispatch, would re-
semble Figure 2(b). For clarity, we have not completely
converted the code to usemulti-dispatch; we maintain
thecasestatement and double dispatchto selectamong
MouseEvent categories. A more complete factoring
of MouseEvent into MouseButtonEvent and Mouse-

MotionEvent would eliminate the remaining double
dispatch, resulting in a Full Multi-Dispatch version of
the code. The dynamic multi-dispatcher will selectthe
correct method at runtime based upon the dispatchable
arguments in addition to the receiverargument (the in-
stanceof Component). Individual component typescan
still overridethemethodsthataccept specificeventtypes
(e.g. KeyEvent, FocusEvent) and will do sowithout
invoking thedouble-dispatchcode.

The multi-dispatch version is shorter and clearer.
However, it requires the Java Virtual Machine
(JVM) [20] to directly dispatch an Event to the
correct processEvent(AWTEvent) method. Our
modified JVM provides this facili ty and correctly
executes the multi-dispatch code discussedabove.
Furthermore, Table 1, a subsetof Table 4, shows that
multi-dispatch is substantially faster than interpreted
double dispatch and even faster than JIT-ed double
dispatch.Note that the numbersin Table 1 are based on
single-threadedcode.

Our experience with the Swing GUI classes[26] rein-
forcesour belief that double dispatchin AWT is a sig-
nificant factor in Swingapplications. First, Swing does
not operatewithout AWT; instead eachAWTEvent is
accepted by a Swing JComponent. Therefore, every
mouse-click andkey-press is doubledispatchedthrough
AWT into Swing. Next, Swing type-checks the event
and double dispatchesagain. Internall y, Swing avoids
further double dispatchby coding the AWTEvent type

package java.awt;

class Component �
// double dispatch events to subComponent
void processEvent(AWTEvent e) �
if (e instanceof FocusEvent) �
processFocusEvent((FocusEvent)e);�
else if (e instanceof MouseEvent) �
switch (e.getID()) �
case MouseEvent.MOUSE PRESSED:
...

case MouseEvent.MOUSE EXITED:
processMouseEvent((MouseEvent)e);
break;

case MouseEvent.MOUSE MOVED:
case MouseEvent.MOUSE DRAGGED:
processMouseMotionEvent((MouseEvent)e);
break;��
else if (e instanceof KeyEvent) �
processKeyEvent((KeyEvent)e);�
else if (e instanceof ComponentEvent) �
processComponentEvent((ComponentEvent)e);�
else if (e instanceof InputMethodEvent) �
processInputMethodEvent((InputMethodEvent)e);�

// other events ignored by Component�
void processFocusEvent(FocusEvent e) � ... �
void processMouseEvent(MouseEvent e) � ... �
void processMouseMotionEvent(MouseEvent e) � ... �
void processKeyEvent(KeyEvent e) � ... �
void processComponentEvent(ComponentEvent e) � ... �
void processInputMethodEvent(InputMethodEvent e) � ... ��

(a) Double Dispatch in Java

package java.awt;

class Component �
void processEvent(AWTEvent e) � ... �

void processEvent(MouseEvent e) �
switch (e.getID()) �
case MouseEvent.MOUSE PRESSED:
...

case MouseEvent.MOUSE EXITED:
processMouseEvent((MouseEvent)e);
break;

case MouseEvent.MOUSE MOVED:
case MouseEvent.MOUSE DRAGGED:
processMouseMotionEvent((MouseEvent)e);
break;��

void processEvent(FocusEvent e) � ... �
void processMouseEvent(MouseEvent e) � ... �
void processMouseMotionEvent(MouseEvent e) � ... �
void processEvent(KeyEvent e) � ... �
void processEvent(ComponentEvent e) � ... �
void processEvent(InputMethodEvent e) � ... ��

(b) Equivalent Codein Mu lti- Dispatch Java

Figure2: Double vs. Multi-Dispatchin Java

into the selector(e.g. fireInternalEvent()). De-
spitethe limitations this imposeson theprogrammer, it
is clear that double dispatch is still the standard tech-
niquein Swing aswell.

Also, a multi-dispatch JVM could benefit other lan-
guages. For example, Standard ML, Scheme,and Eiffel
have implementations which generateJVM-compatible
binaryfiles. Extending theselanguagesto includemulti-
dispatch semantics becomes straightforward. Unlike
techniquesbased on sourcecode translation, our multi-
dispatchJVM canbedirectly used by other languages.

The research contributionsof this paperare:

1. Thedesign andimplementationof anextendedJava
Virtual Machine thatsupportsarbitrary-arity multi-
dispatchwith the properties:

(a) TheJava syntax is not modified.

(b) TheJava compiler is not modified.

(c) The programmer can select which classes
should usemulti-dispatch.

(d) The performance and semantics of uni-
dispatchmethodsarenot affected.

(e) Theexisting classlibrariesare not affected.

(f) Theexisting reflection API is preserved.

2. The introduction of a dynamic version of Java’s
staticmulti-dispatchalgorithm.

3. Thefirstperformance resultsfor table-basedmulti-
dispatchtechniquesin amainstreamlanguage.

Webegin by reviewing some importantdetails about the
uni-dispatchJVM. Next, we sketch our JVM modifica-
tions to enable multi-dispatch. Then, we presentexperi-
mental results for implementationsof our multi-dispatch
techniques. This is followed by a discussionof several
complex issues thatapracticalmulti-dispatchJava must
address anda description of some of the detailsof our
implementation. Finally, we closewith a description of
futurework andareview of relatedapproachesto multi-
dispatch.

2 Background

The Java Programming Language [15] is a static
multi-dispatch,dynamic uni-dispatch,dynamic loading

Dispatch Interpreter OpenJIT
Type Time in � s () Normalized Time in � s () Normalized

Double 0.91 (0.00) 1.00 0.48 (0.01) 1.00
Multi- 0.34 (0.00) 0.37 0.32 (0.01) 0.67
Full Multi- 0.32 (0.00) 0.35 0.32 (0.00) 0.67

Table 1: AWT EventDispatchComparison
(Call -siteDispatch Time in microseconds,Subsetof Table4)

object-oriented language. Our primary designgoal is
to extend the dynamic method selection to optionally
and efficiently consider all arguments,without affecting
thesyntax of the languageor any othersemantics. Our
secondary goalsare to retain the dynamic and reflective
propertiesof Java.

In order to meet thesegoals, we chose to modify the
JVM [20] implementation, rather than modifying the
programming language itself. Java programsarecom-
piled by javac (or other compiler) into sequencesof
bytecodes — primitive operations of a simple stack-
based computer. Thesebytecodesare interpreted by a
JVM written for each hardware platform. We began
with the classicVM (now known as the Research Vir-
tual Machine2) written in C anddistributedby Sun Mi-
crosystems,Inc. OtherJVM implementations exist and
many include just-in-time (JIT) compiler technology to
enhancetheinterpretation speedat runtimeby replacing
the bytecodes with equivalent native machine instruc-
tions. At present, our modified JVM is compatiblewith
theOpenJIT 1.1.15 [21] compiler.

Before we look at how to implement multi-dispatchin
the virtual machine, we first need to understand the bi-
nary representation that the virtual machine executes,
how method invocations are translated into the virtual
machine code,and how theJVM actually dispatchesthe
call-sites.

2.1 Java Classfile format

The JVM readsthe bytecodes,along with some neces-
sarysymbolic informationfrom abinary representation,
known asa .class file. Each.class file contains a
symbol table for one class,a description of its super-
classes, anda series of method descriptions containing
theactual bytecodesto interpret. We leveragethesym-
bolic information, called the constant pool, to imple-
ment multi-dispatch.

Figure 3 shows the layout of the constantpool for the
ColorPoint classshown in Figure 1.

2TheResearch Virtual machinewas initially released astheclassic
reference VM. Sun later renamedit the Exact VM. With the advent
of theHotSpot VM, theclassicVM wasrenamedagain, becoming the
Research VM.

Conceptually, theconstant pool consistsof anarraycon-
taining text strings and taggedreferencesto text strings.
In Figure 3, classPoint is representedby a tagentry at
location1 thatindicatesthat it is aCLASS tagand thatwe
should look atconstant pool location 2 for thenametext.
Then,theconstant pool containsthetext string “Point”
at location 2. Therefore, a classsymbol requires two
constantpool entries.Methodreferencesaresimilar, ex-
cept they require fiveconstant pool entries.

