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1. INTRODUCTION

Extensibility is becoming a very important issue in modern operating
systems. Extensible operating systems can easily adapt to satisfy the
requirements of new emerging applications. The growing importance of
extensibility is evidenced by the numerous projects focusing on designing
new extensible operating systems [Bershad et al. 1995; Engler et al. 1995;
Ford et al. 1996; Seltzer et al. 1994], or implanting extensibility in existing
ones [Fitzhardinge 1996; Ghormley et al. 1996].

In this article we present a new method for extending existing operating
systems entirely at the user level. We achieve most of the benefits of an
extensible operating system without having to modify the existing OS or
designing a new one. In our approach, extensions can be installed and run
by an individual user without the help of a system administrator and
without affecting other users. One advantage of this method is that
extensions become very simple to install and use. Another major benefit is
that each user can choose what extensions to run, in effect creating a
personalized operating system view for him or herself.

We demonstrate this method for operating system extension by building
a significant extension—the Ufo1 global file system extension that installs
and works completely at the user level. The original motivation for this
extension came from the recent explosive growth of the Internet that gave
an increasing number of users, including us, access to multiple computers
that are geographically distributed. Our desire was to have transparent file
access from our local Unix machines to our personal accounts at remote
sites. In addition, we also wanted to present resources from the large
number of existing HTTP and anonymous FTP servers as if they were local
to allow applications to transparently access remote files.

Ufo is based on the Catcher, our tool for extending a standard Unix
operating system (Solaris) completely at the user level. The Catcher
extension approach, which is similar to Interposition Agents [Jones 1993],
uses standard tracing facilities to intercept selected system calls. The
behavior of intercepted system calls is then modified to implement new
functionality.

While this article focuses on extending the file system services, our
approach provides a general way of expanding the operating system. The
main advantages of this approach are that extensions

—install and work completely at the user level,

—require no modifications to the kernel,

—require no recompilation or relinking of existing applications,

—require no modification of standard shared libraries,

—can be dynamically “installed into” and “uninstalled from” already run-
ning processes,

1Ufo stands for User-level File Organizer.
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—can be added on a per-user and per-process basis, and

—can be developed at the user level without access to OS source code.

Like all user-level extension methods, our approach has certain limita-
tions. First, some OS extensions are not possible to implement due to the
fact that there is hidden kernel state inaccessible from the user level.
Second, there is a performance overhead associated with system call
interception which may be too big for some extensions. Last, the extensions
do not work for setuid programs due to the security policy enforced by the
operating system.

In this article we aim to examine the benefits of this method of extending
the OS and to evaluate the performance of the implemented extensions in
the context of remote file systems. We also give a good insight into the
range of possible extensions by implementing a large OS extension for
remote file access (Ufo) and suggesting other possible extensions.

The remainder of the article is structured as follows. Section 2 discusses
the significance of the user-level approach for Ufo and gives a high-level
overview of the OS extension mechanism. Section 3 reviews related work
and compares our method for operating system extension with alternative
approaches. Section 4 gives a detailed description of the Catcher and
explains how it intercepts system calls at the user-level. Section 5 discusses
the design decisions of Ufo, the user-level global file system. Section 6
presents experimental results for a variety of microbenchmarks, standard
Unix file system benchmarks, and full application programs. Section 7
concludes this article and offers an outlook on future research directions.

2. UFO OVERVIEW

Ufo implements a global file system that allows local applications to
transparently access files on remote machines. It is a user-level process
that runs on Unix systems and connects to remote machines via authenti-
cated and anonymous FTP and HTTP protocols. It provides read and write
caching with a weak cache consistency policy.

2.1 User-Level Motivation

It was important to us that the file system not only run at the user-level
but that it also be user-installable (i.e., installing it does not require root
access). For example, assume one of us obtains a new account at an NSF
supercomputer center. Once we log into that account, we would like to
transparently see all remote files we have some way of accessing (be it via
telnet, FTP, rlogin, NFS, or HTTP), all without having to ask the system
administrator to install anything. This is not necessarily an easy task in a
Unix environment, since most current file system software must be in-
stalled by a system administrator. For example, systems such as NFS and
AFS allow sharing of files across the Internet, but they require root access
to mount or export new file partitions. The system administrator may not
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have the time or, due to security concerns, may not be willing to install a
new piece of software or export a file system resource.

A user-installable file system does not have these problems. Not only can
users install it themselves, but it does not introduce any additional security
holes in the underlying operating system or network protocol. To guarantee
that a file system can indeed be installed by the user, it should only rely on
functionality provided by standard (unmodified) operating systems.

2.2 Personalizing the Operating System: The Catcher Approach

In order to provide a global file system, we extend the operating system to
handle file accesses (and related functions) properly. By modifying the
behavior of system calls, we can add new functionality to the operating
system. In our approach we modify the system call behavior by inserting a
user-level layer, the Catcher, between the application and the operating
system.

The Catcher is a user-level process which attaches to an application and
intercepts selected system calls issued by the application. From the user’s
perspective, the Catcher provides a user-level layer between the user’s
application processes and the original operating system, as shown in
Figure 1. This extra layer does not change the existing OS, but allows us to
control the user’s environment, either by modifying function parameters or
issuing additional service requests.

The Catcher operates as follows. Initially, it connects to the user process
and tells the operating system which system calls to intercept. Our imple-
mentation which runs under Sun Solaris 2.5.1 uses the System V /proc
interface,2 which was originally developed for debugging purposes
[Faulkner and Gomes 1991]. Instead of just tracing the system calls, we
actually change at the user-level the semantics of some of them to imple-
ment the global file system. Whenever a system call of interest begins (or
completes), the operating system stops the subject process and notifies the
Catcher. The Catcher calls the appropriate extension function, if needed,
and then resumes the system call.

