
The Canadian Internetworked Scientific Supercomputer
Christopher Pinchak, Paul Lu, Jonathan Schaeffer, and MarkGoldenberga

http://www.cs.ualberta.ca/˜ciss

aDepartment of Computing Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2E8
{pinchak,paullu,jonathan,goldenbe}@cs.ualberta.ca

On November 4, 2002, a Canada-wide virtual supercomputer gave a chemistry research team the opportunity to do several years worth of
computing in a single day. This experiment, called CISS-1 (Canadian Internetworked Scientific Supercomputer), had three research impacts:
(1) in partnership with C3.ca, created a new precedent for cooperation among Canadian high-performance computing sites, (2) demonstrated
the scalability and capabilities of the Trellis system for wide-area high-performance metacomputing, and (3) produced a new computational
chemistry result.

Using roughly 1,376 dedicated processors, at 20 facilities, and in 18 administrative domains across the country, approximately 3.5 CPU
years of computing were completed. CISS-1 is a prototype forfuture research projects requiring large-scale computingin Canada. This is
the first step towards making CISS a regular event on the Canadian research landscape.

Le 4 novembre 2002, un super-ordinateur virtuel pan-canadien a fourni à une équipe de chimistes l’équivalent de plusieurs années de
calcul en une seule journée. Cette expérience, appelée CISS-1(Canadian Internetworked Scientific Supercomputer), a eu trois impacts sur
la recherche : (1) En collaboration avec le C3.ca, elle a créé un précédent de coopération entre les centre de calculcanadiens; (2) elle a
démontré la mise à l’échelle et la capacité du systèmeTrellis dans le calcul de haute performance sur une vaste étendue g´eographique; (3)
elle a produit un nouveau résultat en chimie numérique.

En utilisant environ 1 376 processeurs dédiés, sur 20 centres et 18 domaines administratifs à travers le Canada, environ 3,5 CPU-année
de calculs ont été complétées. CISS-1 est un prototype de projets futurs demandant de vastes ressources de calcul auCanada. Il s’agit de la
première étape visant à faire de CISS un événement régulier sur la scène de la recherche canadienne.

1 Introduction

Over the past four years, the Canada Foundation for In-
novation (CFI) has partnered in acquiring $160 million in
high-performance computing (HPC) equipment at over 20
sites in Canada. These resources have had a huge, posi-
tive research impact. However, this funding strategy is not
amenable to creating large computing centres. For exam-
ple, there is still only one Canadian academic site on the
November 2002 listing of the world’s Top 500 Supercom-
puter Sites [1]. Unfortunately, some scientific problems re-
quire computational resources greater than that of any sin-
gle site (or regional consortia) in Canada.

CISS (pronounced “kiss”), the Canadian Internetworked
Scientific Supercomputer, is an attempt to harness the re-
search computing capacity in Canada to create a virtual
supercomputer. Creating a nation-wide virtual supercom-
puter has long been a goal of C3.ca [2], Canada’s national
high-performance computing consortium, with support
from a Natural Sciences and Engineering Research Council
of Canada (NSERC) Major Facilities Access (MFA) Grant.
The idea for CISS was spawned at the HPCS 2002 confer-
ence. With a CFI policy that requires each facility to make
at least 20% of their resources available to external users,
the timing was right to realize this vision.

Grid software packages, such as Globus [3], have the po-
tential to meet our needs, but they require all participating
sites to install and configure several software packages. In-
stead, we decided to use the Trellis system, developed by
Paul Lu and colleagues at the University of Alberta [4], for
the CISS experiment. Trellis emphasizes the use of widely-

deployed software installed at the user-level, thus reducing
the dependence on system administrators for extensive in-
stallation and configuration. For example, the Trellisplace-
holder schedulingmodel [5,6] is a simple, user-level ap-
proach to global scheduling over a wide-area network of
heterogeneous resources.

The first CISS experiment, dubbed CISS-1, gave chemist
Dr. Wolfgang Jäger and his research team the chance to get
a new research result in a single day [7,8]. The applica-
tion required up to six years of computing time. Normally,
he would not tackle a problem of this size since other re-
searchers with access to more computing power could beat
him to the result.