CLASS

CLASS
TEXT

METHOD

METHOD
NAME&TYPE

NAME&TYPE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

#7
#1

#4

#2

#1
#11 #12

#10
"()V"
"<init>"

#8
#6

"(LCanvas;)V"

"Point"

"ColorPoint

"draw"

Point::draw:(LCanvas;)V

NAME&TYPE #14 #15
"c"
"Color"

Point::<init>:()V

used for our field

ColorPoint

 and for our method

 and for our initializer

TEXT

TEXT
TEXT

TEXT
TEXT

TEXT
TEXT

Point

Figure 3: A SimpleConstant Pool

In our example,constant pool location9 containsthetag
declaring that it contains a METHOD. It referencesthe
CLASS tag at location1, to define the statictype of the
classcontaining the method to be invoked. In this case,
the class happensto be Point itself, but, more often,
this is not thecase.The METHOD entry alsoreferences
theNAME-AND-TYPE entry at location 10. This NAME-
AND-TYPE entry containspointersto text entries at lo-
cations 11 and 12. The first location, 11, contains the
method name,“draw”. The second location, 12, con-
tainsan encodedsignature “(LCanvas;)V” describing
thenumber of argumentsto themethod, their types, and
thereturn typefrom themethod. In our example, wesee
one classargument with name “Canvas” and that the
return type is void.

2.2 Static Multi -Dispatch in Javac

The Java compiler converts source code into a binary
representation. When it encounters a method invoca-
tion, javac must emit a constant pool entry that de-
scribes the method to be invoked. It must provide an

exactdescription, so that, for instance,thetwo trans-

late(...) methods in Point canbe distinguished at
runtime. Therefore, it must examine the typesof the
arguments at a call-site and selectbetweenthem. This
selectionprocess,which considersthe statictypesof all
arguments,canbe viewedasa staticmulti-dispatch.

The Java Language Specification, 2nd Edition
(JLS) [15] provides an explicit algorithm for static
multi-dispatchcalledMost Specific Applicable (MSA).
At a call-site, the compiler begins with a list of all
methods implemented and inherited by the (static)
receiver type. Through a series of culling operations,
thecompiler reducesthesetof methodsdown to asingle
most specific method. The first operation removes
methods with the wrong name, methods that accept
an incorrect number of arguments, and methods that
arenot accessiblefrom the call-site. This latter group
includes privatemethods calledfrom another classand
protected methodscalledfrom outsideof the package.

Next, any methods which are not compatible with the
static type of the arguments are also removed. This
testreliesupon testingwidening conversions, whereone
type
����� can be widenedto another
��������� if and only
if
����� is thesametypeas
��������� or asubtypeof
��������� .
For example,aFocusEvent can bewidenedto anAWT-
Event becausethe latter is a super-type of the for-
mer3. The opposite is not valid: an AWTEvent cannot
be widenedto a FocusEvent; indeed a type-castfrom
AWTEvent to FocusEvent would need to be a type-
checkednarrowing conversion.

Finally, javac attemptsto locatethesinglemostspecific
method among the remaining subsetof statically appli-
cable methods. One method M ���� �! #"%$&$%$#"'�� �! (*) is con-
sidered more specific thanM ���,+%! %"#$%$%$%"-�.+/! (0) if and only
if each argument type
21#3 4 can be widened to
�5�3 4 for
each 687:9<;�=�>�>�>�=�?2@ , and for some A ,
 5�3 B cannot be
widened to
�1#3 B . In effect, this means that any set of
argumentsacceptableto M ��� +&! "#$&$%$%"'� +/! () is alsoaccept-
able to M ���� �! #"&$%$%$%"��� �! (*) , but not vice versa.

Given the subsetof applicable methods,javac selects
one CED as its tentatively most specific. It thenchecks
eachother candidatemethod CGF by testing whether its
arguments can be widenedto the corresponding argu-
ment in CED . If this is successful, then C F is at least
asspecific as C D ; the compiler adopts CGF as the new
tentatively most specificmethod — the method CED is
culled from the candidate list. If the first test,whether
C F be widenedto C D , is unsuccessful,then the com-
piler checksthe other direction: can C D be widened to

3The JLS separately recognizes identity conversions (a Focus-

Event can be converted into a FocusEvent). Javac does not dis-
tinguish them, sowedo thesame for our exposition.

C F . If so, thenthe compiler drops C F from the candi-
date list.

Unfortunately, both testscanfail. To illustratethis, con-
siderthe first two methods in Figure 4. The first argu-
ment of the first method (ColorPoint) canbe widened
to the type of the first argument of the second method
(Point). But the opposite is true for the second ar-
gument of each method. If we invoke colorBox with
two ColorPoint arguments, bothmethodsapply. If the
third methodwasnot present,wewould haveanambigu-
ousmethod error. Thethird method, taking two Color-
Points, removes the ambiguity because it is more spe-
cific thanbothof theothermethods.It allowsbothof the
othersto beculled, giving asinglemostspecific method.

colorBox(ColorPoint p1, Point p2) � ... �
colorBox(Point p1, ColorPoint p2) � ... �

// conflict method removes ambiguity
colorBox(ColorPoint p1, ColorPoint p2) � ... �

Figure 4: AmbiguousandConflict Methods

Primitive types4, whenusedasarguments,aretestedat
compilation time in the samewayasother types.Primi-
tive widening conversions are defined which effectively
imposea standardtypehierarchy on theprimitive types.
The compiler inserts widening castsasneeded.

2.3 Dynamic Uni-Dispatch in the JVM

Now we turn our attention to dispatching polymorphic
call-sitesat runtime. Methods are storedin the.class
file assequencesof virtualmachine instructions. Within
a stream of bytecodes, method invocations are repre-
sentedby invoke bytecodesthat occupy threebytes5.
The first byte contains the opcode (0xb6 for invoke-
virtual). The remaining two bytes form an index
into the constant pool. The constant pool must con-
tain a METHOD entry at the given index. This entry
contains the static type of the receiver argument (as
the CLASS linked entry), and the method name and
signature (through the NAME& TYPE entry). Figure 5
shows the pseudo-bytecode6 for invoking the method
Component.processEvent(AWTEvent) twice.

From the opcode, invokevirtual, the JVM knows
that the next two bytescontain the constantpool index
of a METHOD descriptor. From that descriptor, theJVM
can locatethe method name and signature. The JVM
parsesthe signature to discover that the method to be
invoked requires a receiver argument and one other ar-
gument. Therefore, the JVM peeks into the operand

4Java provides non-object types byte, char, short, int, long,
float, anddouble. Thesearecalled primitive types.

5Theinvokeinterface bytecodesoccupy 5 bytes.
6Rather thanshow constantpool indices,we show their values di-

rectly.

aComponent.processEvent(aFocusEvent);

FocusEvent aFocusEvent = new FocusEvent(...);

aComponent.processEvent(anEvent);

Component aComponent = new SubComponent(...);

AWTEvent anEvent = new FocusEvent(...);

apush

aComponent

anEvent

invokevirtual

apush aComponent

apush aFocusEvent

invokevirtual

...

...

apush

Component::processEvent:(LAWTEvent;)V

Component::processEvent:(LAWTEvent;)V

(a) Polymorphic Call-sites in Source.

(b) Polymorphic Call-sites in Bytecodes.

Figure 5: Polymorphic Call-sites— two views

stackand locatesthe receiver argument. At this point,
theJVM has the information it needs to begin searching
for the method to invoke. The JVM hasthe name, the
signature,and the receiverof themessage.

The JVM Specification (section 5.4.3.3) providesa re-
cursive algorithm for resolving a method reference and
locating the correct method: Beginning with the meth-
ods definedfor the precisereceiver argument type,scan
for an exact match for the name and signature. If one
is not found, search the superclass7 of thereceiverargu-
ment, continuing up the superclasschain until Object,
the root of the type hierarchy, is searched. If an exact
match is not found, throw anAbstractMethodError.
This look-up process applies to eachof the invoke
bytecodes.

This look-up processis a time-intensive operation. To
reduce the overhead of method look-up, the resolved
methodis cachedin theconstant pool alongsidetheorig-
inal method reference. The next time this methodrefer-
enceis appliedby another invoke bytecode, thecached
method is useddirectly.

Oncea method is resolved, a method-specific invoker is
executed to begin the interpretationof thenew method.
This invoker performsmethod-specific operations, such
asacquiring a lock in thecaseof synchronized meth-
ods,constructing a JVM activationrecord in the caseof
bytecodemethods,or preparing a machine-level activa-
tion record for native methods.

TheResearch JVM recognizesaspecialcasein invoking
methods: any private methods, final methods, or con-
structorscanbe handled in a non-virtual mode. Eachof
these situations do not require dynamic dispatch. But,

7Javaprovidesonly singleinheritanceof programcode.

multi-dispatchwil l needto handle thesespecialcases.