For our global file system, we intercept the open, close, stat, and other
system calls that operate on files. When we intercept a system call which
accesses a remote file, we first ensure that an up-to-date copy is available
locally. Then, we patch the system call to refer to the local copy and allow it
to proceed. System calls which only access local files are allowed to proceed
unmodified, while most systems calls not related to files are not even
intercepted. Since no application binaries are changed, this approach works
transparently with any existing executable (with the exception of the few
programs requiring setuid).

A potential concern with our approach is its performance overhead. While
the cost for intercepting system calls is significant, our performance analy-

2Similar functionality is provided by Digital Unix, IRIX, BSD, and Linux. This mechanism is
used by system-call-tracing applications such as truss or strace .
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sis shows that Ufo introduces acceptable overhead for common applica-
tions.

Since Ufo runs fully at the user level, if one user runs it there is no
performance penalty on another user. Furthermore, a user can run Ufo
only on some selected applications without impacting other applications, or
even dynamically “install” (attach) or “uninstall” (detach) Ufo while appli-
cations are running.

2.3 Using Ufo

Ufo can be installed by any user without root assistance. The simplest way
to start using Ufo is to explicitly start processes under its control, e.g.,

tcsh% ufo csh
csh% grep UCSB http://www.cs.ucsb.edu/index.html
csh% cd /ftp/schauser@cheetah.cs.ucsb.edu/
csh% emacs papers/ufo/introduction.tex &

In the example above, the new shell running under Ufo can use the global
file system’s services. Ufo automatically attaches to any child that the shell
spawns, like the grep, cd, and emacs processes above. Alternatively, Ufo
can be instructed to dynamically attach to an already running process by
providing its pid.

tcsh% emacs &
[3] 728
tcsh% ufo —pid 728

3. RELATED WORK

Before presenting implementation details of the Catcher (in Section 4), we
will put our work in context by comparing our approach with alternative
ways of extending operating system functionality. The eager reader can
skip directly to the discussion of our implementation in Section 4. We first
introduce a classification of different approaches to extending the operating

Standard Operating System

User A specific OS layer User B specific OS layer 1

User A
Process

User B
Process

User B
Process

User B specific OS layer 2

User B
Process

User A
Process

Fig. 1. A new view of the operating system.
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system. We then discuss the relevant research projects on extending
operating system and file system functionality in more detail.

3.1 Approaches for Extending the Operating System

There has been a considerable amount of work on extending operating
systems with new functionality. We can divide the research in two main
groups: designing new extensible operating systems and adding extensibil-
ity to existing operating systems. There are multiple research projects on
designing new extensible operating systems, some of which are mentioned
in Section 3.2.

Here we discuss approaches for extending mainstream monolithic operat-
ing systems. We can classify these approaches into the following categories:

—Change the Operating System: The most straightforward approach is to
just modify the operating system itself and incorporate the desired
functionality. This requires access to the OS sources and the privileges to
install the new kernel.

—Device Driver: Instead of changing the kernel itself, modifications can be
limited to a new device driver which implements the desired functional-
ity. Root access is required to install the device drivers.

—Network Server: A clean solution with minimal intrusion to the operating
system is to install a network server, which provides the additional
services through an already existing standardized interface. Installing
the server and mounting remote directories requires root capabilities.

We want to reiterate that these first three approaches require superuser
intervention and affect everybody using the system, since everybody will
see the modifications to the operating system. If there is a bug or security
hole in the newly installed software, the whole system’s integrity and
security can be compromised. A user-level approach avoids this problem.

—User-Level Plug-Ins: When a one-time modification to the operating
system can be tolerated, a flexible strategy is to add hooks to the
operating system so that system calls can trigger additional functions
that extend the functionality. This approach is especially appropriate if
the OS has already been designed to be flexible and support extensions.

—User-Level Libraries (Static or Dynamic Linking): Most applications do
not directly access the operating system, but use library functions
embedded in standard libraries. Instead of modifying all binaries or the
OS kernel, it suffices to make changes to these libraries. Superuser
privileges are only necessary if the original libraries/binaries need to be
replaced.

—Application-Specific Modifications: Instead of incorporating the modifica-
tions into the library, we can also incorporate them directly into the
application, avoiding the operating system altogether.
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—Intercept System Calls: Most modern operating systems provide the
functionality of intercepting system calls at the user level. A process can
be notified when another process enters or exits selected system calls.
While the original motivation for this functionality was debugging and
tracing of system calls, this mechanism can also be used to alter their
behavior. This mechanism, which first was used in the context of Mach to
implement interposition agents [Jones 1993], forms the basis for our Ufo
implementation.