The CISS-1 application, based on the MOLPRO soft-
ware package [9], was “embarrassingly parallel” – filling in
data points in a three-dimensional spatial grid. A parame-
ter space study is the natural way to formulate the problem.
This application was deliberately chosen for its simplicity,
since it was felt that the logistics of getting more than 1,000
processors working together the first time would require ex-
tensive effort. It did, and even then we underestimated how
time-consuming it would be!

CISS is an attempt to build the softwareand social in-
frastructure for a Canada-wide metacomputer (i.e., a useful
aggregate of individual computer systems). Although there
are still many unsolved technical problems in the metacom-
puting infrastructure, it may be an even greater challenge
to establish a community of researchers to effectively share
HPC resources. CISS-1 is just the first step towards our
long-term vision. We envision CISS being utilized on a

regular basis by researchers from across the country. This
would be unique in the world and a tremendous opportunity
for Canadian scientists to tackle problems that they previ-
ously thought were too large.

This paper is a semi-technical discussion of the moti-
vation, implementation, and outcomes (both technical and
social) of CISS. The contribution is in documenting and
quantifying CISS as well as the lessons learned from the
experience. Finally, we wish to acknowledge the support
and hard work of a lot of people and agencies that made
CISS possible, as detailed in the Appendix.

2 Trellis and Related Work

The concept of grid computing is popular these days.
The goals of the Trellis project are more modest and sim-
pler than that of grid computing. In particular, Trel-
lis is focussed on supporting scientific applications on
high-performance computing systems; supporting business
applications and Web services are not explicit goals of
the Trellis project. Therefore, we prefer to use older
terminology—metacomputing—to reflect the more limited
scope of our work. Currently, Trellis does not use any of
the new software that might be considered part of grid com-
puting, but the design of Trellis supports the incorporation
of and/or co-existence with grid technology in the future.

In computing science, the dream of metacomputing has
been around for decades. In various forms, and with
important distinctions, it has also been known as dis-
tributed computing, batch scheduling, cycle stealing, peer-
to-peer systems, and (most recently) grid computing. Some
well-known, contemporary examples in this area include
SETI@home [10], Project RC5/distributed.net [11], Con-
dor [12], and the projects associated with Globus/Open
Grid Service Architecture (OGSA) [3]. Of course, there
are many, many other related projects around the world, in-
cluding some in Canada (for example, Grid Canada [13]
and the University of Victoria Grid Testbed [14]).

The Trellis philosophy has been to write the minimal
amount of new software and to require the minimum of su-
peruser support. Simplicity and software re-use have been
important design principles. Trellis uses mostly widely-
deployed, existing software systems so that system admin-
istrators who want to participate in CISS do not have to in-
stall new software. In fact, all that is needed to integrate a
new site into CISS is for the system administrator to create
a regular user account.

2.1 Overlay Metacomputers

Users often want to aggregate the computing power of
a number of individual computers to get maximum job
throughput and minimize makespans (i.e., time from start
to finish to complete a workload). Using the Trellis soft-
ware, users create anoverlay metacomputerfrom a list of
computers they have access to. An overlay metacomputer
is like a grid or virtual supercomputer, except that the meta-
computer exists entirely at the user-level and is considered

an overlay because different metacomputers can be created
on a per-user and per-application basis. The overlay meta-
computer can be as simple as one computer, or as com-
plicated as hundreds of computers in many administrative
domains. Therefore, CISS is an overlay metacomputer of
Canadian HPC systems.

2.2 Metacomputing Applications

In HPC, one often makes a distinction betweencapac-
ity andcapabilitycomputing. Capacity computing is cen-
tered on maximizing the throughput for a workload with
multiple jobs. A large set of independent jobs is typical of
capacity computing. Capability computing is centered on
minimizing the turnaround time of individual jobs. Often,
capability computing deals with applications that require
advanced parallel algorithms, low-latency interconnection
networks, high-performance input/output, or large amounts
of physical memory to complete in a reasonable amount of
time.

At the level of the workload, CISS is focussed on ca-
pacity computing; the goal is to complete as many inde-
pendent jobs as possible. At the level of the individual
jobs, CISS supports applications that are shared-memory or
message-passing codes (i.e., capability computing) as long
as all of the processes execute within the same machine or
cluster [5,6]. But, so far, the CISS applications have all
been embarrassingly parallel sequential jobs; each job is an
independent data point in a parameter space.