3 Design

We now have sufficient informationto describe thegen-
eral design for extending the JVM to support multi-
dispatch. In short, we mark classeswhich are to use
multi-dispatch and replace their method invokers with
one that selectsamore specific method basedon theac-
tual arguments. Hence,existinguni-dispatchmethod in-
vocationsareunchangedin any way.

Marking the .class files without changing the lan-
guage syntax is straightforward. We createdan empty
interface MultiDispatchable and any class which
will provide multi-dispatch methods must implement
that interface. The .class file retains that interface
nameand thevirtual machinecaneasily check for thisat
classloading time. Our implementationdoesnot change
thesyntax of theJava programming language or the bi-
nary .class file format in any way.

Our interface-basedtechnique allows us to retaincom-
patibility with existing programs, compilers, and li-
braries.Any classthat implements our marker interface
has differentsemantics for dispatch. But, the semantics
of existing uni-dispatchprogramsand libraries arenot
changedsincethey do not implement the interface.The
programmerretainscompletecontrol and responsibility
for designating multi-dispatchableclasses. This allows
the developer to consciously target the multi-dispatch
technique to known programming situations, such as
double dispatch.

At dispatchtime, our multi-invoker executesinstead of
the original JVM invoker. Our invoker locatesa more-
precisemethod basedon thedynamictypesof theinvo-
cation argumentsand executesit in placeof the original
method.

The non-virtual mode invocations need to be handled
specially. Constructors are never multi-dispatched. We
found that constructor chaining within a class could
cause infinite loops.Privateand final multi-methodsare
still multi-dispatched.

We implemented two different dispatch algorithms.
First, MSA implements a dynamic version of the
Java Most Specific Applicable algorithm used by the
javac compiler. Second, Single Receiver Projections
(SRP)[17] is a high performancetable-basedtechnique
developed attheUniversity of Alberta. Weexamineboth
a framework-basedSRPanda tuned SRPimplementa-
tion. Section 6 provides implementationdetails, but we
first presentthe resultsof our experiments.

4 Experimental Results

So far, we have usedfour different micro-benchmarks
and a new implementation of Swing/AWT to test our
multi-dispatcher.

The first micro-benchmark usesthe javac compiler
to recompile itself while running on the multi-dispatch
VM. Thejavac compiler hasnot beenmodified, there-
fore theexperiment demonstratesthebackwardcompat-
ibility of themodifiedVM for uni-dispatchapplications.
Themeasuredoverheadsof uni-dispatchjavac running
on the multi-dispatch VM are minimal. Theother three
micro-benchmarks demonstratemulti-dispatch correct-
ness, multi-dispatchperformance ascompared to dou-
ble dispatch, and multi-dispatch performanceas arity
increases. All of the micro-benchmarks are single-
threaded.

For our application-level tests,we modified Swing, the
second-generation GUI library bundled with Java 2, to
use multi-dispatch. As expected, Swing is a double-
dispatch-intensive library. We also converted AWT be-
cause Swing depends heavily on AWT to dispatch the
events into top-level Swingcomponents.

All experiments were executed on a dedicated Intel-
architecture PC equipped with two 550MHz Celeron
processors, a 100MHz front-side bus, and 256 MB of
memory. The operating system is Linux 2.2.16 with
glibc version 2.1. TheSunLinux JDK 1.2.2 codewas
compiled using GNU C version 2.95.2, with optimiza-
tion flags as supplied by Sun’s makefiles8. The table-
basedmulti-dispatchcode[22] wascompiledusing GNU

G++ version 2.95.29. The SunJDK only supports the
green threading model, which is implemented using
pthreads under Linux. We report averageand standard
deviationsfor 10 runsof eachbenchmark.

We testedthree different virtual machines. First, we
have jdk, the standard JDK 1.2.2 Linux runtime, run-
ning in interpretermode. This JVM serves asa baseline
for comparing the remaining four multi -dispatch sys-
tems. Second, we have a non-JIT multi-dispatchJVM
with threedifferent multi-dispatchtechniques, jdk-MSA,
and two implementations (jdk-fSRP, and jdk-tSRP) of
thesamealgorithm. Third,wehavecustomizedOpenJIT
1.1.15 to be compatiblewith our multi-dispatch JVM.

For the first and second micro-benchmarks, (Tables2
and 3) we report user+system time in seconds, along
with normalizedvaluesagainst the jdk runtime. For the
third and fourth experiments(Table 4 andFigure 7), we
describe individual dispatchtimesin microseconds, ig-

8Typical flagsare-O2
9with options -ansi -fno-implicit-templates -fkeep-

inline-functions -O2.

noring othercosts. In thefinal benchmark, Swing,were-
port execution timesfor a syntheticapplication thatcre-
atesanumberof componentsand inserts200,000 events
into theeventqueue.

4.1 Javac — Compatibili ty Test

The first experiment requires the runtime to load and
execute the javac compiler to translate the entire
sun.tools hierarchy of Java source files into .class

files. This hierarchy includes 234 source files encom-
passing 49,798 lines of code (excluding comments).
Each compilation was verified by comparing the error
messages10 and by checksumming the generatedbina-
ries. Eachvirtual machine passed the test; the timing
results areshown in Table 2. Thesetimescomefromthe
Unix time usercommand and are averages, with stan-
dard deviation, of 10 runs.

JVM Time in sec. () Norm.

jdk 65.41+ 0.25 (0.39) 1.00
jdk-MSA 67.38+ 0.31 (0.14) 1.03
jdk-fSRP 68.22+ 0.45 (0.25) 1.05
jdk-tSRP 67.13+ 0.51 (0.35) 1.03

Table 2: Compatibility Testing andPerformance
(User+SystemTime to Recompile sun.tools, in seconds)

The negligible dif ferences between the uni-dispatch
and multi-dispatch execution times demonstrate that
the overheadof running uni-dispatch code on a multi-
dispatch VM is essentiall y zero. Note that in our im-
plementation, table-basedJVMs do not construct a dis-
patch table until the first multi-dispatchable method is
inserted.

4.2 Simple Multi-Dispatch

In this micro-benchmark, we show that multi-dispatch
is correct and measure its overhead. The testing code
is short and is shown in Figure 6. Note that class MD-
JDriver implements the marker interfaceMultiDis-
patchable. Thecompiler usesstaticmulti-dispatchto
code all four calls to MDJDriver.m(X,X) to execute
themethod for two argumentsof typeA, becausethat is
the static type of both anA and aB. Multi-dispatch ac-
tually selectsamong the four methods based upon the
dynamic typesof the arguments. Therefore, correct out-
put consists of 100,000 repetitions of four consecutive
lines: AA, AB, BA, and BB. For timing purposes,all out-
put wasredirectedto /dev/null to reducethe impact
of input/output. Our resultsare summarizedin Table 3.

Thetable-basedtechniques,jdk-fSRPand jdk-tSRP, suf-
fer from a substantialstartup time, whereasjdk-MSA

10There isonewarning noting that 8 filesuseddeprecated APIs.

class A �H�
class B extends A �H�
class MDJDriver implements MultiDispatchable �
String m(A a1, A a2) � return "AA"; �
String m(A a1, B b2) � return "AB"; �
String m(B b1, A a2) � return "BA"; �
String m(B b1, B b2) � return "BB"; �
static public void main(String args[]) �
final int LOOPSIZE = 100000;
A anA = new A();
A aB = new B();
MDJDriver d = new MDJDriver();
for(int i=0; i<LOOPSIZE; i++) �
System.out.println(d.m(anA, anA));
System.out.println(d.m(anA, aB));
System.out.println(d.m(aB, anA));
System.out.println(d.m(aB, aB));
�
�
�

Figure 6: SimpleMulti-DispatchTesting Code

primarily usesexistingdatastructuresfound in theJVM
interpreter and lazily computes any additional values.
This reducesthe cost of programstartup.

JVM Timein sec. (I) Norm. Correct

jdk 26.40 + 0.68 (0.07) 1.00 No
jdk-MSA 28.88 + 0.83 (0.22) 1.10 Yes
jdk-fSRP 31.53 + 0.91 (0.11) 1.20 Yes
jdk-tSRP 29.48 + 0.84 (0.17) 1.12 Yes

Table 3: Simple Multi-Dispatch
(User+SystemExecution Time in seconds)

4.3 Double Dispatch of Events

Our third experiment involves computing the perfor-
mancedifferencesbetweendouble dispatchandthetwo
multi-dispatchimplementationsof the example givenin
Figure 2. We constructed a synthetic type hierarchy of
AWTEvent classes, to match those in Figure 2. The dis-
cussion of Swing follows in Section4.5. We alsocon-
structedthreedifferent componenttypes:

Double Dispatch (DD) implements double dispatch
via type-casesand programmer-coded type num-
bering asshown in Figure2(a).11

Mult i-Dispatch (MD) implements multi-dispatch as
shown in Figure 2(b), where the type-casesfrom
DD have beenreplacedwith multi-dispatch.