Table I lists examples of the above approaches, while Table II summarizes

Table I. Different Methods of Extending Operating System Functionality and Examples

Method Examples and References

Change the OS Sprite [Nelson et al. 1988], Plan 9 [Pike et al. 1990]
Device Driver AFS [Morris et al. 1986], NFS [Sandberg et al. 1985],

SLIC [Ghormley et al. 1996], and WebFS [Vahdat et al.
1996]

Network Server ftp2nfs [Gschwind 1994], Alex [Cate 1992]
User-Level Plug-Ins extended OS: SLIC [Ghormley et al. 1996], UserFS

[Fitzhardinge 1996]

flexible/extensible OS: SPIN [Bershad et al. 1994],
Exokernel [Engler et al. 1995]

Statically Linked Library Newcastle Connection [Brownbridge et al. 1982],
Prospero [Neuman et al. 1993], Condor [Tannenbaum

and Litzkow 1995]

Dynamically Linked Library Jade [Rao and Peterson 1993], IFS [Eggert and Parker
1993]

Application Specific Ange-ftp [Norman 1992]
Intercept System Calls Interposition Agents [Jones 1993], Confinement

[Goldberg et al. 1996], Ufo

Table II. Different Methods of Extending Operating System Functionality and Their
Limitations

Modify Needs Recompile Relink Range of Perfor-
OS Root Appli- Appli- Appli- mance

Method Source Access cations cations cations Overhead

Change OS X X all very low
Device Driver X all very low
Network Server X all medium
User-Level Plug-Ins once all low-high
Statically Linked

Library
X X user low

Dynamically Linked
Library

some dyn.
linked

low

Application Specific X X single low
Intercept System Calls all (no

setuid)
high
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their limitations and identifies the context in which they can be applied.
We wanted an approach that works with most existing applications without
the need for recompiling, and more importantly, one that can be used
without requiring root access. Therefore we decided to use the mechanism
of intercepting system calls.

3.2 Related OS Extensions

The project that is the closest to our own is the work on interposition
agents [Jones 1993] which also makes use of the mechanism of intercepting
system calls. Interposition agents provide a general system-call-tracing
toolbox, which allows different system calls to be intercepted and handled
in alternate ways, as we do in Ufo. Three example agent applications were
implemented: spoofing the time of day, tracing system calls (as in truss),
and transparently merging the contents of separate directories. The inter-
position agents work is based on Mach. While Mach is a Unix variant, it
was designed to be more flexible and extensible. In particular, when calls
are intercepted in Mach 2.5, they can be redirected to the process’ own
address space. Thus, the interposition agents are run in the user process’
own memory. Approaches that use a more standard Unix, such as ours, are
more constrained (and more complicated to implement), since it is harder to
access the user process state from outside of the process’ address space.

Another research project that uses the Unix trace mechanism for imple-
menting an OS extension is Janus [Goldberg et al. 1996] which provides a
secure, confined environment for running untrusted applications safely by
intercepting and selectively denying system calls. Like ours, the Janus
implementation has been designed for Solaris.

A lot of current research deals with designing operating systems that
allow for easier and more efficient user-level extension. The microkernel
approach is to remove functionality from the kernel and place it in
user-level servers. This reduces the complexity of the kernel and allows for
easier extensibility, since changes to the user-level servers do not affect the
kernel. Engler et al. [1995] propose to implement the operating system as a
set of untrusted application libraries. In their approach the kernel is
reduced to a very small exokernel that is only responsible for securely
exporting the hardware resources to the library operating system. Fluke
[Ford et al. 1996] combines the microkernel approach with recursive virtual
machines [Goldberg 1974]. This produces a modular and extensible operat-
ing system which can be decomposed both horizontally (as in microkernel
OS) and vertically through stackable virtual machine monitors. Another
approach, taken by VINO [Seltzer et al. 1994] and SPIN [Bershad et al.
1995], is to allow injection of user-written kernel extensions into the kernel
domain. A discussion of the issues involved can be found in Seltzer and
Small [1996]. SLIC [Ghormley et al. 1996], another recent project, is an OS
extension to Solaris that allows for plug-ins at both the user and the kernel
level.

Lastly, while we extend OS functionality by interposing at the user-
level/OS boundary, interposition is also possible at other places. For
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example, Disco [Bugnion et al. 1997] interposes a virtual machine monitor
layer between the OS and the machine hardware. This layer allows
multiple independent operating systems to run concurrently on a single
large-scale shared memory multiprocessor without large implementation
overhead.

We now discuss operating system extensions specific to our particular
application: remote file transfer.

3.3 OS Extensions for Remote File Systems

There are a number of systems that provide transparent access to remote
resources on the Internet, many of which have been very successful.
Examples include NFS (network file system) [Sandberg et al. 1985], AFS
(Andrew file system) [Morris et al. 1986], Coda [Satyanarayananan et al.
1990], ftpFS in Plan 9[Pike et al. 1990] and in Linux [Fitzhardinge 1996],
Sprite [Welch 1991; Nelson et al. 1988], WebFS [Vahdat et al. 1996], Alex
[Cate 1992], Prospero [Neumann et al. 1993], and Jade [Rao and Peterson
1993]. They all have one significant drawback: they either require root
access or modifications to the existing operating system, applications, or
libraries. Ufo is distinct in that it requires no such modifications to any
existing code and runs entirely at the user-level.

There are a few systems for global file access that run entirely at the
user-level and are user-installable. They are also similar to Ufo in that they
extend a local file system to provide uniform and transparent access to
heterogeneous remote file servers. Prospero [Neumann et al. 1993] and
Jade [Rao and Peterson 1993] both provide access to NFS and AFS file
systems, and to FTP servers. Prospero runs at the user level by replacing
standard statically linked libraries. This avoids changes to the operating
system, but requires relinking of existing binaries. Jade [Rao and Peterson
1993] uses dynamic libraries instead and allows most dynamically linked
binaries to run unmodified. Changing application libraries works well for
most applications, especially when combined with dynamic linking. The
drawback of this approach is that it does not work for statically linked
applications not owned by the user as well as for applications that circum-
vent the standard libraries and execute system call instructions directly.

