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ABSTRACT are three basic approaches. One approach is based on
Motivation: Identifying the destination or localization of  amino acid composition, using artificial neural nets (ANN)

proteins is key to understanding their function and facilitating
their purification. A number of existing computational predic-
tion methods are based on sequence analysis. However, these
methods are limited in scope, accuracy and most particularly
breadth of coverage. Rather than using sequence information
alone, we have explored the use of database text annotations
from homologs and machine learning to substantially improve
the prediction of subcellular location.

Results: We have constructed five machine-learning clas-
sifiers for predicting subcellular localization of proteins from
animals, plants, fungi, Gram-negative bacteria and Gram-
positive bacteria, which are 81% accurate for fungi and 92—
94% accurate for the other four categories. These are the most
accurate subcellular predictors across the widest set of organ-
isms ever published. Our predictors are part of the Proteome
Analyst web-service.

Availability: http://www.cs.ualberta.ca/~bioinfo/PA/Sub, http://
www.cs.ualberta.ca/~bioinfo/PA
Contact: bioinfo@cs.ualberta.ca
Supplementary information:
~bioinfo/PA/Subcellular

http://www.cs.ualberta.ca/

INTRODUCTION

High-throughput sequencing technology has made it pos-
sible for many laboratories to sequence the genomes
of new organisms. There are more than 1200 gen-
ome sequences deposited in public databases (EBI, 2003,
http://www.ebi.ac.uk/genomes/). Given the size and com-
plexity of these datasets, most researchers are compelled
to use automated annotation systems to identify or clas-
sify individual genes and proteins. As part of this annota-
tion process, a number of systems have been developed
that support automated prediction of subcellular localiza
tion, based on amino acid sequence information. There

*To whom correspondence should be addressed.

such as NNPSL (Reinhardt and Hubbard, 1998), or
support vector machines (SVM) like SubLoc (Hua and
Sun, 2001, http://www.bioinfo.tsinghua.edu.cn/SubL oc/).
A second approach uses the existence of peptide signals,
which are short sub-sequences of ~3-70 amino acidsto pred-
ict specific cell locations, such as TargetP (Emanuelssonetal.,
2000). A third approach, such astheoneusedin LOCkey (Nair
and Rost, 2002), isto do asimilarity search on the sequence,
extract text from homologs and use aclassifier onthetext fea-
tures. Some toals, like PSORT (Nakai and Kanehisa, 1992;
Horton and Nakai, 1997, http://psort.nibb.ac.jp/), combine a
variety of individual predictors. Many tools, like SubLoc,
PSORT and TMHMM (Krogh et al., 2001, http://www.cbs.
dtu.dk/servicess TMHMMY/), are available for public use on
the web. Unfortunately, most tools accept only a single
sequence at atime, with TMHMM being a notabl e exception.
Emanuel sson (2002) provides a good survey of these tools.

Better accuracy and coverage are needed

There are two limitations to current techniques. The first is
the limited accuracy of the predictors, especialy for some
organelles. The second is limited coverage. The term cover-
age can be used in three ways: location coverage, sequence
coverage and taxonomic coverage. All threekinds of coverage
are limited in current tools.

First, location coverage defines the sub-regions (nuclear,
cytoplasmic, extracellular, etc.) in the cell that are supported
by apredictor. Most existing tools limit the location coverage
to just membranes or just afew organelles.

Second, given a training/test set, sequence coverage is
defined astheratio of sequencesfor whichapredictionismade
to the total number of sequences of interest. For example,
the LOCkey dataset consists of 3146 labeled sequences from
Swiss-Prot and the predi ctor obtained an accuracy of 0.87 ona
subset of 1161 sequences (coverage = 0.37). Sequence cov-
erage can be measured on one organi sm (1-organi sm sequence
coverage) or multiple organisms. The 1-organism measure is
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Table 1. Accuracies (Acc.) and informal sequence/taxonomic coverage of
current subcellular localization predictors

Name Acc. Coverage Technique
PSORT-B 0.75 1443 GN bacteria Combination
LOCkey 0.87 1161 assorted Homol ogy
SubLoc 0.91 291 prokaryotic AA composition
0.79 2427 eukaryotic
TargetP 0.85 940 plant Signal prediction
0.90 2738 non-plant
Proteome 0.93 16 284 animal Homology and ML
Analyst 0.93 3420 plant
0.81 2104 fungal
0.92 3218 GN bacterial
0.94 1571 GP bacteria

important for high-throughput prediction of newly sequenced
organisms.

Third, taxonomic coverage measurestherange of organisms
for the predictor such as: animal, green plant, Gram-negative
bacteria (GN), etc. Most existing predictors have only been
evaluated on a limited number of sequences from a specific
taxonomic category of organism (e.g. just GN bacteriaor just
green plants).

Table 1 lists some predictors and gives a measure of accur-
acy and the kind of technique employed. It also provides an
informal indication of combined sequence coverage and taxo-
nomic coverage. Unfortunately, no standardized sequence
coverage ratios have been published for these predictors.
Using classifiersfor prediction
This paper describesanovel classification technique for pred-
icting subcellular localization (Lu, 2003). This technique is
used in our publicly available web-based Proteome Analyst
(PA). Two tools are available for subcellular localization—a
simple tool (PA-SUB) that only predicts subcellular loc-
alization (http://www.cs.ualberta.ca/~bioinfo/PA/Sub) and a
more comprehensive tool that predicts subcellular localiza-
tion along with other annotations, including general func-
tion (http://www.cs.ual berta.ca/~bioinfo/PA). The second tool
also alows a user to build a custom classifier from custom
training data.