11Type-casesare not themosteffective double-dispatch technique,
but this code matches Sun’s AWT implementation. For a comparison
with otherdouble-dispatch techniques,see[8, 13].

Full Multi-Dispat ch (FMD) eliminatesthe type-cases
and the programmer-coded type-numbering from
DD. It divides MouseEvent into two different
classesandeliminatestheswitch statement.

To avoid inlining effects, we added code for updating
an instance variable to the body of each process-

Event(AWTEvent). This experiment consists of dis-
patching atotal of onemill ion eventsthroughprocess-
Event(AWTEvent). Each event type appears equally
often,aswe iterateover anarray containing equal num-
bers of eachevent.We computethe loop overhead, sub-
tract theoverheadamount, andthendividetheremaining
timeby thenumberof eventsdispatched.Thetiming re-
sultsareshown in Table 4.

Also, we give an additional timing value for our cus-
tomSRPimplementation, wherewedisabledmutualex-
clusion in thedispatcher. Currently our implementation
usesacostlymonitor to ensurethatnootherthreadis up-
dating thedispatchtablesduring amulti-dispatch.High-
performanceconcurrent-read exclusive-write protocols
caneliminatethis overhead;the nolock value represents
this highest-performancecase.

As DD doesnot declare itself multi-dispatchable, the
similarity of the results in column 2 of Table 4 again
shows that our multi-dispatchable virtual machines do
not significantly penalize uni-dispatch code. Further,
we seethat the cost of interpreting numerous expen-
siveJVM bytecodes, suchasinstanceof, followedby
another invokevirtual (which is DD’s strategy), is
morecostlythanour multi-dispatchtechniques.Thefull
multi-dispatchimplementation(FMD) is fasterthanthe
partial multi-dispatch(MD). This is reasonablebecause
MD endsup double-dispatching two of everysix events.

Again, we seethat theframework-basedSRPtechnique
suffersfrom considerable initial overhead. We hypothe-
sizethatit is a resultof theobject-oriented natureof our
implementation of the table-based techniques. In each
dispatch,several C++ objectsarecreatedand destroyed
on the heap. Our tunedSRPimplementation, jdk-tSRP,
removes this overhead andprovidesfasterdispatchper-
formancethanprogrammer-codeddouble dispatch.

OpenJIT compilation gains only minor improvements
for the multi-dispatch system. This matches our ex-
pectationssinceOpenJIT calls thesameselectMulti-
Method() routine thattheinterpreteruses, thereis only
a slight benefit from avoiding someinterpreter frame
manipulations.

4.4 Ar ity Effects

Our final micro-benchmark explores the time penalties
asthenumber of dispatchable argumentsand applicable

Dispatch Interpreter OpenJIT
Dispatch DD MD FMD DD MD FMD
JVM Time () Time () Time () Time () Time () Time ()

jdk 0.91 (0.00) — — 0.48 (0.00) — —
jdk-MSA 0.95 (0.00) 2.63 (0.01) 2.49 (0.02) 0.95 (0.00) 2.55 (0.04) 2.43 (0.03)
jdk-fSRP 0.96 (0.01) 3.12 (0.08) 2.52 (0.05) 0.96 (0.01) 2.90 (0.05) 2.47 (0.05)
jdk-tSRP 0.94 (0.00) 0.75 (0.03) 0.72 (0.02) 0.95 (0.00) 0.74 (0.02) 0.71 (0.01)
nolock 0.95 (0.00) 0.34 (0.00) 0.32 (0.00) 0.95 (0.00) 0.32 (0.01) 0.32 (0.00)

Table 4: EventDispatchComparison
(Call-siteDispatchTimes in microseconds)

methods grow. To do this, we built a simplehierarchy
of five classes(one root classA, with three subclasses
B, C, and D, and finally classE asa subclassof C) and
constructedmethods of different arities against that hi-
erarchy. We definedthefollowing methods:

J classesA, B, C, D, and E contain unary methods
R.m() (whereR representsthe receiver argument
class).

J classesA, B, C, D, and E also implementfive binary
methods,R.m(X) whereX can beany of A, B, C, D,
or E.

J classesA, B, C, D, andE implement 25ternarymeth-
ods,R.m(X,Y) whereX andY canbe any of A, B,
C, D, or E.

J classesA, B, C, D, and E implement125 quaternary
methods, R.m(X,Y,Z) where X, Y, and Z canbe
any of A, B, C, D, or E.

MSA looks at one fewer dispatchable arguments than
the table-basedtechniques because the receiver argu-
ment hasalready been dispatched by the JVM. For in-
stance, given a unary method, MSA makes no widen-
ing conversions for dispatchable arguments. A binary
method requiresMSA to checkonly one widening con-
version. The table-based techniquesdispatchon all ar-
gumentsandgain no benefit from thedispatch done by
theJVM.

We invoke one million methods for eacharity. This
means that each of the unary methods is executed
200,000 times. Howevereachof thequaternary methods
is executedonly 1,600 times. After computing the loop
overhead via an empty loop, we determine the elapsed
time to millisecond accuracy and determine the time
taken for eachdispatch. Our results areshown in Fig-
ure 7.

Wecan evaluatethearity effectsin theuni-dispatchcase
by coding a third level of double dispatch. Already the
overhead of constructing a third activation record ex-
ceeds the dispatchtime of our tunedSRP implementa-

tion. Also, our SRP implementations suffer only lin-
eargrowth in time-penaltiesasarity increases,whereas
MSA suffersquadratic effects.

0

1

2

3

4

1 2 3 4

D
is

pa
tc

h
La

te
nc

y
(m

ic
ro

se
co

nd
s)

K

Arity (including single receiver)

Arity Effects on Multi-Dispatch

0

1

2

3

4

1 2 3 4

D
is

pa
tc

h
La

te
nc

y
(m

ic
ro

se
co

nd
s)

K

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk

0

1

2

3

4

1 2 3 4

D
is

pa
tc

h
La

te
nc

y
(m

ic
ro

se
co

nd
s)

K

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk

0

1

2

3

4

1 2 3 4

D
is

pa
tc

h
La

te
nc

y
(m

ic
ro

se
co

nd
s)

K

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk
jdk-OpenJIT

0

1

2

3

4

1 2 3 4

D
is

pa
tc

h
La

te
nc

y
(m

ic
ro

se
co

nd
s)

K

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk
jdk-OpenJIT

0

1

2

3

4

1 2 3 4

D
is

pa
tc

h
La

te
nc

y
(m

ic
ro

se
co

nd
s)

K

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk
jdk-OpenJIT

jdk-MSA

0

1

2

3

4

1 2 3 4

D
is

pa
tc

h
La

te
nc

y
(m

ic
ro

se
co

nd
s)

K

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk
jdk-OpenJIT

jdk-MSA

0

1

2

3

4

1 2 3 4

D
is

pa
tc

h
La

te
nc

y
(m

ic
ro

se
co

nd
s)

K

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk
jdk-OpenJIT

jdk-MSA
jdk-fSRP

0

1

2

3

4

1 2 3 4

D
is

pa
tc

h
La

te
nc

y
(m

ic
ro

se
co

nd
s)

K

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk
jdk-OpenJIT

jdk-MSA
jdk-fSRP

0

1

2

3

4

1 2 3 4

D
is

pa
tc

h
La

te
nc

y
(m

ic
ro

se
co

nd
s)

K

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk
jdk-OpenJIT

jdk-MSA
jdk-fSRP
jdk-tSRP

0

1

2

3

4

1 2 3 4

D
is

pa
tc

h
La

te
nc

y
(m

ic
ro

se
co

nd
s)

K

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk
jdk-OpenJIT

jdk-MSA
jdk-fSRP
jdk-tSRP

0

1

2

3

4

1 2 3 4

D
is

pa
tc

h
La

te
nc

y
(m

ic
ro

se
co

nd
s)

K

Arity (including single receiver)

Arity Effects on Multi-Dispatch

jdk
jdk-OpenJIT

jdk-MSA
jdk-fSRP
jdk-tSRP

nolock

Figure 7: Impactof Arity on DispatchLatency

4.5 Swing and AWT

Our final test is to apply multi-dispatchto AWT and
Swing applications. To do this, we needed to rewrite
AWT andSwingto take advantage of multi-dispatch.

We modified 11% (92 out of 846) of the classesin the
AWT andSwing hierarchies. We eliminated171 deci-
sion points, but needed to insert 123 new methods to
replaceexisting double-dispatchcode sections. Within
the modified classes,we removed 5% of the condition-
alsandreduced theaveragenumberof choicepointsper
methodfrom3.8 to 2.0per method. This reductionill us-
tratesthevalueof multi-dispatchin reducing code com-
plexity.