Other global file systems also run at the user level, but are not user-
installable, since they require extensions to the operating system itself,
which in turn requires root access. One such example is WebFS [Vahdat et
al. 1996], a global user-level file system based on the HTTP protocol. To run
at the user level, WebFS relies on the OS extensions provided by SLIC
[Ghormley et al. 1996], which implements a call-back mechanism to a user
process. (WebFS also requires the HTTP server be extended with a set of
CGI scripts that service requests.) Similar to SLIC, UserFS [Fitzhardinge
1996] is an OS extension that enables user-level file systems to be written
for Linux. While installing UserFS itself requires kernel recompilation,
installing new file modules, such as ftpFS, does not. Plan 9 [Pike et al.
1990] also includes an FTP based file system (also called ftpFS). At least

Ufo: A Personal Global File System • 215

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



two projects provide access to FTP servers by implementing an NFS server
that functions as an FTP-to-NFS gateway. Alex [Cate 1992] supports
read-only access to anonymous FTP servers, while ftp2nfs [Gschwind 1994]
additionally allows read and write access to authenticated FTP servers.

Last, but not least, web browsers such as Netscape and Internet Explorer
are universally used to access global files through the HTTP and FTP
protocols. One can view these browsers as implementing a global files
system. This file system, though, is application specific, providing services
to a single application—the browser itself. Ufo on the other hand can
provides file system services to any application.

4. CATCHER IMPLEMENTATION

In this section we discuss the details of our implementation of the Catcher
inside Ufo. We start by describing the high-level architecture and the role
of the Catcher in Ufo.

4.1 The Ufo Architecture

Ufo is a user-level process that provides file system services to other
user-level processes by attaching to them. Once attached to a subject
process, it intercepts system calls and services them if they operate on
remote files. The application is unaware of the existence of the Ufo, but,
with Ufo’s help, it can operate on remote files as if they were local.

Ufo is implemented in two modules: the Catcher and the Ufo module
(Figure 2). The Catcher is responsible for intercepting system calls and
forwarding them to the Ufo module. The Ufo module implements the
remote file system and consists of three layers: the File Services layer
which identifies remote files, the Caching layer, and the Protocol layer
containing different plug-in modules implementing the actual file transfer
protocols.

Figure 2 shows the steps involved in servicing a remote file request.
When the application issues a system call (1), it can go directly to the
kernel or, if it is file-related, get intercepted by the Catcher (2). For
intercepted calls, Ufo determines whether the system call operates on a
remote or a local file, possibly using kernel services (3 and 4). If the file is
local, the request proceeds unmodified. If the file is remote, Ufo creates a
local cached copy, patches the system call by modifying its parameters, and
lets the request proceed to the kernel (5). After the request is serviced in
the kernel (6), the result is returned to the application (7). The return from
the system call may also be intercepted and patched by Ufo, though the
figure does not show this.

4.2 Catcher Implementation Details

In our Solaris implementation, the Catcher monitors user processes using
the /proc virtual file system [Faulkner and Gomes 1991]. This is the same
method used by monitoring programs, such as truss or strace, which are
also available on a number of other UNIX platforms, including Digital
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Unix, IRIX, BSD, or Linux. The System V /proc interface allows us to
monitor and modify an individual process by operating on the file associ-
ated with a user process.

In particular the Catcher attaches to a subject process having a process
identifier pid by opening the /proc/pid file. Once attached, the Catcher uses
ioctl system calls on the open file descriptor to control the process. It can
instruct the operating system to stop the subject process on a variety of
events of interest. In Ufo there are two events of interest: system call entry
into the kernel and system call exit from the kernel. Once a subject process
has stopped on an event of interest, the Catcher can read and write the
registers and read and write in the address space of the process. The
Catcher uses this to examine and modify the parameters or the result of
system calls like open, stat, and getdents. Finally, the /proc interface allows
us to restart the execution of a stopped process. Eventually, when the
subject process terminates or is killed, the Catcher detects this and stops
tracing the process. Figure 3 summarizes how the discussed functionality is
used in the Catcher.

Conceptually, Ufo implements the system calls intercepted by the
Catcher, but in practice Ufo does not service them directly. The /proc
interface requires that the intercepted system calls always go through the
kernel. It is possible to “abort” a system call on its entry to the kernel,
intercept its exit form the kernel, and have Ufo service the call. We chose

UFO
Application

Catcher

File Services

Caching

 FTP  NFS HTTP

Standard Operating System

2

34

5

7

6

1

Fig. 2. General architecture of Ufo.
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not to do this in Ufo, in order to avoid reimplementing much of the existing
OS functionality. Instead, we “patch” the system calls by (1) modifying the
call’s parameters, (2) changing the file system state (e.g., fetching a file
from a remote server), and (3) modifying the result returned from the
operating system. A good example for the first two actions is the open
system call. On the entry of an open call, we may have to modify the file
name string to point to the locally cached copy. Before allowing the system
call to continue, the Catcher may have to wait for Ufo to download the file
from the remote site. Implementing the name change is somewhat compli-
cated, since we must modify the user’s address space. We cannot just
change the file name in place, since the new file name might be longer than
the old one. Also, the file name could be in a segment which is read-only or
shared among threads. Currently, we solve these problems by writing the
new file name in the unused portion of the application’s stack and changing
the system call argument to point to the new string.

The open system call needs to be intercepted on exit from the kernel as
well. Although the returned result is not modified, Ufo must remember the
returned file handle, which is needed when the file is closed.

Besides file related system calls, there are several others that must be
intercepted. For example, to track child processes we intercept the fork
system call. Given the child pid, we can open its associated /proc file and
monitor it as well. System V allows the set of trapped system calls to be
automatically inherited from parent to child, so this setup is only needed
for the initial process.