A controlled vocabulary or ontology is required for
subcellular localization. In fact, since cell structure var-
ies across organisms, several ontologies are required and
PA supports five: animal, plant, fungi, GN bacteria and
Gram-positive (GP) bacteria, which are based on the
PSORT ontologies. Among them, PSORT (bacteria/plants),
PSORT |1 (animalslyeast) (Nakai, 2000, http://psort.nibb.ac.
jp/helpwww2.html) and PSORT-B (GN bacteria) provide a
set of predictors over the same classes of organisms as PA.
However, PSORT and PSORT Il are older systems with poor

accuracy, whereas PSORT-B is a newer system with much
better accuracy (Gardy et al., 2003).

Ingeneral, aclassifier takesaquery instance, described by a
set of feature-value pairs, and returns one of afixed number of
labels(Mitchell, 1997). InPA, each query instanceisaprimary
sequence that is BLASTed against the Swiss-Prot database to
obtain aset of homologs. Each feature of the query instanceis
aBoolean val ue corresponding to the presence or absence of a
token (word or phrase) from certain fields of the homologous
sequences Swiss-Prot database entries.

We use amachine-learning (ML) algorithm to learn a map-
ping from the features of a query instance to the appropriate
subcellular localization label for that instance. A common
techniqueisto apply aML algorithm to aset of labeled train-
ingitemsto produceaclassifier. Inour case, eachtrainingitem
consists of a primary protein sequence and the ontological
label it has been assigned by an expert. Each training instance
isfirst BLASTed against Swiss-Prot to identify itsfeaturesin
the same manner asquery instances. Features are not provided
in the training set—they are computed automatically from
Swiss-Prot data.

In this paper, we use three different sources for labeled
training data: Swiss-Prot database entriesthat have unambigu-
ous subcellular localization annotations (26 458 sequences),
a subset of the Swiss-Prot database developed for LOCkey
(3146 sequences) and the set of GN bacteria sequences (1443)
used in PSORT-B. These three datasets are used to evaluate
the PA classifiers. However, a PA user can also create a cus-
tom subcellular localization classifier using custom training
data, by simply uploading afile of labeled training sequences
(Szafron et al., 2003b). No programming is required.

In the context of PA, transparency is the ability to provide
formally-sound and intuitively-simple reasons for each pred-
iction (Szafron et al., 2003a). PA bases its predictions on
well-understood concepts of conditional probabilities. Its
explanations are presented as stacked bar-graphs that clearly
display the evidence for each prediction.

Contributions

This paper describes anew subcellular localization prediction
technique that makesthefollowing scientific contributions:

(1) Thisnew ML technigque makes the most accurate sub-
cellular localization predictions over the broadest range
of organisms (animals, plants, fungi, GN bacteria and
GP bacteria) of all subcellular localization prediction
techniques published to date.

(2) This technique is publicly available as a high-
throughput web-based tool in PA.

(3) Proteome Analyst providesthefirst explanation facility
for subcellular localization predictions.

(4) Proteome Analyst can be used to easily create new sub-
cellular classifiers using custom training data, without
any programming.
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SYSTEMS AND METHODS
The prediction process

Proteome Analyst predicts the subcellular localization of a
query protein sequence using its primary sequence and the
organism taxonomic category: animal, plant, fungi, GN bac-
teria, GP bacteria. Here is the five-step prediction process
used by PA.

P1. Theprimary sequenceof thequery proteinisBLASTed
against the Swiss-Prot database and a set of homolog-
0us sequences is selected.

P2. Potential featuresare computed by extracting text from
the Swiss-Prot records of the best homologs. A feature
hasthe value trueif atoken representing that featureis
extracted and false if no such token is extracted.

P3. The user-provided taxonomic organism category is
used to select one of five pre-built Naive Bayes (NB)
classifiers (Dudaand Hart, 1973): animal, plant, fungi,
GN bacteria, GP bacteria

P4. The features are used by the appropriate classifier to
compute the probability of each label in the ontology
of that classifier. The label with the highest probability
is considered the primary location for the protein.

P5. The user can view a graphical explanation of the
prediction (Szafron et al., 2003a).

We use the GP bacterial protein Exodeoxyribonuclease
from Streptococcus pneumoniae (EXOA_STRPN) as an
example. If this organism was newly seguenced, its pro-
teins would not appear in Swiss-Prot. Therefore, we removed
al EXOA_STRPN entries from our Swiss-Prot database for
this demonstration. We experimented with many variations
of steps P1 (homolog selection) and P2 (feature extraction),
as described in the Discussion section. In this section, we
describe only the best configuration. We select up to three
homologs with the lowest BLAST E-values that are less
than 0.001.

Figure 1 shows three homologs of our query protein
sequence. For feature selection, we obtained the best results
using phrases extracted from selected fields of the Swiss-
Prot homologs. Specifically, we extracted each semi-colon
delimited phrase from the Swiss-Prot KEYWORD field of
each selected homolog, as well as al InterPro numbers from
the DBSOURCE field. Finaly, we checked for the inclu-
sion of a pre-defined set of phrases in the SUBCELLULAR
LOCALIZATION sub-field of the COMMENT field. For
ease of reference in this paper, we will denote these fields
by: KWORD, IPR and SCELL, respectively. This set of
phrases forms the potential feature set. The Discussion sec-
tion describes aternative feature definition strategies that
produced less accurate classifiers.