Fortunately, embarrassingly parallel workloads are a nat-
ural and common occurrence in computational science, in-
cluding chemistry, physics, discrete simulations, and bioin-
formatics. But, since not all workloads have independent
jobs, future CISS experiments will address more sophis-
ticated workloads, including workflow dependencies be-
tween jobs. For example, pipelines and job dependency
graphs are supported by the Trellis system [15].

2.3 Issues in Global Scheduling

Metacomputers (and grids) need a system for global re-
source scheduling and allocation to deal with:

1. Multiple Administrative Domains : A global
scheduler must be able to make use of resources from
a wide variety of administrative domains and should
do so while adhering to the local policies set out by
the administration.

2. Local Batch Scheduler Interaction: Many HPC
sites employ one or more batch schedulers to govern
access to local computational resources. A global
scheduler should take advantage of the underlying
local batch scheduler, if it exists, by layering on top
of it.

3. Load Balancing: A global scheduler is expected
to improve performance by load balancing. Ideally,
a global scheduler should provide lower makespans
than any alternative methods the user has available.

2.4 Placeholder Scheduling

A placeholder is a mechanism for global scheduling in
which each placeholder represents a potential unit of work.
For further details, the interested reader is referred to other
papers [5,6]. The current implementation of placeholder
scheduling uses normal batch scheduler job scripts to im-
plement a placeholder. Placeholders are submitted to the
local batch scheduler with a normal, non-privileged user
identity. Thus, local scheduling policies and job account-
ing are maintained.

When the job (a.k.a. placeholder) begins executing, it
contacts a central server and requests the job’s actual run-
time parameters (i.e., late binding). For placeholders, the
communication across administrative domains is handled
using Secure Shell (SSH). In this way, a job’s parameters
arepulledby the placeholder rather thanpushedby a cen-
tral authority. In contrast, normal jobs hard-code all the
parameters at the time of local job submission (i.e., early
binding). Through the late binding of job parameters to
placeholders, the global scheduler has maximum flexibility
in implementing load balancing policies.

Placeholders do not require any special software, other
than SSH, to be installed on individual computers. More-
over, they utilize existing normal user accounts at various
sites, thereby allowing the sites to enforce per-user policies
such as CPU accounting, disk quotas, and access restric-
tions.

2.5 TrellisWeb

TrellisWeb is an evolution of the PBSWeb system that
was originally designed to simplify job submission to the
Portable Batch System (PBS). TrellisWeb provides a con-
venient interface to placeholder scheduling to address:

1. Resource Scheduling and Allocation: With place-
holder scheduling, global jobs can co-exist with local
jobs from local users and all jobs are subject to local
policies, such as priority schemes and queue struc-
tures. Additionally, zero-infrastructure placehold-
ers can be used at sites without an underlying batch
scheduler. Zero-infrastructure placeholders are, es-
sentially, a script with an infinite loop of “get next
job, compute job, and return result”.

2. Single Log On: TrellisWeb provides a Web-based
graphical user interface (GUI), or portal, with a sin-
gle username/password access to overlay metacom-
puters.

3. Access Control: Placeholder scheduling and Trel-
lisWeb use normal, non-privileged user accounts to
provide a metacomputing environment. Therefore,
the local site policies and access control are reflected
implicitly within the system.

Figure 1. The “shifting” of theH2O2 molecule with respect to
the space-fixed propyleneimine molecule.

3 The CISS-1 Application

The computational chemistry experiment was designed
by Wolfgang Jäger, Aiko Huckauf, and Yunjie Xu of the
Department of Chemistry, University of Alberta [8]. The
chemistry application is the computational determination
of chiral molecule interaction energies. The following de-
scription comes from Dr. Jäger.

“An object that cannot be superimposed with its mirror
image is called chiral. Our hands are the most familiar ex-
ample of such chiral objects. Image and mirror image are
called enantiomers of the chiral object. Chiral molecules
play important roles in nature. For example, life itself is
based on single enantiomeric forms of amino acids and sug-
ars, a fact known as “homochirality of life”. Many pharma-
ceuticals are chiral molecules of which one enantiomer has
a beneficial effect whereas the other may have severe side
effects.

“At the heart of it all is chiral recognition or chiral dis-
crimination. A handshake is possible between two left or
two right hands, but not between left and right hand. On
the molecular level, there is an energy difference between
the interaction of, for example, the right handed form of a
chiral molecule and the two enantiomeric forms of another
substance.