In all, 57classeswereadded, all of themnew eventtypes
to replacethosepreviously recognizedonly by a special
type id (asin theAWT examplesdescribedpreviously).
Our multi-dispatch libraries are a drop-in replacement
that executesa total of 7.7% fewer method invocations
and givesvirtually identical performancewith applica-
tions such asSwingSet. In our sample application,
we found that the number of multi-dispatchesexecuted
almost exactly equaledthetotal reduction in method in-

Uni-Swing Multi-Swing
Stage Methods Uni-Methods Multi-methods

warm-up 901,938 901,795 160 (0.02%)
eventloop 32,543,684 27,807,327 2,350,172 (7.7%)

Table 5: SwingApplication Method Invocations

vocations. This suggests that every multi-dispatchre-
placedadoubledispatchin theoriginal Swing and AWT
libraries.

We verified the operation of the entire unmodified
SwingSet application with our replacement libraries.
Finally to measureperformance, we timed a simple
Swing application that handles 200,000 AWTEvents of
differenttypes. Thetiming results aregivenin Table 6.

Dispatch Uni-Swing Multi-Swing
JVM Time () Time ()

jdk 28.03 (0.35) —
jdk-MSA 28.69 (0.31) 70.09 (0.15)
jdk-tSRP 29.33 (0.42) 28.30 (0.36)

Table6: Swing Application Execution Time
(Event looptimes in seconds)

The Swing and AWT conversion alsodemonstratesthe
robustness of our approach. We needed to support
multi-dispatchon instanceand static methods. Thejdk-
fSRPvaluesarenot givenbecause theframework-based
systemdoes not support static methods. Swing and
AWT expect to dispatchdifferently on Object andar-
ray types. In modifying the libraries,we found numer-
ousopportunities to apply multi -dispatch to private,pro-
tected, and super method invocations. In addition, sev-
eral multi-methodsrequiredtheJVM to accept covariant
return typesfrom multi-methods. All of thesefeatures
arerequiredfor a mainstream programming language.

5 Multi -Dispatch Issues

Besides performance and correctness, multi-dispatch
mustcontendwith anumber of seriousdifficultieswhich
the javac compiler cannot recognize. They are: am-
biguousmethod invocationscausedby inheritance con-
flicts, incompatible return type changes, masking of
methods by primitive widening operations,and null ar-
guments. Eachof these is ill ustratedin Figure 8. We
have developeda tool calledMDLint that can identify
theseproblemsand warn the programmer.

The first difficulty is that multi-dispatch, even in a
single-inheritancelanguage,cansuffer from ambiguous
methods. The two examplesusing them1 methods ill us-
tratethis. For the first method invocation, the compiler
knows thatA.m1(B) andB.m1(A) arecandidates.Nei-
ther one is morespecificthantheother, sothe compiler

abortswith anerror. We canfix that by statically typing
the receiver argument to A, but multi-dispatchseesex-
actly thesameconflict at runtime. OurMDLint program
warns about theproblem. If theprogrammerdisregards
the warning, our JVM detectsthe error and throws an
AmbiguousMethodException.

Throwing aruntimeexception mayseemneitherelegant
nor acceptable, but oneof thekey attributesof theJVM
is to maintain security. A malicious programmer can
separatelycompile eachclasssothaterrors are not evi-
dent until execution. TheJVM mustprotect itself from
thesepossibilities, and throwing anexception is theonly
option. As we noted, our MDLint tool can recognize
and report potential ambiguities,exception inconsisten-
ciesand return-type conflicts at compile time.

Theseconddifficulty centersaround the factthatjavac
considers methods with differentargumenttypes as dis-
tinct. This meansthat they can have different return
types. Multi-dispatchforgesadditional connections be-
tweenclassesbased on theadditional dispatchableargu-
ments. This meansthat methods which javac consid-
ered distinctarenow overriding eachother. In theexam-
ple, weseethat thetwom2(...) methodsoverrideeach
other for multi -dispatch. Our multi-dispatchimplemen-
tations throw an IllegalReturnTypeChange excep-
tion, unlessthe more specificmethod returns a subtype
of theoriginal returnedvalue.

Another ramification of the fact that uni-dispatch Java
considers different argument combinations as distinct
methods is thatjavac doesnot ensure that the throws
clauses are compatible. As with any overriding
method, wewould wantamorespecific multi-method to
covariantly-specialize the setof exceptions. Our type-
checker validates this, but, in compliance with the VM
specification, our virtual machine neitherchecksnor re-
ports this inconsistency.

The third difficulty involvestheuseof literal null asan
argument. If null is typed, as in the first invocation of
m3(), then javac performs static multi-dispatchwith
that type. This restrictsthe set of applicable methods
javac will consider. In our example, an ordinary JVM
canavoid loading classC. The multi-dispatchJVM rec-
ognizesthat m3(C) might apply (sincea is dynamically
of null type and null is subtype of class C). Therefore,
multi-dispatchJava loads classC in order to determine

class A �
void m1(B b1) � ... �
void m4(int i) � ... �%�

class B extends A �
void m1(A a1) � ... �
void m4(byte b) � ... �%�

class C extends B � ... �
class MDJIssues �
int m2(A a1, A a2) � ... �
String m2(B b1, B b2) � ... �
void m3(A a1) � ... �
void m3(B b1) � ... �
void m3(C c1) � ... �
public static void main(String args[]) �
A Ab = new B(); // static: A, dynamic: B
B Bb = new B(); // static: B, dynamic: B

// multi-dispatch difficulties
Bb.m1(Bb); // javac: ambiguous method
Ab.m1(Bb); // javac: OK, MDJ: ambiguous

// incompatible return type change
int i = m2(Bb, Bb); // javac: bad return type
int j = m2(Ab, Ab); // javac: OK, MDJ: exception

// null arguments are more consistent
A a = null;
m3(a); // regular Java: executes m3(A)

// MDJ: loads C, executes m3(C)
m3(null); // both execute m3(C)

// stronger referential integrity
m3(Ab); // regular Java: executes m3(A)

// MDJ: executes m3(B)
m3(new B()); //both execute m3(B)

// primitive widening hides correct method
byte b = 7;
Ab.m4(b); // javac: widens, calls A.m4(int)

// MDJ: ignores B.m4(byte), calls A.m4(int)
Ab.m4(int(b)); // programmer widening��

Figure 8: Examplesof Multi-Dispatch Issues

its placein thetypehierarchy, and decidesthatm3(C) is
themost-specific method. Literal nulls, as shown in the
second invocation of m3(), illustrate the inconsistency
of standard Java; it now agrees with the multi-dispatch
JVM thatm3(C) should beinvoked. The ordinary JVM
can still avoid loading class C, becausejavac has al-
ready static multi-dispatched to m3(C)12. Presumably,
theargument is usedin m3(C), sotheordinaryJVM will
end up loading classC, just likethemulti-dispatchJVM.

Thenull argument problemis anexampleof amoregen-
eral referential transparency problem in Java. Inconsis-
tent invocations can occur whenexpressionsaresubsti-
tutedin placeof variables.This is becausejavac might
apply moreprecisetypeinformationfrom thesubstituted
expression. As an example, compare the execution of
thethird and fourth invocationsof m3(...). By replac-
ing Ab with its value,we have alteredtheexecution of a
program.

12There is a subtlety here becausejavac selects the most-specific
method from themethoddictionary of the static type of the receiver.
Therefore, dynamicuni-dispatch still may not selectthemost-specific
methodof thereceiver’s dynamic class.

The last difficulty is more complex and, at this time,
unsolved. The compiler selects a method basedupon
widening operationsandmay changethetypeof primi-
tive arguments. In theexample, the compiler inserts in-
structions to convert b from a byte to anint. At run-
time, we have lost all tracesthatb wasoriginall y spec-
ified as a byte. Indeed, the programmer might have
wanted to force that exact conversion; the bytecodes
would beidentical to compiler-generatedconversions.

6 Implementation

In this section, we describe how theJVM is extended to
support dynamic multi-dispatch. We begin by examin-
ing how to indicateto the JVM which classesaremulti-
dispatchable. We then examine where multi-dispatch
must occur and, finally, we review threedifferent multi-
dispatchimplementations.

6.1 Marking Mult i-Dispatch Classes

We tell the JVM that multi-dispatchis required on a
class-by-classbasisby implementing the empty inter-
faceMultiDispatchable in eachclassthat is multi-
dispatchable. The Java programming language has al-
ready leveragedthis idea for marking classcapabilities
with the Cloneable interface. We use the Multi-

Dispatchable interfaceto denotethatany methodsent
to a multi-dispatchreceiver should be handled by the
multi-dispatcher. For efficiency, we add a flag to the
internal classrepresentation to indicate that a class is
multi-dispatchable, ratherthansearching its li stof inter-
faces at eachmethod invocation. The value of this flag
is setonce,at classloadtime.