4.3 Catcher Discussion

The Catcher mechanism allows us to create a personalized operating
system. We can reinterpret requests made to the kernel, allowing individ-
ual users to run their own private OS. Any user can use the “new” OS
without having to modify the original operating system or needing root
access. Although the current Catcher only intercepts system calls, System
V also allows to intercept and act on signals and hardware faults. This

Fig. 3. Outline of the Catcher algorithm.
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allows for an even wider range of extended OS functionality to be imple-
mented using the Catcher mechanism.

As with any user-level approach, there are limitations to the range of
possible extensions. First, there is a considerable amount of hidden kernel
state that is inaccessible from the user level. Second, intercepting system
calls introduces an overhead. In the remainder of this section, we assert
that although the limitations are not negligible, the Catcher is a valuable
and flexible tool with small overhead for most applications.

The lack of access to internal kernel state prevents us from implementing
certain time-critical extensions, such as a modified scheduler. However, a
wide range of extensions to the Catcher approach is a great implementation
alternative. Some sample applications are encrypted or compressed file
systems, confined execution environments for running untrusted binaries
[Goldberg et al. 1996], virtual memory paging [Dahlin et al. 1994; Feeley et
al. 1995], and process migration [Tannenbaum and Litzkow 1995].

Surprisingly, the Catcher overhead proved relatively small when amor-
tized over the execution of a whole application. Although we saw significant
performance drops for specialized file service benchmarks under Ufo, which
experience a slowdown of as much as 10 times, most real-life applications,
even disk-intensive ones like latex or make, run with a moderate overhead
of not more than 5%–29%. We believe that most applications for the
Catcher can amortize the cost for intercepting systems calls or page faults
over the total running time of a process, since typical applications issue
relatively few system calls, and for most extensions, not all system calls
need to be intercepted.

Other potential concerns with the Catcher mechanism are the execution
of setuid programs and dealing with the premature demise of the Catcher
process. Again, we found that, in practice, these limitations are not posing
any additional burden to the user. Setuid programs always run under the
identity of the owner of the executable file rather than under the identity of
the user that starts them. The Catcher cannot control setuid processes,
since the security policy of the operating system disallows user-level
processes from attaching to other users’ processes. In practice we have
found this not to be a problem, since very few programs are installed as
setuid, and those few, e.g., rlogin, do not really require the file system
extensions of Ufo. In the current implementation, whenever the Catcher
detects that a subject process is about to execute a setuid program, it
simply stops tracing the process. Being a regular user-level process, the
Catcher cannot protect itself against the SIGKILL signal. There is no
graceful way to handle such a situation if the subject processes running
under the Catcher continue working on remote files. In the current Ufo
implementation the subject process will be trapped on the next intercepted
system call and stay trapped until killed. However, this is not an newly
introduced limitation—for example, a process using an NFS-mounted vol-
ume is also bound to block if the NFS daemon or the remote server goes
down.
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The last issue of concern is the portability of the Catcher mechanism and
of the extensions built on top of it. Fortunately, most Unix operating
systems provide at least a core of the Solaris /proc functionality to port
most of the Catcher’s functionality. Even when the full /proc functionality
is not available, we can still port the Catcher and extensions that use it,
albeit with slightly reduced range of functionality. For example, the cur-
rent Ufo implementation requires a certain amount of functionality from
the Catcher and therefore from the /proc interface (or from its equivalent).
This functionality includes the ability to (1) intercept the entry and exit of
system calls; (2) read and modify the system call arguments and return
values; (3) read from, and write to, the subject process’ address space. The
Solaris /proc interface provides all this functionality; other operating
systems may have restrictions on (2) and (3). This is important if the
Catcher needs to change some system call arguments such as file name
strings for Ufo. If we are to port the Catcher to other operating systems
that do not allow writing into the subject process, we would not be able to
implement this feature. We can still port the basic functionality of Ufo, but
with some restrictions. Features such as a URL-naming scheme and
mountpoints in the root directory require changing of string arguments to
system calls and therefore would not be possible to implement (see Section
5.1). The resulting Ufo will be somewhat less convenient to use, but
nevertheless fully functional.

In summary, the Catcher does have its limitations. We can certainly
come up with a number of applications for which the use of Catcher is not a
wise choice. However, the Catcher is flexible enough to be an excellent
implementation tool for a wide range of applications.

5. UFO’S GLOBAL FILE SYSTEM MODULE

Ufo provides read and write access to FTP servers and read-only access to
HTTP servers. The remote-file-access functionality is implemented in Ufo’s
file system module which is responsible for resolving remote file names,
transferring files, and caching.

5.1 Naming Strategies

Ufo supports three ways of specifying names of remote files: (1) through a
URL, (2) through a regular file name implicitly containing the remote host,
user name, and access mode, and (3) through mount points.

The first way to specify a remote file is through its URL syntax.
Unfortunately, some applications cannot handle URL names. Make and
gmake cannot handle the colon in the URL, while Emacs considers // to be
the root of the file system and thus discards everything to the left.

To alleviate these problems, we also support specifying a remote file
through a regular file name. The general syntax is /protocol/
user@host/file name where protocol is the file transfer protocol, e.g.,
ftp or http .
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Lastly, Ufo allows the user to specify explicit mountpoints for remote
servers or access protocols in a .uforc file. For example, the line

local /csftp remote / machine ftp.cs.ucsb.edu method FTP

specifies that accesses relative to /csftp refer to the root directory of the
anonymous FTP server ftp.cs.ucsb.edu . The user can also specify
mount points for access methods. In fact, that is how the second naming
scheme is implemented: if the user does not explicitly specify a mount point
for the HTTP method, for example, Ufo uses the implicit mount point:

local /http method HTTP

Similarly to Sprite [Nelson et al. 1988], we have implemented mount
points using a prefix table which, given a file name, searches for the
longest matching prefix in the list of mount points.