“How can this subtle energy difference have such a pro-
found effect in nature? The CISS-1 experiment involved
computing the interaction energy of two chiral molecules
at many different separations and orientations. The spe-
cific system consisted of 1,2-propyleneimine (an aziri-
dine derivative) and hydrogen peroxide. The calculations
were carried out on two different hydrogen peroxide enan-
tiomers. An analysis of the results gives a “chiral recog-
nition surface” that identifies the active sites of the chiral
components.”

To calculate the potential energy surfaces, a three-
dimensional (spatial) grid was created with the fixed
molecule at the centre. Calculations of potential energy
between an enantiomer and the fixed molecule were per-
formed at each point of the grid to yield the entire energy

surface (for example, Figure 1). Because of the nature of
the calculation, the grid may be arbitrarily dense, result-
ing in a potentially infinite number of points. However,
the grid was chosen so as to provide adequate granularity
for interpreting the potential energy surface while still be-
ing computationally feasible (even with a large number of
computers participating in computing results). Each point
may require several hours of computing time on a modern
workstation. In computational terms, this is an ideal paral-
lel problem which can be distributed onto as many proces-
sors as points needed and is therefore ideally suited for the
CISS experiment.

The commercial product MOLPRO was used for the
electronic structure calculations [9]. The computations
for each single point were performed using a state-of-the-
art level of theory. For this particular experiment, a sin-
gle MOLPRO job requires a site-specific amount of main
memory and between 0.5 GB and 1 GB of temporary disk
space. On an average contemporary processor (such as an
AMD Athlon CPU running at 1.3 GHz with 256 KB cache
available in the Department of Chemistry at the University
of Alberta), MOLPRO takes approximately four hours to
compute one data point.

4 The CISS-1 Experiment

4.1 CISS-1 Environment

Porting any application to a heterogeneous set of com-
puting platforms is always a labour-intensive and frustrat-
ing experience — CISS-1 was no exception. Some of the
minor and majors issues that had to be addressed included:

• Hardware. A variety of different hardware platforms
were used, each with their own set of peculiarities
(see Table 1).

• Operating system. A variety of operating systems
were encountered, each with their own set of pecu-
liarities.

• Compilers. MOLPRO had particular requirements
with respect to C and Fortran compilers. Often, the
widely-available GNU compilers were not able to
build the code correctly and we had to use either the
Portland Group or Intel compilers, if available.

• Batch schedulers. CISS-1 used systems run-
ning PBS, Sun Grid Engine (SGE), and IBM’s
LoadLeveler. On systems that did not have a batch
scheduler, we used a version of Trellis placeholders
that did not depend on a local scheduler (the zero-
infrastructure placeholders).

• Quotas. Many sites had explicit or implicit disk quo-
tas which had to be removed. In many cases, we only
found out about the quotas the hard way.

• Network. Some sites had firewalls or gateway nodes.
Assistance was needed to communicate securely
through them.

• Disk. Disk was located in different places on differ-
ent systems. Some disk was local, some was shared
across a storage area network (SAN). The chemistry
application required roughly 1 GB of temporary stor-
age for each job. For CISS-1, our experience was that
local disk was much faster than a shared, parallel file
system.

• Secure shell. Some sites used the commercial ver-
sion of SSH, which turned out to have some incom-
patibilities with the open-source OpenSSH (e.g., the
on-disk format of the public/private keys).

4.2 The Throughput Experiment

On November 4, 2002, the CISS-1 experiment combined
1,376 CPUs from 20 different HPC systems (16 differ-
ent institutions, 18 different administrative domains) across
Canada to cooperatively execute the computational chem-
istry parameter space study (Table 1) [6]. The experiment
received a lot of media exposure, and the Web site received
over 30,000 hits in the 24-hour period [7]. In our opinion,
the most noteworthy metric of CISS-1 is the 18 different
administrative domains, since that represents an unprece-
dented amount of (human) cooperation among Canadian
HPC centres and one of the largest cross-domain metacom-
puters reported to date.