Our selection of MultiDispatchable as the marker
requires us to recognize multi -dispatch on a class-by-
classbasis,not on a method-by-method or argument-
by-argument basis. That is, every method invocation
wheretheuni-dispatch receiver is a member of a multi-
dispatchable class goes through our multi-dispatcher.
Furthermore, becauseinterfaces are inherited, this ap-
proach requires any subclassof a multi-dispatchable
classto also be multi -dispatchable. Most importantly,
any method invocation where the receiver argument
is not marked for multi-dispatch continues unchanged
through theuni-dispatcher. Thebenefit of this is thatthe
syntax of Java programsis unchanged, and the perfor-
manceandsemanticsof uni-dispatchremainsintact.

The techniquesusedto mark codeasmulti-dispatchable
and to implement multi-dispatch method invocations
are independent. MultiDispatchable marks entire
classeswithout language extensions, but our JVM ac-
tually supports multi-dispatch on a method-by-method

basis. An alternate tagging mechanism, that marked in-
dividual methodsasmulti-dispatchable,may bepossible
if we permittedlanguageextensions.

6.2 Adding Multi- Dispatch

As partof theuni-dispatchof aninvoke bytecode, the
JVM finds a method pointer from the array of methods
in the receiver argument class. At this point, the in-
terpreter loop is about to build a new frame to execute
thefound method. The interpreterloop (and classic VM
JIT compilers) proceedto call a special function, called
the invoker that handles the detail s of building the
new frameandstarting the new method. The Research
JVM usesdifferent invokers for native, bytecode, syn-
chronized, JIT-compiled, andother method types. Sim-
ilar to theOpenJITsystem [21], we replacethis invoker
function with a custom multi-invoker thatcomputesthe
correct multi-dispatchmethod. Once the more precise
method is known, we simply invoke it directly.

The multi-invoker is installedat class-load time. The
interpreter loop and invoker for uni-dispatchare un-
changed. This supports our claim that uni-dispatchpro-
gramsand librariessuffer no execution time penalties.

OpenJIT is supported in exactly the sameway. Ev-
ery method containsa compiledCode function pointer
onto which OpenJITinstallsits compiled method body.
Once the compilation is complete, OpenJIT saves the
compiled method body of any multi-method to a new
field oldCompiledCode andinstalls a pointer to a rou-
tineDispatchMulti(). Thisreplacement invokersim-
ply calls the same method specializer selectMulti-
Method() that the interpreteruses.If the more precise
method-body is already compiled, thenOpenJIT jumps
into the oldCompiledCode, executing the more spe-
cific compiled method. Alternately, if the more precise
method is not alreadyJIT-ed, thenDispatchMulti()
setsit to becompiled andinvokesthe interpreteron the
bytecodeversion.

Unfortunately, we must disablemuch of the inlining
facility of OpenJIT when using multi-dispatch. The
uni-dispatch OpenJIT compiler can inline private,
static, and final methods becausethey can never
change. With multi-dispatch, this is no longer true — at
a givencall-site,theselectedmulti-method maychange
depending on the argumentsto the current invocation.
The JIT compiler and VM must work together to en-
sure that every method invocationis checked for multi-
dispatchandcorrectly speciali zed.

The core component of our systemis the select-

MultiMethod() routine,which locatesamore-specific
methodapplicableto asetof arguments. Wehaveexper-

imented with threedifferent multi-dispatchtechniques;
they are examined in the following sections. For each
technique, we also describe our solution for the imple-
mentationissuesdescribedin section5.

6.3 ReferenceImplementation: MSA

Our reference implementation is an extension of the
Most SpecificApplicablealgorithm describedin section
15.11 of The Java Language Specification and in sec-
tion 2.2 of this paper. In particular, we re-examine the
stepsdescribedin section 2.2 in light of the dynamicar-
gument typesbeingused.

When the multi-invoker is called, it hasaccess to the
methodblock that hasalready been found by the uni-
dispatchresolution mechanism. We also have thetop of
the operandstack, so we canpeekat eachof the argu-
ments.Last, wehave theactual receiver, which canpro-
vide the list of methods(including inheritedones)that it
implements.

Every method is represented by a methodblock con-
taining many useful piecesof information. First, it holds
the name of the method. Second, it contains a handle
to the classthat contains this method13. Third, it con-
tains the signature which we canparse to get the arity
and types of the dispatchable arguments. For perfor-
mance,we parsethe signature only once. We add two
fields to the methodblock: int arity to cache the
arity and ClassClass **argClass to hold the class
handlesfor thedispatchable arguments.

With thesethreepiecesof information, we implement a
dynamic version of the MSA algorithm directly. Wher-
ever the original algorithm would use the static type
of an argument, we apply the known dynamic type in-
stead.In step2(b) from section 2.2, thecompiler would
comparethe statictype of eachargument with the cor-
responding declared type for the candidate method. In
the dynamic case, we have the arguments on the stack,
so we canfind their dynamic types. We compareeach
argument’s dynamic type against the declared type of
the corresponding argument of the method. We dis-
card any method that is not applicable due to access
rights (private methods) or whosedeclared typesdo
not matchthe arguments on the stack. The remaining
methodsaredynamically applicable.

The issue of null-valuedargumentsbecomessignificant
at this point. JLS chapter 4 recognizesthe need for a
null type to represent(untyped) null values. It further
declaresin section 4.1 that thenull type canbecoerced
to any non-primitivetype. Also, section5.1.4allowsnull

13Recall that methods might be inherited; this classhandle is the
original implementingclass.

typesto bewidenedto any object,arrayor interfacetype.
Statically, this means that an (untyped) null argument
canbe widenedto any class. In the dynamic case, we
want to do thesame. Therefore,wheneverweencounter
a null argument we accepttheconversion of that null to
a method argument of type class,array, or interface.

Unfortunately, if wehaveanull argument, wemayretain
amethod whichacceptsargumentsof classesthatarenot
yet loaded. We need to force these classesto be loaded
to ensure that thenext stepoperatescorrectly.

Giventhe list of applicable methods, step 2(d) finds the
unique most specific method. Again the operation is
identical to the processthat the javac compiler fol-
lows. Oneapplicable method is tentatively selectedas
themostspecific. Eachotherapplicablemethodistested
by comparing argument by argument (including the re-
ceiver argument) against the tentatively most specific.
At eachstep,we discard any methods that are lessspe-
cific. We continue this process until only one candi-
date method remains, or two or more equally specific
methods remain. In the lattercase,we have anambigu-
ous method invocation and we throw an Ambiguous-

MethodException to advertisethis fact.

Next, we verify that the return type for our more spe-
cific method is compatible with the compiler-selected
method. This checkrelaxesJLS8.4.6.3, where we must
reject any invocation that has a different return type,
yet ensures type-safety. If the return type is different,
wethrow anIllegalReturnTypeChange exception at
runtime.

6.4 Table-basedDispatch

Our SRPframework-basedtechniquesis takenfrom the
DispatchTableFramework (DTF) [22]. This is a toolkit
of many different uni-dispatchandmulti-dispatchtech-
niques. In order to call the DTF to dispatch a call-site,
we need to inform the DTF of the various classes and
methodspresent in our Javaprogram. Our interfacecon-
sistsof anumberof straight-forwardroutinesto perform
this registration.

The JVM maintains in-memory structures for each
loaded .class file. We have extended that Class-
Class structure to containaDTF Type field. It contains
a pointer to the C++ object generatedby theDTF. Once
a class is dynamically loaded by the JVM, we check
to see if we must register it with the dispatcher. If the
dispatcherhasalreadybeeninstantiated,we register the
classvia javaAddClass(...) and store away the re-
turnedDTF Type pointer.

If a dispatcherhas not beeninstantiated, and the just-
loaded classis uni-dispatch only, we defer the regis-

tration in order to reduce the overheadto uni-dispatch
programs. If the just-loaded class is marked for multi-
dispatchandthedispatcherhasnot been instantiated, the
processis morecomplex. First,we instantiateanew dis-
patcher. Then, we register eachclass that has already
been loaded, ensuring that its superclasses and superin-
terfacesareregisteredfirst.

Finally, as the last part of registering a classwith the
dispatcher, we needto see whetherany methods from
other classeswereheld in abeyanceuntil this classwas
loaded. This canoccur if themethodsfromotherclasses
expect dispatchable arguments of the classwe are just
now loading. As we shallseebelow, we deferred regis-
tering thesemethodsuntil theclasswasloaded.