After computing the potential feature set, weremoveall ubi-
quitous phrases like: ‘ complete proteome’, that are contained

Score E

Sequences producing significant alignments: (bits) Value

sp|P37454 | EXOA BACSU Exodeoxyribonuclease 196 4e=50
sp|P4595]1 | ARP _ARATH Apurinic endonuclease-redox.. 183 Je-46
sp|P27695 [APE] _HUMAN DNA-(apurinic or apyrimidi.. 167 2e=-41

Fig. 1. The Swiss-Prot homologs of EXOA_STRPN from BLAST.

Psi-blast Output
Unique Tokens Extracted for Protein #6:

ipr003034, ipr000097, lyase, nuclear, nuclease, cytoplasmic, nuclear protein,
polymorphism, exonuclease, ipr005135, dna repair, ipr004808, hydrolase,

Relevant Tokens for Protein #6:

lyase, nuclease, cytoplasmic, nuclear protein, jpr005135, hydrolase,

Fig. 2. Thefeaturesfor EXOA_STRPN extracted by PA.

cytoplasmic [ 0.772

cellwall| 0.000
extracellular | 0.228
membrane | 0.000

Fig. 3. Proteome Analyst predicted subcellular locations for
EXOA_STRPN.

in a stop-word list (van Rijsbergen, 1979, http://www.
des.gla.ac.uk/Keith/Preface.html). For example, Figure 2
shows the potential feature set for the demonstration query
sequence (EXOA_STRPN) that were extracted from the top
three homologs. They appear under the heading ‘Unique
Tokens Extracted for Protein #6’.

Our classifiers remove other poorly discriminating features
aswell. When PA buildsaclassifier, it actually learnsthe best
set of features to use. This process of feature selection is a
standard ML technique for improving accuracy (Kohavi and
John, 1997). In fact, the five classifiers (animal, plant, fungi,
GN bacteria and GP bacteria) use different machine-learned
feature sets. Figure 2 shows the features that were actually
used by the GP bacteriaclassifier to classify thedemonstration
sequence (EXOA_STRPN). They appear under the heading
‘Relevant Tokens for Protein #6'. For example, the features
ipr003034 and polymorphism appear in the * Unique Tokens
list, but are not used by the classifier, so they are not in the
‘Relevant Tokens' list.

Proteome Analyst uses a NB classifier, which generates a
probability for each label. Figure 3 shows the probabilities of
each of the GP bacterialabelsfor the demonstration sequence
(EXOA_STRPN) as shown in PA.

Building a classifier
A classifier must be trained (built) before it can be used. PA
useslabeled training datato build asimple NB classifier using
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these basic steps:

B1l. Each labeled training instance consists of a primary
sequence and alabel from the ontology of the classifier
being built.

B2. The primary sequence of each training instanceis run
through steps P1 and P2 described in the previous
section to produce a set of potential features.

B3. A set of sufficient statistics, C; and ¢;;,
puted for the set of training instances, where cl.“; is
the number of training sequences that were indicated
by label j with F; = true and Cij» is the number of
training sequences that were indicated by label j with
F; = false.

B4. A NB classifier isbuilt using these sufficient statistics.

are com-

In fact, as mentioned earlier, we modify this basic pro-
cess by using feature selection (Kohavi and John, 1997) to
improvetheaccuracy. After building and computing theaccur-
acy using all the potential features, we remove 5% of the
featuresthat have thelowest information content. Theinform-
ation content (information gain) of afeature is a measure of
the amount that afeature contributesto classificationsin gen-
era (Mitchell, 1997). For example, if a feature appears in
every training instance, it isuselessin discriminating between
labels and its information content is zero. On the other hand,
a feature that appears in al training instances that have a
single label and no training instances with any other labels
is very good for discriminating the one label. Therefore, it
has high information content. After removing this 5% of low
information content features, we build asecond classifier, and
mesasure its accuracy. We then remove another 5% of low
information content features and continue in this way until
we have computed the accuracy of 20 different classifiers
with 0%, 5%, 10%, . . ., 95% of the original featuresremoved.
We identify the threshold that produced the classifier with the
highest accuracy. The most accurate classifiersfor subcellular
localization typically had 75-80% of the least discriminating
features removed.

Classifier evaluation

To compare classifiers, it isimportant to define the evaluation
criteriaprecisely. Most techniques start with a confusion mat-
rix or contingency table (van Rijsbergen, 1979). Table 2 shows
the confusion matrix for the PA GP bacteria classifier trained
on Swiss-Prot data.

We will use Table 2 to illustrate our evaluation techniques.
Each entry in Table 2 represents the number of sequencesin
the test set whose actual label is the row label and whose
predicted label isthe column label. For example, the number
of sequences with actua label mem(brane) that were incor-
rectly predicted as ext(racellular) is 17. The ASum column
indicates the number of test sequences whose actual label is
specified by the row label. For example, 340 sequences were

Table 2. Confusion matrix for the PA GP classifier, trained on Swiss-Prot
data

Actual Predicted label

cyt wa  mem ext N.P ASum cov  Sensitivity
oyt 881™ o™ 1377 26™ 10™ 930 0.989 0.947
wal 1™ 16™ P 1TN 1TN 19 0947 0.842
mem 8FN  1FN 2091TP  17FN 237N 340 0.932 0.856
ext 4TN TN gFP 217TN 21™ 252 0917 0.861
PSum 894 19 312 261 55 1541 0.964 R=0912
Precision 0.985 0.842 0.933 0.831 P =0.945
Specificity 0.979 0.998 0.983 0.966 §=0978

The ontological |abels are: cyt(oplasmic), (cell) wal(l), mem(brane) and ext(racellular).
N.P. represents no prediction, ASum and PSum are the sums of the actual and predicted
labels, respectively. cov is sequence coverage. The superscripts: TP, true positive; TN,
true negative; FP, false positive; and FN, false negative are relative to the mem(brane)
label and are used in the text for illustration, along with the bolded entries. R, P and
S denote overall sensitivity (recall), precision and specificity, respectively.

actually labeled mem(brane). The PSum row indicates the
number of test sequenceswhose predicted label isspecified by
the column label. For example, 312 sequences had predicted
label, membrane.