Ufo also supports symbolic links. A user can create links to frequently
accessed remote directories. While links simplify accesses to remote files,
they actually present quite an implementation challenge, since they re-
quire following all link components to determine the true name of a file.
This both increases the complexity and the performance cost of file name
resolution in Ufo.

5.2 Accessing Remote Files and Directories

Similarly to other file systems, such as AFS [Morris et al. 1986], Ufo
transfers only whole files to and from the remote file system. Whenever Ufo
intercepts the open system call for a remote file, it ensures that a local copy
of the file exists in the cache, and then redirects the system call to the local
copy. Read and write system calls do not even have to be intercepted, since
they operate on file descriptors returned by the open; they will correctly
access the local copy in the cache. Finally, on a close system call, Ufo checks
whether the file has been modified, and if so, stores the file back to the
server (the store may be delayed if write-back caching is in effect). Ufo uses
whole file transfers for two reasons: this minimizes the number of system
calls that need to be intercepted, and protocols such as FTP only support
whole file transfers.

When an application requests information about a remote file, e.g.,
through a stat or lstat system call, Ufo services the request by creating a
local file stub and redirecting the system call to it. The file stub has the
correct modification date and size of the remote file but contains no actual
data.3 With this approach Ufo neither has to reimplement the stat system
call nor download the whole file. Only if the application wants to open a file
stub later, will Ufo actually download the remote file. Similarly, when a
system call such as getdents (get directory entries) is issued on a remote
directory, Ufo creates a copy of the directory in the local cache and puts file

3Creating a stub is done by seeking to the desired position in a newly created file and then
writing a single byte. On most file systems, the so-created stub occupies a small amount of
disk space, independent of the reported file size.
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stubs in it. Then, it redirects the system call to the so-created skeleton
directory.

5.3 Caching and Cache Consistency

Since remote data transfers can be quite slow, Ufo implements caching of
remote files to achieve reasonable performance. Instead of downloading a
file each time the user opens it for reading, Ufo keeps local copies of
previously accessed files. Ufo can reuse the local copy on a subsequent
access, as long as it is up-to-date. Similarly, we use write-back caching
which delays writing a modified file back to the remote server. While files
are the primary objects cached, Ufo also caches directory information
(directory contents), and file information (size, modification time, permis-
sions). The FTP module additionally caches open control connections. Since
establishing a new connection to the remote server for each transfer is
expensive, we reuse open control connections by keeping them alive for a
period of time after a transfer has completed.

The cache consistency policy governs whether we are allowed to use a
local copy on an open, and whether we can delay the write-back of a
modified file on a close. To efficiently support a wide range of usage
patterns, Ufo provides an adjustable consistency policy based on timeouts
(a read and a write delay). The policy guarantees that (1) when a file is
opened it is no more than Tread seconds out-of-date; and (2) changes made
to a file will be written back to the server within Twrite seconds after the file
is closed. To verify that a local file is up-to-date (i.e., is not stale), Ufo
checks whether the file on the remote site has changed (validate on open).
Tread and Twrite can have a zero value. In this case files opened for reading
are never stale, and modified files are written back to the server immedi-
ately after they are closed.

The write timeout of a file is always given in seconds. The read timeout
can optionally be specified as a percentage of the file’s age as in Alex [Cate
1992]. This method is based on the observation that older files are less
likely to change than newer files. Therefore older files need to be validated
less often. Files can have individual timeouts, and Ufo provides mecha-
nisms for the user to define default timeouts for all files, or for all files on a
server. This allows the user to adjust the trade-off between performance
and consistency based on known usage patterns. For example, when
mounting read-only binaries large read timeouts can be used, since these
files change rarely.

5.4 Authentication and Security

Ufo relies on the underlying access protocols for authentication. Currently,
passwords are only required for authenticated FTP servers and are not
needed for HTTP and anonymous FTP accesses. Ufo allows the passwords
to be stored in the .uforc or .netrc files, or alternatively, Ufo asks for the
password on the first access to a remote server.
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Since Ufo is running entirely at the user level with the access permis-
sions of its owner, it does not introduce new security problems in the
system. The only potential security concern is the protection of cached files.
Each Ufo user has a distinct private cache. To ensure that others cannot
gain undesired access to a user’s cached files, Ufo creates the topmost cache
directory with read and write permissions for the owner only.

5.5 Implementation Trade-Offs

In implementing Ufo, we tried to minimize the amount of operating system
functionality that we had to reimplement. First, we attempted to minimize
the number of intercepted system calls in order to minimize the execution
overhead that Ufo introduces. This lead to the whole file-caching policy.
Second, we wanted to minimize the implementation effort by modifying/
reimplementing as few system calls as possible. This lead to our decision to
create file stubs and skeleton directories for the stat and getdents calls.

Of course, there is a trade-off between execution overhead and implemen-
tation effort. For example, the advantage of creating file stubs and skeleton
directories is that we do not have to reimplement the stat and getdents
system calls. The disadvantages are that creating file stubs may have high
overhead. Also for efficiency, we rely on the support for holey files by the
local file system. For example, on our machines the /tmp file system does
not support holey files; thus if we use /tmp for the Ufo cache the stubs for
large files do use all the disk space indicated by their size. The NFS-
mounted file systems at our site do support holey files, but the stub
creation there is an order of magnitude slower than on /tmp. For these
reasons we are considering implementing the stat and getdents system calls
completely inside the next version of Ufo to improve its performance. In
fact, we are already partially implementing (patching) the getdents system
call in order to support Ufo mount points in user-unwritable areas such as
the root directory.