Java’s facil ity for dynamically reloading classesforces
us to ensure that two classeswith the samename are
assigned different DTF Types. Java ensures that two
classeswith the same name are treatedas distinct by
insisting that eachone is loaded by a different class-
loader [19]. We apply the same technique by supply-
ing the DTF framework with a name consisting of the
classloadername,followedby “::” andfollowedby the
classname. They systemclassloaderis given theempty
name“ ”.

For a class marked for multi-dispatch, we needto reg-
ister its methods along with their types, via java-

AddMethod(...). If this class implements Multi-

Dispatchable directly, thenweregisterall of its meth-
ods, including inherited ones. Alternately, if Multi-

Dispatchable is an inherited interfacefor this class,
then we know that its superclasshasalready registered
its methods.Therefore,wedo not need to registerthem;
we only needto register the methods that we directly
implement.

This method registration process is complicatedby our
desireto loadclasseslazily. If amethod acceptsanargu-
ment with aclassnot yetseen by theJVM, weknow that
we could never dispatchto it until that class is loaded14.
Weset thatmethod aside for future registration.

If all of the argument types for the method are al-
ready registeredwith the DTF, thenwe proceed to reg-
ister the method. We provide a methodblock pointer
that we want the framework to return if this method
is the dispatched target. We bundle up the DTF Type

values found in the ClassClass structures for each
argument class(including the receiver argument) and
pass themto the framework. The framework returns a
DTF Behavior pointer that we store in the method-

block.

14As mentionedabove, our DTF-based systems do not permit null
asadispatchableargument. Therefore,thisguaranteeholds.

Dispatchbecomes a very simple operation. We build
an array of the DTF Type pointers from the arguments
on the Java stack. If we encounter a null argument,
we throw a NullPointerException. The DTF Type

array, along with the DTF Behavior pointer from the
compiler-selectedmethod allow theframework to locate
themethodblock pointer thatwe hadpreviously regis-
tered.

We expect that the returned methodblock pointer is
the method for multi-dispatch. We validate it against
the compiler-selectedmethod. If the return type has
changed,we abort thedispatchandthrow anIllegal-
ReturnTypeChange exception. Otherwise,we call the
found method’s original invoker andreturn its value as
theresultof theinterpreter’s call to a method invoker.

SingleReceiver Projections Single Receiver Projec-
tions (SRP) [16] is a technique that considers a multi-
dispatchasa request for the joint most specific method
available on eachargument. For a givenargumentposi-
tion and type,anordered(most-specific to least-specific)
vectorof potential methods is maintained. The vectors
for all theargument positions areintersectedto provide
anorderedvector of all applicable methods. Becauseof
theordering, this vectorcanbe quickly searchedfor the
mostapplicablemethod.

SRP uses a uni-dispatch technique to maintain the
vector of potential methods for each individual argu-
ment. Thesevectors are typically compressedto con-
serve space.Many different compressiontechniquesare
known: row displacement, selectorcoloring [2], and
compressed selector table indexing [25]. Our imple-
mentationusesselector coloring, because timing exper-
iments [17] indicates that techniqueprovidesthefastest
dispatchtimes.

7 Futur eWork

Our MSA andtunedSRP dispatchers are themostcom-
plete. They support null as a dispatchable argument,
multi-dispatchon otherinvoke bytecodes15, widening
of primitivedispatchablearguments,andmulti -threaded
dispatch.Our table-framework-baseddispatchersdonot
currently support all of thesefacilities. Adding them
would provide additional flexibility and allow them to
fully support theJavaprogramming languagesemantics.
In particular, we have a two-tabledesign thatwill allow
one threadto dispatch through an existing table, while
we register additional methods and/or classesto a new
one.

Our customSRPcode implements multi-dispatch as a
15Signaled by implementing the empty interfaces StaticMulti-

Dispatchable andSpecialMultiDispatchable.

critical section, protectedby a mutual-exclusion lock.
We have devised, but not as yet implemented, a tech-
niquewhichwould eliminatethelock overhead(approx-
imately 0.38 L sfor every multi -dispatch) and allow con-
current multi-dispatch.Thetrade-off is thatevery thread
would needto halt while the multi-dispatchtables are
being updated.

The OpenJIT support for multi-dispatchis still primi-
tive; in particular, weeliminateall inlining actions.This
is a conservative approachand one can identify situa-
tions where inlining in multi-dispatchJava would pro-
vide correctresults. Identifying theseopportunities will
yield higher overall performance.

Other multi-dispatchtechniques exist, including com-
pressed n-dimensional tables [1, 12], look-up au-
tomata[9, 10], and efficient multiple andpredicatedis-
patch [7]. A comprehensive exploration of these tech-
niques usingJava is incompleteat this time.

Another significant improvement for multi-dispatch isto
incorporate our code testingtool into the javac com-
piler. At this time, MDLint exists as a separateex-
ecutable which will recognize and warn the program-
mer about common ambiguitiesanddifficulties. It ana-
lyzesacompleteapplication andidentifiesthecodesec-
tionswheretheprogrammercould invokeanambiguous
method, or have a conflicting return type.

Our reference implementation, MSA, supports multi-
dispatch on all method types (instance, static, in-
terface, private, etc.), except constructors. Because
thesame bytecodeis usedto invoke a constructor in the
superclassand a constructor with different arguments,
we cannot distinguish the two possibilities. This issue
is a specificinstance of the need to apply a super to
anargument other thanthereceiver. Fortunately, in our
experience, this requirement doesnot arisein common
programming practice(except for constructors).

Our tuned SRP implementation allows our dispatch
tables to identify only those types that are multi-
dispatched. This lazy type numbering is reversible, al-
lowing the tables to shrink as classes are unloaded.
In turn, multi-methods can revert to lower arity multi-
dispatch(or evenuni-dispatch). Weseegreatpromisein
this techniquefor long-livedJava serverapplications.

The DTF framework contains another dispatcher, Mul-
tiple Row Displacement [22] (MRD) that operates15%
fasterthanSRP. Therefore,weexpect thatdispatchcould
beenhancedto provide even lower latency by applying
this technique. Unfortunately, MRD currently doesnot
support incremental dispatchtableupdates in the same
way that SRPdoes. In a dynamic environment such as
Java, incremental updating of dispatch tables is desir-

able. EnhancingMRD to support incremental updatesis
another researchpriority.

Last, our marker interface MultiDispatchable de-
notes that each method in a given classis to be multi-
dispatched. Our JVM relieson this tag only to inform
it about which methods are eligible for multi-dispatch.
Therefore, without changing our multi-dispatchimple-
mentation, alternateJava syntax would allow us to se-
lectively mark individual methods (andtheir overriding
multi-methods) asmulti-dispatchable,ratherthanentire
classes. Wewould like to explore thespaceof conserva-
tive languageextensions to exposethis feature.

8 Related Work

Others have attempted to add multi-dispatch to
Java through language preprocessors. Boyland and
Castagna [3] provide anadditional keyword parasite to
mark methodswhich should havemulti-dispatchproper-
ties.They effectively translatethesemethodsinto equiv-
alent double-dispatchJava code. By translating directly
into compiledcode,they apply atextual priority to avoid
the thorny issue of ambiguousmethods. Unfortunately,
the parasiticmethod selection processis a sequenceof
severaldispatchesto searchover a potentially exponen-
tial tree of overriding methods.

The languageextension andpreprocessorapproachhas
other limitations. First, existing tools do not support
theextensions; for example, debuggersdo not elide the
automatically generateddouble-dispatch routines. Sec-
ond, instancemethods appear to only take arguments
that areobjects, which is too limiting. Our experience
with Swing shows that existing programs often dou-
ble dispatch on li teral null and array arguments and
pass primitive types asarguments; multi-methods need
to support thesenon-object types. Third, preprocessors
limit codereuseand extensibility; adding multi-methods
to an existing behaviour requires either accessto the
original source code or additional double-dispatch lay-
ers.

Chatterton [8] examines two different multi-dispatch
techniques in mainstreamlanguages: C++ and Java.
First, he considers providing a specialized dispatcher
class. Each classthat participatesasa method receiver
must register itself with the dispatcher. To relieve the
programmer of this repetitive coding process,he pro-
videsa preprocessor that rewrites the Java sourceto in-
clude the appropriate calls. Eachmethod, marked with
thekeyword multi, is also expandedby the preprocessor
into many individual methods, one for eachcombina-
tion of classes(andsuperclasses). A method invocation
is replacedby acall to thedispatcherwhichsearchesvia
reflection for an exact match. That method is then in-

voked. This system suffersfrom exponential blowup of
methods.