Various statistics can be computed from a confusion matrix
to evaluate a classifier. In this paper we will use four standard
statistics: specificity, precision, sensitivity and recall (the last
two are identical). Given a confusion matrix M and a set of
labels {L;}, the standard definitions (van Rijsbergen, 1979;
Altman and Bland, 1994) of these statistics are as follows.

The precision for each label L; is P; defined by:

TP M;; M;;

P': = =
"TTPHFP T Y M PSumy

Here, n isthe number of traininginstances, true positives (TP)
isthe number of labels correctly predicted as L;, which were
actualy labeled L;. The false positives (FP) is the number
of labels incorrectly predicted as L; that were actually not
labeled as ;. For example, consider the label mem(brane) in
Table 2. The TP and FP counts are denoted by superscripts,
where there is a single count for TR, but the three FP entries
must be summed. From Table 2, wehave TP = 291 and FP =
13+ 0+ 8 = 21. Therefore, the precision for membrane is:
Pmem) = 291/(291 + 21) = 291/312 = 0.933.
The specificity for each label L; is S; defined by:

. TN __ sum — ASum; — PSum; + M;;
T TIN4FP sum — ASum;

S

Here, true negatives (TN) is the number of labels cor-
rectly predicted as not L;, that were actually not labeled
L; and sum is the total number of sequences (1541 in
Table 2). For example, in Table 2, the TN and FP counts
for the label mem(brane) are denoted by superscripts, where
the superscripted numbers must be summed. We have
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TN = 881+ 0+26+10+1+16+1+1+4+24217
+21=1180 and FP=134+0+8=21. The specificity
of label mem(brane) is: Smem) = 1180/(1180 + 21) =
1180/1201 = 0.983.

The sensitivity or recall for each label L; is R; defined by:

e TP Mi My
©OTPHPN  ylyg  ASum

Here, false negatives (FN) is the number of labels incor-
rectly predicted as not L; that were actually labeled L;. For
example, consider the label mem(brane) in Table 2. The TP
and FN counts are denoted by superscripts, where the FN
superscripted numbers must be summed. From Table 2, we
have TP = 291 and FN = 8 + 1 + 17 + 23 = 49. Note that
the FN number includes the no prediction (N.P) column as
well. Therefore, the sensitivity (recall) of label mem(brane)
iS: Rmem) = 291/(291 + 49) = 291/340 = 0.856.

The precision and specificity statistics favor conservative
predictors that make no prediction when there is doubt about
the correctness of a prediction, while the sensitivity (recal)
statistic favors liberal predictors that make a prediction if
there is a chance of success. For example, if two predic-
tions are changed from ‘no prediction’ to a prediction, where
one is correct and the other is incorrect, then TP increases
by 1, FPincreasesby 1, TN decreases by 1 and FN decreases
by 1. Therefore, the precision and specificity humbers both
decrease, but the sensitivity (recall) increases:

. TP+1 TP
P,' = <
TP+1+FP+1 TP+FP
N TN-1 TN
"TIN-1+FP+1  TN+FP
. TP+1 TP
R,‘ = >
TP+1+FN—-1 TP+FN

Information retrieval papers report precision and recal,
while bioinformatics, medical and ML papers tend to report
specificity and sensitivity. We include all of them. However,
specificity isnot asinformative as precision for multi-labeled
(non-binary) classifiers. We also include sequence coverage,
which is the ratio of sequences for which a prediction was
made to the total humber of sequences in a specific class.
For example, in Table 2, the coverage of mem(brane) is
(340 — 23)/340 = 0.932.

An overal version of each statistic is computed as a
weighted average. For the overall sensitivity (recall) the
weights are the number of sequences with each actual label
(ASum;), and we also refer to it asthe accuracy, A:

A= Ié _ Z?ZlASum,-R,- _ Zl'.’:lASumi(M,-,-/ASum,-)
T sum - sum
XM
T

For example, in Table 2, the overall sensitivity (accuracy) is
A =R =(881+ 16+ 291 + 217)/1541 = 0.912.

The overall precision and overall specificity are weighted
averages over the predicted labels (columns):

5o iz PSUMiP 3 Mi
sum — PSum, 41 sum — PSum;,, 41
S _ Z?:l PSumi Si

sum — PSum,, 41

For example, the overall precision and overall specificity of
the classifier in Table 2 are P = (881 + 16 + 291 + 217)/
(1541 — 55) = 0.945 and § =0.978, respectively. The
overall coverage is aweighted average of the label coverage,
so C = 0.964.