The CISS-1 experiment was performed as a 24-hour
throughput test (i.e., capacity computing). For con-
venience, TrellisWeb was used to manage placeholder
scheduling. Starting on November 4, 2002 at 12:00 mid-
night, and ending on November 5, 2002 at 12:00 midnight,
placeholders were executed on the systems shown in Ta-
ble 1. The two days prior to November 4, 2002 were
used as a ramp-up period to finish integrating several sites
and bring all sites up to full capacity, but only the com-
putations performed during the 24-hour period will be dis-
cussed here. Several other institutions offered additional
computing resources for CISS-1, but (regrettably) a lack of
time prevented us from integrating them into the experi-
ment.

A high-level overview of the throughput of the CISS-
1 experiment is shown in Table 2. Performance varies
from site to site because of differing numbers of processors,
placeholders launched at each site, and how well-suited
MOLPRO was for the particular hardware architecture at a
given site. For example, since MOLPRO uses a substantial
amount of temporary disk space during a computation, sys-
tems with fast, local disk drives (e.g., clusters) performed
much better than systems with shared, parallel file systems.

A total of 7,593 work units (jobs) were completed by
CISS-1 in the official 24-hour period.1 The top four sites,
in terms of throughput, were the CLUMEQ cluster in
Montreal (stokes.clumeq.mcgill.ca) with 2,162
units, the cluster at Simon Fraser University in Burnaby

1Many more units of work were completed during the development of
CISS, the ramp-up period, and after November 4, 2002. Over 27,000
units of work have been completed in total.

No. Site Description Local Scheduler PH

1 athlon-cluster.nic.ualberta.ca x86 Linux Cluster PBS 32
2 aurora.nic.ualberta.ca SGI Irix PBS 236
3 brule.cs.ualberta.ca x86 Linux Cluster SGE 26
4 bugaboo.hpc.sfu.ca x86 Linux Cluster Zero-Infrastructure 192
5 chromosome1.ocgc.ca SGI Irix PBS 96
6 deeppurple.sharcnet.ca Alpha Linux Cluster Zero-Infrastructure 22
7 driftwood.iam.ubc.ca x68 Linux Cluster PBS 16
8 gnome.usask.ca x86 Linux Cluster Zero-Infrastructure 32
9 hammerhead.sharcnet.ca Alpha Linux Cluster Zero-Infrastructure 22
10 herzberg.physics.mun.ca SGI Irix Zero-Infrastructure 20
11 maci-cluster.ucalgary.ca Tru64 Alpha Cluster PBS 176
12 mercury.sao.nrc.ca x86 Linux Cluster PBS 48
13 minerva.uvic.ca IBM AIX SP LoadLeveler 128
14 monolith.uwaterloo.ca IBM AIX P-Series Zero-Infrastructure 16
15 myri.ccs.usherbrooke.ca x86 Linux Cluster Zero-Infrastructure 8
16 p4-cluster.nic.ualberta.ca x86 Linux Cluster PBS 26
17 stokes.clumeq.mcgill.ca x86 Linux Cluster PBS 248
18 symphony.unb.ca IBM AIX SP LoadLeveler 2
19 white.cs.umanitoba.ca x86 Linux Cluster Zero-Infrastructure 22
20 zodiac.chem.ubc.ca x86 Linux Cluster PBS 8

Total 1376

Table 1
CISS-1 Sites (PH = placeholders; typically one PH per CPU)

(bugaboo.hpc.sfu.ca) with 1,575 units, the various
clusters and machines at the University of Alberta in Ed-
monton with 1,275 units, and the MACI cluster at the Uni-
versity of Calgary (maci-cluster.ucalgary.ca)
with 1,065 units.

When examining these numbers, several points should
be kept in mind:

1. Most sites possessed much more computing power
than that used for CISS-1. Therefore, the throughput
numbers should be viewed as lower bounds on the
HPC resources at the various sites.

2. Unfortunate, but normal, hardware/software failures
at a few sites affected their throughput. For example,
a failed hard disk at the University of Calgary and a
reboot at the University of Alberta led to a gradual
restart of the placeholders and computations at both
sites. Without the failures and reboots, several sites
would have achieved better throughput. As an aside,
we are fairly pleased with our software’s ability to
deal with faults.

3. The MOLPRO application was not substantially
tuned for the architecture at each site. When pos-
sible, we used the recommended build procedures
from the developers of MOLPRO, but the empha-
sis in CISS-1 was on the metacomputing aspects of
the experiment and not on optimizing MOLPRO for
each system.