Transferring only whole files introduces three well-known problems for
extremely large files [Cate 1992]. First, when only a small fraction of a file
is actually accessed, a lot of unnecessary data may be transferred. Second,
the whole file has to fit on the local disk. In practice we do not expect these
two problems to occur frequently. With the exception of databases, most
applications tend to access files nearly in their entirety [Baker et al. 1991].
Furthermore, Ufo allows any local file system to be used for file transfers,
thus reducing the danger of insufficient local disk space. A third problem
comes from our decision not to intercept the read and write system calls. In
our approach the open call blocks until the whole file has been transferred.
It is possible to intercept and handle read and write system calls in Ufo.
The benefit is that open would not always block:4 reads that operate on the
already present part of a file could be executed without waiting for the
completion of the whole transfer (see Alex [Cate 1992]). The drawback is

4Several other system calls like lseek also have to be intercepted to make this work.
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that intercepting read and write calls incurs a high overhead and requires
extra implementation effort.

6. PERFORMANCE MEASUREMENTS

The main goal of our performance analysis is to measure the overhead
introduced by the Catcher mechanism in Ufo. This information is necessary
to determine the usability of our method for operating system extension.

We first present the results of several microbenchmarks, which measure
the overhead of intercepting individual Unix system calls. To demonstrate
the overall impact of this overhead on whole applications we also present
measurements for a set of file system benchmarks and a set of real-life
applications. While the microbenchmarks show that intercepting system
calls is expensive, the real-life applications exhibit much lower overhead.

All tests were run on a 143MHz Sun Ultra 1 workstation with 64MB of
main memory running Solaris 2.5.1.

6.1 Microbenchmarks

The microbenchmark results present the user-perceived run times (mea-
sured as wall-clock times) for the open, close, stat, read, write, and getpid
system calls. The results are shown in Table III. The columns show the
numbers for the normal user program, for the Catcher-monitored program
(Catcher only, no calls to Ufo functions), and for the Ufo program (Catcher
and Ufo functionality). In the latter case, we examine the run times for a
local file, for a cached remote file, and for a remote file that has not been
cached.

The Catcher Only and Ufo Local File numbers are of special significance.
They show the cost of running a process under the Catcher or under Ufo
when the process accesses local files only and does not require any of the
extended OS functionality. This is the the fundamental overhead intro-
duced by our method of extending the OS. The numbers for remote files are
a measure of the combined effect of our remote file system implementation,

Table III. Run Times for Various System Calls for Accessing Files in /tmp. The numbers are
the arithmetic mean of 5 runs, each executing 100 iterations. The Standard OS numbers are
in microseconds, and the remaining columns show times relative to Standard OS, e.g., 7.54

means 7.54 times slower.

Catcher Ufo Ufo Remote Ufo Remote
System Call Standard OS Only Local File Cached (no cache)

open 28 msec. 7.54 21.8 85.1 18964
close 12 msec. 9.00 25.0 128 37667
stat 33 msec. 4.03 14.3 52.8 6000
getpid 3 msec. 1.67 1.67 1.67 1.67
write 1 byte 23 msec. 1.13 1.13 1.13 1.13
read 1 byte 25 msec. 1.12 1.12 1.12 1.12
write 8K 97 msec. 1.04 1.04 1.05 1.04
read 8K 75 msec. 1.04 1.04 1.05 1.05
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our caching policy, the efficiency of the underlying access protocol (FTP in
this case), and the quality of the network connection.

In order to measure the cost of the Solaris system calls themselves and
not the network speed or the NFS overhead, we used the local /tmp file
system. Accesses to /tmp are very fast and do not involve disk, network
traffic, or protocol overhead. As a result the microbenchmarks present the
Catcher and Ufo overhead in the worst-case scenario. The relative Catcher
and Ufo overhead for accessing noncached NFS files, for example, is much
lower.

The microbenchmarks were run on a lightly loaded workstation by taking
the wall-clock time just before and just after the system call. The timing
was done using the high-resolution timer which has a resolution of about
0.5 microseconds on the workstation. Since individual system calls are very
fast, normal system activity such as interrupts and context switches
distorts some of the measurements. This produces a small percentage of
outliers that are several times larger than the rest of the measurements. To
ensure we do not include unrelated system activity in our measurements,
in each test run we recorded 100 measurements and discarded the highest
10% of them. The remaining times were then averaged. The numbers in the
table are the arithmetic mean of five such runs. The standard deviation for
the five runs was below 2% for all tests, except for getpid, for which the
standard deviation was at most 6%.

The Catcher Only numbers show the cost of intercepting system calls.
The results are obtained by running the benchmark program under the
control of the Catcher alone. The Catcher simply intercepts the open, close,
and stat system calls executed by the benchmark program, and lets them
continue immediately without modifying them. The open system call is
intercepted both on entry to, and on exit from, the kernel; close is only
intercepted on exit; and stat is only intercepted on entry. This explains why
open incurs about twice as much overhead as close and stat. The read,
write, and getpid system calls are not intercepted at all. Even though one
may expect that these system calls will not be affected, they do incur a
small overhead: whenever there is even a single intercepted system call for
a process, the operating system takes a different execution path for all
system calls of that process, independent of whether they are intercepted or
not. The results demonstrate that for read and write of one-byte blocks this
overhead is small and for 8K blocks is negligible. Because getpid is so fast,
it has a substantial relative overhead, but still only 2 msec. total. On the
other hand, system calls that must be trapped by the Catcher incur a factor
of 4–9 overhead. During this extra time, control is passed from the program
to the Catcher, (which performs ioctl calls to read information from the
/proc file system), and then back again.