There are many different ways to organize test sets and
we compute two different kinds of confusion matrices. Our
first technique is a standard ML technique called 5-fold
cross-validation (Mitchell, 1997). Each set of labeled training
instancesis‘randomly’ dividedintofivegroups(Gai, ..., Gs),
while keeping the number of training instanceswith each label
approximately the samein each training group. Then, five dif-
ferent classifiers are constructed (C4, . . ., Cs), where C; uses
al of the training instances from all of the groups except G;.
Next, a confusion matrix is computed for each of the five
classifiers, C;, using the sequencesin group G; (that were not
used in its training) as test data. The final confusion matrix
isthen computed by summing the entriesin al the confusion
matrices. In our application, there is one important modifica-
tion that is necessary to ensure ‘fairness’ of the evaluation.
Our features are obtained by extracting them from Swiss-Prot
homologs. Before searching for homologs, we remove the
Swiss-Prot entries of each of the test sequences. This sim-
ulates the situation where the test sequences correspond to
newly sequenced proteins that would not appear in the Swiss-
Prot database. We used the 5-fold cross-validation accuracy
to build the feature selection filter described in the previous
section. A second technique for computing a confusion mat-
rix isto build asingle classifier from al training data except
the sequences from one specific organism. This 1-organism
classifier is then applied to the specific organism and a con-
fusion matrix is constructed. This simulates the situation in
which a classifier is used to predict the subcellular locations
of all sequencesin anewly sequenced organism. In this case,
for fairness, al Swiss-Prot entries for that specific organism
are removed from the Swiss-Prot database.

After the evaluation is complete, we build afinal classifier
usingal of thetraininginstances. Thisfinal classifier typically
has better accuracy than any of thefive classifiers built during
5-fold cross-validation.

RESULTS
Proteome analyst accuracy

Table 3-7 show the statistics for the five classifiers
we built using training instances from the Swiss-Prot
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Table 3. Statistics for the PA anima classifier: count, spec(ificity),
prec(ision) and sens(itivity), as well as the 1-organism statistics for Bos

Table 5. Statistics for the PA fungi classifier. See Tables 3 and 4 for
abbreviations

taurus (Bovine)

Location 5-fold cross-validate

1-organism: BOVINE

Count Spec prec Sens count Spec  prec  sens
nuc 2846 099 0979 0905 47 1.000 1.000 0.894
mit 1194 0998 0973 0970 145 0993 0.972 0.952
cyt 1845 0.981 0.866 0919 84 0983 0.878 0.940
ext 3943 0991 0972 0927 197 0991 0974 0.964
gol 167 0.996 0.723 0.892 7 0996 0667 0.857
pex 103 0.999 0.909 0.971 4 0999 0.800 1.000
end 457 099 0.868 0.952 14 0996 0.824 1.000
lys 170 0998 0.861 0.947 12 0997 0.857 1.000
mem 4820 0.981 0.957 0938 218 0986 0966 0.917
Overall 15549 0.988 0.946 0929 728 0.990 0950 0.941

Location 5-fold cross-validate

1-organism: NEUCR

count Spec prec  sens count Spec  prec  sens

nuc 621 0.975 0933 0.833 11 1.000 1.000 1.000
mit 406 0.977 0888 0.744 45 0.976 0.976 0.889
cyt 395 0.949 0.786 0.808 15 0.958 0.824 0.933
ext 171 0993 0914 0871 2 1.000 1.000 1.000
gol 52 0991 0689 0808 O 1.000 0/0 0/0

pex 64 0993 0786 0859 O 1.000 0/0 0/0

end 64 0993 0750 0656 1 1.000 1.000 1.000
mem 302 0.989 0932 0861 12 0.987 0917 0.917
vac 19 099% 0600 0632 1 1.000 1.000 1.000
Overadl 2094 0975 0.871 0811 87 0.978 0.940 0.908

The 1-organism is Neurospora crassa.

The ontological labels are: nuc(lear), mit(ochondria), cyt(oplasmic), ext(racellular),
gol(gi), pe(ro)x(isomal), end(oplasmic reticulum), lys(osomal) and mem(brane).

Table 4. Statistics for the PA green plant classifier. See Table 3 for

Table 6. Statistics for the PA GN bacteria classifier. See Table 2 for
abbreviations

abbreviations

Location 5-fold cross-validate

1-organism: MAIZE

Location 5-fold cross-validate 1-organism: HAEIN
count Spec prec  Sens count SpeC  prec  sens

cyt 1861 0.989 0.992 0955 73 1.000 1.000 1.000
ext 253 0986 0.838 0.858 15 0.990 0.929 0.867
per 385 0986 0.898 0.873 7 0.991 0.875 1.000
inn 432 0993 0958 0951 5 1.000 1.000 0.800
wal 46 0.999 095 0935 O 0.983 0/0 0/0
out 197 0996 0938 0.919 15 1.000 1.000 0.800
Overdl 3174 0.990 0.959 0934 115 0990 0.964 0.922

Additional ontological labels are: inn(er membrane), per(iplasmic), (cell) wal(l) and
out(er membrane). The 1-organism is Haemophilus influenzae.

Table 7. Statistics for the PA GP bacteria classifier. See Tables 3 and 6 for

count SpeC prec  Sens  count SpPEC  prec  sens
nuc 168 0999 0988 0964 16 1.000 1.000 1.000
mit 307 0992 0926 0935 19 0986 0.900 0.947
cyt 447 0987 0923 0960 36 0.992 0971 0.917
ext 127 099 0.887 0.866 6 0981 0667 1.000
gol 35 0998 0.850 0.971 2 1000 1.000 1.000
chl 1899 0973 0980 0959 69 0979 0.969 0.913
pex 29 0999 0.993 0.966 1 0994 0500 1.000
end 64 0.998 0.903 0.875 6 1000 1.000 1.000
vac 82 0997 0.870 0.817 2 0994 0667 1.000
mem 135 0992 0.805 0.733 9 0.987 0.600 0.333
Overall 3293 0982 0.951 0939 728 0.987 0926 0.904

Additional Iabels are chl(oroplast) and vac(uole). The 1-organism is Zea mays.

database. The training sets are publicly available (PA-SUB,
2003, http://www.cs.ualberta.ca/~bioinfo/PA/Subcellular),
along with the confusion matrices that were used to compute
these statistics. Each training set containsaset of sequencesin
FastA format that includesthecorrect label (from Swiss-Prot),
the organism tag, the organism name, Swiss-Prot taxonomy
information and the primary sequence.