Overall, CISS-1 consumed approximately 2.94 years
(25738:58:40)of computing time across all sites. The mean

time required to compute a work unit was approximately
3.39 hours (3:23:23). However, if we instead assume that
a work unit takes approximately four hours to compute on
a contemporary x86 cluster processor located in the De-
partment of Chemistry at the University of Alberta, the to-
tal computation comes out to about 3.46 years worth of
computation (7,292.94 work units at four hours per work
unit). These numbers could be even better, but (as dis-
cussed above) a number of faults resulted in several hun-
dred processors being unavailable for a few hours.

Most sites exhibit a large amount of variability (as
evidenced by standard deviationσ) due to the fact
that MOLPRO required a variable amount of time de-
pending on the particular data point being computed.
Other sources of variability include heterogeneous CPU
clock rates (e.g., the various SGI Origins at the Uni-
versity of Alberta and the different Alpha-based nodes
at maci-cluster.ucalgary.ca) and contention for
shared storage systems.

Some of the systems, such asathlon-cluster.nic-
.ualberta.ca , brule.cs.ualber-ta.ca , and
bugaboo.hpc.sfu.ca had relatively steady and pre-
dictable rates of execution. Although computational abil-
ity varies among the sites, the overall rate within these
sites stayed fairly consistent. This is largely due to the
fact that these sites employed the use of local scratch
disks present at each node (all three are clusters). In con-
trast, sites such asaurora.nic.ualberta.ca and,
to some extentmaci-cluster.ucalgary.ca , exhib-
ited spikes in work completion due to the use of a parallel
file system (as withaurora.nic.ualberta.ca), or

No. Site Number of Jobs Total CPU Time MeanTime Per Job σ

1 athlon-cluster.nic.ualberta.ca 307.75 751:12:52 2:26:27 0:46:20
2 aurora.nic.ualberta.ca 437.17 4530:30:47 10:21:46 4:34:15
3 brule.cs.ualberta.ca 433.31 958:13:50 2:12:41 0:33:10
4 bugaboo.hpc.sfu.ca 1575.22 3984:29:37 2:31:46 0:36:55
5 chromosome1.ocgc.ca 136.79 1310:10:33 9:34:41 3:40:41
8 gnome.usask.ca 159.13 729:58:24 4:35:14 1:29:49

10 herzberg.physics.mun.ca 107.37 441:04:44 4:06:29 1:15:01
11 maci-cluster.ucalgary.ca 1064.61 2919:52:07 2:44:34 1:03:15
12 mercury.sao.nrc.ca 397.61 941:16:43 2:22:02 0:43:51
14 monolith.uwaterloo.ca 356.09 383:37:03 1:04:38 0:09:06
15 myri.ccs.usherbrooke.ca 73.02 161:45:13 2:12:54 0:38:28
16 p4-cluster.nic.ualberta.ca 96.56 579:38:53 6:00:10 2:47:13
17 stokes.clumeq.mcgill.ca 2162.47 5625:23:44 2:36:05 0:47:12
19 white.cs.umanitoba.ca 57.46 479:57:20 8:21:10 2:37:03

other 228.36 1941:46:53 8:30:11 7:38:53

Overall 7592.94 25738:58:40 3:23:23 2:40:54
Table 2
CISS-1 Throughput: Number of Jobs Completed All times are reported as H:MM:SS.

some cluster nodes sharing the same scratch disk (as with
maci-cluster.ucalgary.ca). Because of the tem-
porary storage requirements of MOLPRO, and because
such storage is heavily used, MOLPRO jobs may con-
tend with one another in a shared file system situation.
aurora.nic.ualberta.ca experienced a severe I/O
bottleneck at the parallel file system that resulted in high
contention and high mean execution time.

4.3 CISS-2

CISS-2 was run over the Christmas holidays, from De-
cember 23, 2002 to January 2, 2003. In contrast to CISS-1,
two applications were used: a molecular dynamics appli-
cation from Dr. Peter Tieleman’s group (University of Cal-
gary) and a physics simulation from Dr. David Sénéchal’s
group (Université de Sherbrooke). Also, in sharp con-
trast to CISS-1, we did not request exclusive access to the
computing resources; CISS-2 was designed to use what-
ever cycles might be available during the holidays. A sub-
set of the sites from CISS-1 were used for CISS-2, in-
cluding: CLUMEQ (at McGill University), the Hospital
for Sick Children (Toronto), Memorial University of New-
foundland, Simon Fraser University, and the Universities
of Alberta, Calgary, New Brunswick, Saskatchewan, and
Victoria.