Chatterton’ssecond approachexaminestheperformance
of various double dispatch enhancements. He pro-
videsa modified C++ preprocessorwhich analysesthe
entire Java program. It can build a number of dif-
ferent double-dispatch structures, including cascaded
and nestedif. . .else-if. . .else statements, inline
switch statements,and simple two-dimensional tables.
Again, he expands every possible argument-type com-
bination in order to apply fast equality testsrather than
slow subtypechecks. A significant restriction isthatfull-
program analysis is required. This defeatsthe ability
to useexisting librariesanddiminishes Java’s dynamic
classloading benefits.

One interestinglanguage for multi-dispatch is Leavens
and Millstein’s Tuple [18]. They describe a language
“similar in spirit to C++ andJava” that permits thepro-
grammer to specify at eachcall-sitetheindividual argu-
ments that will be consideredfor multi-dispatch. This
paperdoesnot describeanimplementation; it appearsto
be a model of potential syntax and semantics only. A
future project might be to implement his syntaxspecif-
ically into the Java environment. In particular, a sim-
ple syntax extensionwould allow super method invo-
cationson arbitrary multi-dispatcharguments.

Another recent development is MultiJava [11]. There,
the authors extend the Java language with additional
syntax to support open classes and multi-dispatch.
TheMultiJavacompiler emits double-dispatchtype-case
bytecodesfor invocationsof theopen-classmethodsand
multi-methods. The emitted bytecode is accepted by
standardJVMs, but suffers a substantialoverheadfrom
interpreting slow subtype-testingbytecodes. Unfortu-
nately, multi-dispatchcanonly apply to methodsdefined
using theopen-classsyntaxand only within theprogram
text that importstheopen-classdefinitions. If subclasses
wish to further specializethe multi-methods,additional
open-classdefinitionsarerequired.Compilation of these
further open-subclassesmayresultin multiple layers of
type-case double-dispatch. Internally, MultiJava inlines
the multi-method bodies into a staticmethod in a sep-
arate anchor class– this means that the multi-methods
disappear from the binary code andbecomeinvisible to
the reflective subsystemin Java. Finally, Multi Java is a
paperdesignat this time16, so performancecomparisons
arenot possible.

16Personal communicationatOOPSLA2000.

9 Concluding Remarks

We have presentedthe designand implementation of
an extended Java Virtual Machine that supports multi-
dispatch. This is the first published description of how
to implement arbitrary-arity multi-dispatch in Java. In
contrast to the more verbose and error-prone double-
dispatch technique, currently found in the AWT (Fig-
ure 2), multi-dispatch typically reducesthe amount of
programmer-written code and generall y improves the
readabilit y and level of abstraction of thecode.

Our approachpreserves both the performance and se-
mantics of the existing dynamic uni-dispatch in Java
while allowing theprogrammer to selectdynamic multi-
dispatchon a class-by-class basiswithout any language
or compiler extensions. The changes to the JVM it-
self are small and highly-localized. Existing Java com-
pilers, libraries,and programs are not affectedby our
JVM modifications and the programs can achieve per-
formancecomparableto the original JVM (Table2).

In a series of micro-benchmarks, we showed that our
prototype implementation adds no performance over-
head to dispatchif only uni-dispatch is used(Table 2)
and the overhead of multi-dispatchcanbe competitive
with explicit double dispatch(Table 4).

We have alsointroducedand implemented anextension
of theJavaMost SpecificApplicable(MSA) staticmulti-
dispatch algorithm for dynamic multi-dispatch. In ad-
dition, we have performed the first head-to-headcom-
parisonof table-basedmulti-dispatchtechniquesimple-
mentedin a mainstreamlanguage. In particular, we im-
plemented Single Receiver Projections (SRP).Overall,
our tuned SRPimplementationperformsaswell (or bet-
ter) than programmer-targeted multi-dispatch. With per-
formanceimprovements in concurrency, we expect our
tunedsystemto out-perform type-casedouble dispatch.

References

[1] E. Amiel, O. Gruber, andE. Simon. Optimizing multi-method
dispatchusingcompressed tables.In OOPSLA1994Conference
Proceedings, pages 244–258. Association for Computing Ma-
chinery, October1994.

[2] P. Andre andJ. Royer. Optimizing method search with lookup
cachesand incremental coloring. In OOPSLA1992Conference
Proceedings. Association for Computing Machinery, 1992.

[3] J. Boyland andG. Castagna. Parasitic methods: An implemen-
tation of multi-methods for Java. In OOPSLA1997Conference
Proceedings, pages 66–76.Association for Computing Machin-
ery, November1997.

[4] K. Bruce,L. Cardelli , G. Castagna, TheHopkins Object Group,
G. T. Leavens,andB. Pierce. On binary methods. Theory and
Practiceof Object Systems, 1(3):221–242, 1995.

[5] T. Budd. An Introduction to Object Oriented Programming, Sec-
ond Edition. Addison-Wesley, 1997.

[6] C. Chambers. Object-oriented multi-methods in Cecil. In
ECOOP1992Conference Proceedings, pages 33–56. Springer-
Verlag, June1992.

[7] C. Chambers and W. Chen. Efficient multiple andpredicatedis-
patching. In OOPSLA1999ConferenceProceedings, pages238–
255. Association for ComputingMachinery, November 1999.

[8] D. Chatterton. Dynamic Dispatch in Existing Strongly Typed
Languages. PhDthesis,School of Computing, MonashUniver-
sity, Monash,Australia, 1998.

[9] W. Chen.Efficientmultipledispatchingbasedonautomata.Mas-
ter’s thesis, GMD-ISPSI,Darmstadt, Germany, 1995.

[10] W. Chen,V. Turau, andW. Klas. Efficientdynamic lookupstrat-
egy for multi-methods. In ECOOP1994 Conference Proceed-
ings, pages408–431.Springer-Verlag,July1994.

[11] C. Clifton, G. T. Leavens,C. Chambers, andT. Mil stein. Mul-
tiJava: Modular symmetric multiple dispatch and extensible
classes for Java. In OOPSLA2000 Conference Proceedings,
pages 130–145.Association for Computing Machinery, October
2000.

[12] E. Dujardin, E. Amiel, and E. Simon. Fast algorithmsfor com-
pressedmultimethod dispatch table generation. ACM Transac-
tions on Programming Languages andSystems, 20(1):116–165,
January 1998.

[13] C. Dutchyn. Multi-dispatch in theJavaVirtual Machine: Design
and implementation. Master’s thesis, Department of Comput-
ing Science,University of Alberta,Edmonton, Alberta,Canada,
2001. In preparation.

[14] A. Goldberg and D. Robson. Small talk-80 TheLanguageandits
Implementation. Addison-Wesley, 1983.

[15] J.Gosling,B. Joy, G. Steele, andG. Bracha. TheJavaLanguage
Specification,2ndEdition. Addison-Wesley, 2000.

[16] W. Holst, D. Szafron, Y. Leontiev, andC. Pang. Multi-method
dispatch usingsingle-receiver projections. Technical Report 98-
03, Department of Computing Science, University of Alberta,
Edmonton,Alberta,Canada, 1998.

[17] W. M. Holst. The Tension between Expressive Power and
Method-Dispatch Efficiency. PhD thesis, Department of Com-
puting Science, University of Alberta, Edmonton, Alberta,
Canada,2000.

[18] G. T. LeavensandT. D. Mil lstein. Multiple dispatchas dispatch
on tuples. In OOPSLA 1998 Conference Proceedings, pages
244–258. Association for ComputingMachinery, October1994.

[19] S. Liangand G. Bracha. Dynamicclassloading in theJava vir-
tual machine. In OOPSLA1998Conference Proceedings, pages
36–44.Association for Computing Machinery, October 1998.

[20] T. Lindholm and F. Yellin. TheJavaVirtual Machine Specifica-
tion, 2ndEdition. Addison-Wesley, 1999.

[21] H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda,
andY. Kimura. OpenJIT:An open-ended,reflectiveJIT compile
framework for Java. In ECOOP2000ConferenceProceedings.
Springer-Verlag, 2000.

[22] C.Pang,W. Holst,Y. Leontiev, and D. Szafron. Multiplemethod
dispatch using multiple row displacement. In ECOOP 1999
ConferenceProceedings, pages 304–328.Springer-Verlag, June
1999.

[23] G. L. Steele. Common Lisp. Digital Press,1985.

[24] B. Stroustrup. TheC++ ProgrammingLanguage: Third Edition.
Addison-Wesley, 1997.

[25] J. Vitek andR. N. Horspool. Compact dispatch tables for dy-
namically typed programminglanguages. In Proceedingsof the
InternationalConferenceonCompiler Construction, 1996.

[26] K. Walrath and M. Campione. TheJFC Swing Tutorial: A Guide
to ConstructingGUIs. Addison-Wesley, 1999.