These classifiers show excellent 5-fold cross-validation and
1-organism statistics over al ontological classes. However,
some small training and test sets produce poor results, such
as the precision (0.600) for the 19 training/test instances of
vacuolar in the fungi classifier (Table 5).

We performed additional experimentsto compare our work
with similar systems. To compare PA to LOCkey (Nair and

abbreviations
Location 5-fold cross-validate 1-organism: STRCO

count Spec prec  sens  count SpPEC  prec  sens
cyt 930 0.982 0.988 0.948 37 1.000 1.000 1.000
wal 19 0997 0750 0.789 O 0/0 0/0 0/0
ext 252 0967 0841 0881 6 1.000 1.000 1.000
mem 340 0982 0929 0.853 9 1.000 1.000 0.889
Overal 1541 0.980 0.946 0.914 52 1.000 1.000 0.981

The 1-organism is Streptomyces coelicolor.

Rost, 2002), we constructed two custom subcellular localiza-
tion classifiers using their ontology and training data. The
LOCkey paper contains a confusion matrix for a Swiss-Prot
dataset with 1162 training instances. Table 8 showsthe 5-fold
cross-validation specificity, precision and recall, computed
from their confusion matrix and from a PA classifier we built
using their training data and ontol ogy.
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Table 8. A comparison of the statistics of a PA classifier built using the
LOCkey 1161 sequence training data with the statistics produced by the
LOC(Key) classifier on the their training data

Table 9. A comparison of the statistics of a PA classifier built using the
PSORT-B training datawith the stati stics produced by the PSORT-B predictor,
built from the same training data

Location Count  Specificity Precision Sensitivity Location Count Precision Sensitivity

LOC PA LOC PA LOC PA PSORT-B PA PSORT-B PA
mit 190 0945 0993 0763 0964 0.795 0.979 cyt 252 0.976 0.947 0.694 0.853
ext 334 0947 0975 0879 0937 0953 0973 inn 308 0.967 0.965 0.787 0.906
nuc 352 0926 0985 0850 0965 0971 0.929 per 264 0.919 0.915 0.576 0.860
chl 94 0979 0997 0718 0966 0.609 0.894 out 378 0.988 0.986 0.903 0.947
cyt 136 0970 0973 0656 0804 0428 0.846 ext 241 0.944 0.876 0.700 0.880
end 14 0993 1000 0200 1000 0154 0500  Oyerall 1443 0.965 0943 0748 0.895
lys 7 0.999 0999 0000 0833 0.000 0.714
gol 22 099%8 0999 0895 0944 0810 0778 o ryyosor the ontological label abbreviations.
pex 8 1000 1000 0.000 1.000 0.000 0.375
vac 4 1.000 1000 0000 1000 0.000 0.250
Overdll 1161 0945 0983 0815 0936 0815 0912

See Tables 3 and 4 for the ontological label abbreviations.

Our specificity, precision and sensitivity results are consist-
ently better than the LOCkey results, except for sensitivity
onthegolgi class. Our accuracy (overall sensitivity) isamost
10% better at 0.912 versus0.815. Even though our approaches
are similar, there are two reasons for these accuracy differ-
ences. First, we are using a different classifier technology—
(NB) versusan ad-hoc method. Second, weareusing different
Swiss-Prot database fields (including the IPR field). Their
paper does not include a confusion matrix or accuracy statist-
ics, for 100% coverage of a larger 3146 sequence set, other
than to indicate that the accuracy isless than the 0.815 accur-
acy of their 34% coverage classifier. On thislarger set (100%
coverage), we achieved an accuracy (overall sensitivity) of
0.889 (PA-SUB, 2003).

We also built a custom classifier for GN bacteria using the
reliable PSORT-B GN bacteria data (Gardy et al., 2003) asa
training set. Table 9 shows the 5-fold cross-validation pre-
cision and sensitivity (recall) presented in their paper and
the same statistics computed from a PA classifier built using
the PSORT-B training data and ontology. They do not report
specificity, so it is not in Table 9. Note that our Swiss-Prot
GN bacteriaontology has one extralabel, (cell) wal(l), which
they includein the ext(racellular) class. To compare our tech-
nique more directly with theirs, we did not include a (cell)
wal(l) label in the classifier we built from their data. The
PA approach is very different than the PSORT-B approach,
since PA uses a simple NB classifier and features extracted
from Swiss-Prot homologs, while PSORT-B uses a set of six
sequence-based models. Nevertheless, PA produces results
that are somewhat better for sensitivity and accuracy, and very
close in precision. Furthermore, the PA technique produces
excellent results for animals, plants, fungi and GP bacteria
(with different classifiers of course).

Note that 139 out of 1443 training sequences in the
PSORT-B training data have two labels. To accommodate
double-labelsin our NB classifier, wetransformed each train-
inginstancethat had two label sinto twotraining instances, one
with each label. Since we are comparing with the PSORT-B
classifier (Gardy et al., 2003), we followed their lead dur-
ing predictor evaluation and counted a prediction as correct
if it predicted either of the two labels. As a final test, we
applied our full Swiss-Prot trained GN bacteria classifier to
the PSORT-B test set and obtained an accuracy of 0.869 (Lu,
2003; PA-SUB, 2003).