The CISS-2 experiment is still being analyzed. Since the
machines were not dedicated for CISS-2, it is more difficult
to analyze the throughput in a meaningful way. However, it
is known that CISS-2 completed more than the originally-
planned workload. In fact, more jobs were created and
added during the experiment’s time window and, in the
end, CISS-2 completed almost twice the original number
of computations.

5 Concluding Remarks

Although there was room for improvement, both CISS-
1 and CISS-2 were successes, as judged by many met-
rics. CISS showed that there is a need for large-scale high-
performance computing in Canada. The experiments pro-
duced new research results in computational science [8,16].
Finally, CISS achieved national and international media ex-
posure, furthering the campaign for an increase in the com-
mitment of funding for HPC in Canada.

Perhaps most importantly, CISS helped foster a new so-
cial infrastructure for sharing computational resources in
Canada. The sociology behind the sharing of multi-million
dollar facilities worked well, but it continues to need work
and attention. This project convinced some of the skeptics,
but not all of the skeptics. We will continue to build the
cross-institution bridges and contacts required for future
CISS experiments. More HPC centres can be, and must
be, included for future efforts.

To ensure a successful continuation of the CISS initia-
tive, several things have to happen:

1. CISS should become a regular event on the Canadian
research calendar. Computational scientists should
be encouraged to tackle problems on the scale of
CISS. Whether CISS should be scheduled as a few
days per month, set aside specifically for CISS, or
whether it should be irregular, based on demand, re-
mains to be seen.

2. Given the large commitment of computing resources
involved, CISS should only endeavor to undertake
the highest-quality research projects. This requires
a proper refereeing process to evaluate the impact of
the research and the need for the resources.

3. Substantially more resources need to be devoted to
the CISS effort; for example, CISS could be taken

over and administered by C3.ca under the TASP pro-
gram.

Worldwide, there are many, large grid computing and
metacomputing projects. Computational science and high-
performance computing have become vital, complemen-
tary approaches to theoretical and experimental science.
When appropriate, we should borrow inspiration and tech-
nology from other projects. When it makes sense, we
should develop our own approaches and infrastructure so-
lutions. But, if Canada does not define and commit to its
own strategy for HPC, we risk putting artificial limits on
the imagination and innovation of our scientists.

Acknowledgments

Financial support was provided by the Natural Sciences
and Engineering Research Council of Canada (NSERC),
C3.ca Association Inc, and Alberta’s Informatics Circle of
Research Excellence (iCORE). Canada Foundation for In-
novation (CFI) funding supported the acquisiton of most of
the HPC resources used in this research.

References

1. TOP500 Supercomputer Sites.http://www.top500.
org/ .

2. C3.ca Association Inc.http://www.c3.ca/ .
3. Globus Project.http://www.globus.org/ .
4. Trellis Project. http://www.cs.ualberta.ca/

˜paullu/Trellis .
5. Christopher Pinchak, Paul Lu, and Mark Goldenberg. Prac-

tical Heterogeneous Placeholder Scheduling in Overlay
Metacomputers: Early Experiences. InProc. 8th Work-
shop on Job Scheduling Strategies for Parallel Process-
ing (JSSPP), pages 85–105, Edinburgh, Scotland, UK, July
24, 2002. Also published as Springer-Verlag LNCS 2537
(2003), pages 205–228. Available athttp://www.cs.
ualberta.ca/˜paullu/ .

6. Christopher Pinchak. Placeholder scheduling for overlay
metacomputing. Master’s thesis, Department of Computing
Science, University of Alberta, 2003.

7. CISS – The Canadian Internetworked Scientific Supercom-
puter.http://www.cs.ualberta.ca/˜ciss .

8. Yunjie Xu, Aiko Huckauf, Wolfgang Jäger, Paul Lu,
Jonathan Schaeffer, and Christopher Pinchak. The CISS-1
experiment:ab initio study of chiral interactions. In39th In-
ternational Union of Pure and Applied Chemistry (IUPAC)
Congress and 86th Conference of The Canadian Society for
Chemistry, Ottawa, Ontario, Canada, August 10–15, 2003.