Sequence coverage

If PA is applied to an entire organism, there will be some
sequences without homologs, so no features can be extrac-
ted and used by the classifier. In some cases, even though
homologs are found, there will be no relevant tokens in the
FUNCTION, IPR and SCELL fields used by PA to construct
features. We call such sequences excluded sequences and
PA makes no subcellular localization prediction for excluded
sequences. Excluded sequences are the only ones that reduce
the coverage of PA classifiers. To gain an appreciation for
the PA subcellular localization sequence coverage on vari-
ous organisms, we used the PA classifiers to classify all the
sequencesin several organismsas shown in Table 10. A more
complete table is online (PA-SUB, 2003).

Before running PA on an organism, we removed all the
sequencesfor that organism from Swiss-Prot, so that no exact
sequence matches would be found. Of course, for these tests,
we cannot report accuracy, since we do not know the ‘ cor-
rect’ subcellular localization for many of them. The organisms
use the animal, plant, fungi, GN bacteria and GP bacteria
classifiers, respectively. Each was selected since its compl ete
proteome is publicly available. We are currently devel oping
pattern recognition and discovery software that can be used
to extract local features from excluded sequences so that the
coverage may approach 100%.
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Table 10. Sequence coverage of the PA classifiers on some fully sequenced
organisms

Organism Class Count Exclude Cov

M.musculus Animal 27754 7099 0.745
Acthaliana Plant 26032 10043 0.600
Spombe Fungi 5007 1023 0.787
B.subtilis GP bacteria 4098 1346 0.672
P.aeruginosa GN bacteria 5557 1355 0.756

The count is the total number of genetic sequences for the organism. An exclude(d)
sequence is one for which PA was unable to find at least one homolog whose E-value
was less than 0.001 that contained at least one relevant feature. The cov(erage) is the
ratio of all non-excluded sequences from an organism to the total number of sequences
from that organism.

DISCUSSION

Extracting ontological labelsfor training
sequences

We selected all mature sequences (>40 amino acids) from
the Swiss-Prot database and tried to extract their ontological
labels. Although the Swiss-Prot database contains a subcellu-
lar localization field, this field does not contain just a single
ontological label for each sequence. Therefore, we had to
construct a parser that extracted a simple ontological label,
when possible. Here are the rules that our parser uses to label
potential training sequences:

(1) Seeif the field contains one of the ontological labels.
If it does not, the sequence is rejected as a training
sequence.

(2) If it contains more than one ontological label, it isaso
rejected, unless one label is an organelle and the other
is membrane.

(3) If it contains an ontological label, but also contains the
phrase ‘potential’ or ‘by similarity’ it isrejected if the
number of training sequences with that label is high.
However, if the number of training sequences with that
label is small (<1.5% of the total number of training
instances), it is accepted.

(4) If the ontological label is ‘cell wall’ and the phrase
contains the word ‘ attached’, it is rejected.

Steps 2, 3 and 4 require some explanation. For step 2, it
is common to describe a protein as being in a membrane
of a specific organelle. In this case, the correct label is the
organelle. In step 3, we want to reject any annotations that
contain wordslike ‘ potential’ or ‘by similarity’. However, for
ontological labelswith low numbers of training instances, we
found that accepting ‘ higher risk’ annotationsis necessary to
obtain enough training data so that the classifiers have good
accuracy. Note that we followed the PSORT-B |ead of includ-
ing any sequences that contain the phrase ‘cell wall’ in the

Table1l. Theaccuracy of PA GN classifiersthat usedifferent homolog selec-
tion techniques, different Swiss-Prot fields and different feature extraction
techniques

PSI-BLAST Top KWORD IPR SCELL acc
iterations homologs

1 3 phrase yes phrase 0.934
1 3 phrase yes no 0.924
1 3 phrase no phrase 0.934
1 3 no no phrase 0.922
2 3 phrase yes phrase 0.932
1 2 phrase yes phrase 0.935
1 4 phrase yes phrase 0.936
1 3 words yes words 0.929

extracellular class for the plant and fungi ontologies, since
the Swiss-Prot data is not very accurate in these cases. For
step 4, we found many Swiss-Prot SCELL annotations for
proteinsthat are not in the cell wall, which contain the phrase
‘attached to the cell wall’.

Selecting homologs and extracting features

We experimented with many different implementations of the
5-step prediction process described earlier in this paper. For
step 1, we used PSI-BLAST instead of BLAST and varied the
number of iterations. Second, we varied the number of homo-
logs whose features were extracted. The highest accuracies
were obtained by using one iteration of PSI-BLAST (so we
reverted to BLAST). There is not much difference between
using the top two, three or four homologs (whose E-values
were smaller than 0.001), so we decided to pick three, while
we investigate this further.

For step 2, we varied the Swiss-Prot fields that
we used to extract features. We used combinations of the
KEYWORD field (KWORD), the InterPro numbers from the
DBSOURCE field (IPR), and the SUBCELLULAR LOCAL -
IZATION subfield of the COMMENT field (SCELL). Wealso
varied the way we parsed the fields to extract features. For
example, we tried stemming (Jurafsky and Martin, 2000) on
the KWORD field so that the words: ‘vacuole' and ‘vacu-
oles’ arethe same. We also tried treating semi-colon delimited
phrases like: ‘ Purine biosynthesis' as a single feature versus
two separate features in the KWORD field. The best results
were obtained by using semi-colon delimited phrases without
stemming. For the SCELL, wetried using al individual words
asfeaturesand wetried using afixed set of pre-defined phrases
(PA-SUB, 2003). The pre-defined phrase approach worked
the best. Table 11 shows accuracy results for some of our
experiments.

Notice from Table 11 that using the SCELL, IPR and
KWORD fields of the Swiss-Prot database gives the best
prediction results, although the IPR field isthe least important
for predicting subcellular localization. Therefore, the better
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Table12. A comparisonof theaccuracy of NB, ANN, SVM and three nearest
neighbor classifiers (INN, 3NN and 5NN) on the five Swiss-Prot datasets,
the LOCkey dataset and the PSORT-B dataset

Category NB ANN SVM INN 2NN 3NN

Animal 0.929 0.883 0.956 0.910 0.919 0.919
Plant 0.939 0.971 0.947 0.900 0.912 0.911
Fungi 0.811 0.856 0.814 0.726 0.772 0.752
GP bact 0.914 0.949 0.898 0.812 0.845 0.843
GN bact 0.934 0.956 0.939 0.868 0.899 0.892
LOCkey 0.912 0.943 0.924 0.720 0.763 0.768
PSORT-B 0.895 0.927 0.888 0.615 0.652 0.653

accuracy of PA compared to LOCkey cannot be attributed
only to the inclusion of the IPR field. The NB classifier
itself accounts for most of the improvement over LOCkey.
However, there is hope that IPR numbers may be useful for
some localizations. A domain projection technique based on
SMART domains (Schultz et al., 2000), which are included
in Interpro, has been somewhat successful in identifying the
labels: extracellular, cytoplasmic and nuclear (Mott et al.,
2002). In addition, we havefound that using the PR number is
very significant for general function prediction and other spe-
cialized predictorswe have constructed using PA, like K™-ion
channel protein classification (Szafron et al., 2003b).

Selecting a classifier technology

For step 3, we varied thekinds of classifiers. Table 12 showsa
summary of results (PA-SUB, 2003) for NB, ANN, SVM and
three nearest neighbor classifiers (INN, 3NN and 5NN). For a
k-nearest neighbor predictor, after BLASTing for homologs,
we ignored all Swiss-Prot fields except for the SCELL field.
Thek homologswiththesmallest E-values(<0.001), that had
anon-empty SCELL field voted for a subcellular localization
label, based on their own field label. In the case of atie, the
homolog with the smallest BLAST E-value won.

As shown in Table 12, the NB accuracy is better than any
of the k-nearest neighbor classifiers, but isinferior to the best
ANN and SVM classifiers up to 5%. However, it is very dif-
ficult to explain the predictions of ANN and SVM classifiers,
so we feel that this small decrease in accuracy is more than
compensated by the ability to explain the predictionsto users.
Explanation is an important factor in getting users to trust
predictors (Szafron et al., 2003a).

The explain mechanism of PA alows users to review the
evidence used by a classifier to make a prediction. For
example, both the NB and ANN classifiers predict that the
GN protein OMP1_CHLMU is an outer membrane protein,
even though Swiss-Prot 41 SCELL entry is CELL WALL
SURFACE. However, the PA explain mechanism for NB clas-
sifiers allow the user to view the evidence, while there is no
way to do thisin an ANN classifier. Figure 4 shows part of
an explain page for the OMP1_CHLMU classification. Each

extracellular
cutoplasmic
inner menbrane
cell wall
periplasmic
outer mesbrane

O 4 8 12 16 20 24 28 32 36 40 44 48 T2 %6 60 &4 68 72
Sun of Logs of Conditional Probabilities
{ Logarithmic }

B porin outer
menbrane

B iprooosod B integral B transmesb- Reduced [0 Reduced
nenbrane rane Prior Residual
protein

Fig. 4. Part of the PA explain page for protein OMP1_CHLMU.

horizontal bar representsthe evidence for aparticular location
on a logarithmic scale. Each sub-bar with different shading
indicates the evidence due to the existence of a single fea-
ture (porin, outer membrane, ipr000604, integral membrane
protein and transmembrane). In PA, these sub-bars are differ-
ent colors, but have been represented by different shadings
in this paper. The long white bar represents the accumul ated
evidence of the other features that are not currently displayed
(‘Reduced Residua’).

Proteome Analyst contains a mechanism for changing the
fivefeaturesthat are displayed and the remaining featuresthat
are combined into the white bar (* Reduced Residua’). Notice
that the evidence for label ‘outer membrane’ over ‘cell wall’
is overwhelming. Even though a PA-NB classifier and a PA—
ANN classifier both predicted outer membrane, the advantage
of using an NB classifier instead of an ANN classifier is the
existence of this explanation facility. Note that in the revised
Swiss-Prot version 42 database that was released in Septem-
ber 2003, the SCELL entry of this protein was changed to
outer membrane to match the PA prediction. Although the
explanation mechanism of PA was not used to influence this
annotation change, it could have been used in this way.

A complete description of the PA explanation facility is
beyond the scope of this paper. However, Figure 5 shows one
more PA screen that can be used to view prediction evidence.
This screen shows relative evidence from the most import-
ant features, in selecting between the predicted class (in this
case, outer membrane) and any other class of interest (in
this case, cell wall). The darker bars indicate evidence for
outer membrane and the lighter barsindicate evidencefor cell
wall. The (P) notation indicates that a token for that feature
was present in the query sequence (OMP1 _CHLMU) and an
(A) indicates that the token for that feature was absent. We
believethat the convenienceand power of the PA—NB explana-
tion facility is worth the loss of a few percentage points of
precision accuracy that might be gained by using an ANN or
SVM classifier.

It isalso possibleto use multiple classifier technologies and
to report aconsensus, although we are not currently using this
approach. It isnot clear how the explanation facility would fit
with such an approach.
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Fig. 5. Viewing feature contributionsto a PA prediction.
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