9. MOLPRO Quantum Chemistry Package.http://www.
molpro.net/ .

10. SETI@home. http://setiathome.ssl.
berkeley.edu/ .

11. RC5 Project.http://www.distributed.net/rc5 .
12. Condor.http://www.cs.wisc.edu/condor .
13. Grid Canada.http://www.gridcanada.ca/ .
14. UVic Grid Testbed.http://grid.phys.uvic.ca/ .
15. Mark Goldenberg. TrellisDAG: A system for structured

DAG scheduling. Master’s thesis, Department of Comput-
ing Science, University of Alberta, 2003.

16. Justin L. MacCallum, Parag Mukhopadhay, Huaqiang Luo,
and D. Peter Tieleman. Large scale molecular dynamics sim-
ulations of lipid-drug interactions. In17th Annual Interna-
tional Symposium on High Performance Computing Systems
and Applications (HPCS), Sherbrooke, Quebec, Canada,
May 11–14, 2003.

Appendix
We thank the scientists who helped make CISS-1 and CISS-

2 a success by contributing their applications to the experiment:
CISS-1: Wolfgang Jäger, Aiko Huckauf, and Yunjie Xu (Univer-
sity of Alberta); CISS-2: Peter Tieleman and Justin MacCallum
(University of Calgary); David Sénéchal and Dany Plouffe(Uni-
versité de Sherbrooke). Thank you to all of the researcherswho
interrupted their own work to give us exclusive use of the compu-
tational resources for CISS-1.

C3.ca’s vision, support, and leadership was vital to CISS. We
hope to continue and expand C3.ca’s role in future experiments.
We gratefully acknowledge the role that Canarie and Netera have
played in high-performance networking, with respect to CISS and
the MACI Project in Alberta.

We thank the authors of MOLPRO, P. Knowles and H. Werner,
for permission to use their software for CISS-1.

We acknowledge the contributions of Rob Lake, George Ma,
Victor Salamon, Jeff Siegel, Jeremy Handcock, Nolan Bard, Mark
Lee, Vanessa Chung, Yaling Pei, and Danny Ngo to the Trellis
Project.

The following people graciously committed time and/or re-
sources to make CISS-1 and CISS-2 a success. Please accept our
apologies for any inadvertent omissions.

Mark Andrews, Hospital for Sick Children; Bruce Attfield,
C3.ca; Roman Baranowski, University of British Columbia;
Virendra C. Bhavsar, University of New Brunswick; David
Bickle, Carleton University; Kayla Bonham, University of Cal-
gary; Jonathan Borwein, Simon Fraser University; Mehdi Bozzo-
Rey, Université de Sherbrooke; Chip Campbell, Hospital for Sick
Children; Colin Cherry, University of Alberta; Scott Delinger,
University of Alberta; Harold Esche, University of Calgary; Dar-
rell Fraser, Aurora College; Robert Fridman, University ofCal-
gary; Peter Graham, University of Manitoba; Wagdi G. Habashi,
McGill University; Mark Hahn, McMaster University; Jason
Hlady, University of Saskatchewan; Marc La France, Univer-
sity of Alberta; Colin Leavett-Brown, University of Victoria;
Waldemar Lysz, University of Alberta; Chris MacPhee, Univer-
sity of New Brunswick; Paul Masiar, C3.ca; Gabriel Mateescu,
National Research Council; Gary Molenkamp, SharcNet; John
Morton, University of Guelph; Fred Perry, Memorial University
of Newfoundland; Doug Phillips, University of Calgary; Wayne
Podaima, National Research Council; Andrew Pollard, C3.ca;
Darryl Reid, Memorial University of Newfoundland; Sean See-
ley, University of New Brunswick; Ron Senda, University of
Alberta; Martin Siegert, Simon Fraser University; Luc Simard,
McGill University; Rob Simmonds, University of Calgary; Amik
St-Cyr, McGill University; Mark Thachuk, University of British
Columbia; Brian Unger, University of Calgary; Alain Veilleux,
Université de Sherbrooke; Chris Want, University of Alberta;
Kevin Watts, University of Alberta; Norris Weimer, University
of Alberta; Douglas Weir, University of Waterloo; Len Zaifman,
Hospital for Sick Children.