The Ufo Local File column shows how much extra overhead is introduced
by Ufo in addition to the Catcher. The benchmark program is running
under Ufo and is accessing local files only. The files are located in the /tmp
system and have five name components. Even though no remote files are
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accessed, Ufo still introduces some overhead in addition to the Catcher
overhead. The extra overhead comes from the analysis of the parameters of
the intercepted system calls and from bookkeeping tasks for open files. For
system calls that reference a file (e.g., open, stat), Ufo determines whether
the file is indeed local or remote. Since a system call does not necessarily
take an absolute path name as an argument, Ufo has the responsibility of
determining it. Determining the true file name can involve a number of stat
system calls, similar in flavor to the pwd command, and this can add a
noticeable overhead. In addition the open and close (but not stat) system
calls have to update Ufo’s internal table of open files.

The remaining two columns measure the overhead of Ufo when working
with remote files. These numbers are measured as with Ufo Local File,
except that the accesses are to remote files. For the Ufo Remote Cached
tests, a locally cached copy of the remote file is accessed. Note that in either
case (cached or uncached), the read and write system calls operate on the
locally cached copy of the file. Thus, these numbers are consistent across all
of the tests. On the other hand, open and stat calls to uncached remote files
require remote accesses, and the overhead increases dramatically when Ufo
uses the FTP protocol to retrieve the file. This overhead is almost entirely
determined by the quality of the network connection and the FTP protocol.
In our measurements we accessed files located at UC Berkeley. From a UC
Santa Barbara machine, opening a remote file of size 1024 bytes residing at
a UC Berkeley host requires 531 msec. using FTP. Closing the same remote
file after modifying it takes 452 msec., since the file must be written back
to the remote server. If the file is cached, the open, close, and stat overhead
is much smaller, but it still has roughly four times the overhead compared
to a local file. This is due to two reasons: the additional work to manage the
cache, and several remaining inefficiencies in our prototype implementa-
tion which will be corrected in future versions of Ufo.

6.2 File System Benchmarks

Table IV reports the absolute execution times in seconds for two file system
benchmarks run on the local file system with and without Ufo and on a
remote FTP-mounted file system with and without caching. The local tests
were run on the /tmp file system in order to factor out the overhead of our
NFS file system and to provide the fastest possible execution times. The
FTP host was a machine on the local 100Mbit/s Ethernet network. The
remote tests with caching used a warm cache and read and write delays set
to infinity. Thus, these measurements represent the best-case scenario for
remote files. For the remote tests without caching, the read and write
delays were set to zero, forcing every open, close, and stat system call to go
to the remote site. These tests are the worst-case scenario for accessing
remote files under Ufo.

Iostone and Andrew are standard file system benchmarks. We chose
these as examples of applications that execute a lot of file system calls that
Ufo intercepts and handles. The Iostone benchmark [Park and Becker 1990]
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performs thousands of file accesses (opening, reading, and writing). Be-
cause of the large amount of file opens and closes, Ufo runs about 8 times
slower on the local file system. The Andrew benchmark [Howard et al.
1988] measures five stages in the generation of a software tree. The stages
(1) create the directory tree, (2) copy source code into the tree, (3) scan all
the files in the tree, (4) read all of the files, and finally (5) compile the
source code into a number of libraries. For this benchmark the Ufo
overhead on local files is a factor of 1.33, much lower than the overhead for
Iostone. For both Andrew and Iostone, the results for the uncached remote
tests are orders of magnitude worse than for the local /tmp file system. This
is not surprising, since the network latency and the FTP protocol overhead
are quite large compared to the fast accesses in /tmp.

6.3 Application Programs

We also tested Ufo with a number of larger Unix applications: latex, spell,
latex2html, make of Ufo, ghostscript, and the integer applications from the
SPEC95 benchmark suite. The results are given in Table V and Figure 4
graphically shows the results for a subset of the benchmarks. As with the
file system benchmarks, each test was run without Ufo, under Ufo on local
files only, and under Ufo on remote files with and without caching.

The first set of benchmarks are programs that we run frequently. The
latex test measures the time to latex three times a 20-page paper consisting
of 8 tex files and then produce a postscript from the dvi file; spell checks
the spelling of 16 Latex files; and latex2html converts a Latex document to
HTML format. Make compiles Ufo using g11. The ghostscript test displays
a 20-page PostScript document. The table shows that latex, spell,

Table IV. Run Times for the Iostone and Andrew File System Benchmark Programs with
and without Ufo. The Standard OS numbers are in seconds. The remaining columns show
times relative to Standard OS (e.g., 8.33 means 8.33 times slower). The first two columns

show the total number of system calls executed by the application and of system calls
intercepted by Ufo. The number of system calls per second is given in parentheses.

System Calls
System Calls
Intercepted Standard Ufo Ufo Ufo

Benchmark Total (Calls/sec.) Total (Calls/sec.)
OS (in
sec.)

Local
File

Remote
Cached

Remote No
Cache

iostone 99203 (33068) 48762 (16254) 3 8.33 34 2581

andrew
makedir 641 (—) 465 (—) 0* — — —
copy 9596 (3199) 6999 (2333) 3 2.00 2.33 22.7
scandir 8674 (1446) 4115 (686) 6 1.17 1.67 10.2
read all 12907 (1291) 6084 (608) 10 1.30 1.60 6.80
make 8407 (701) 3107 (259) 12 1.17 1.33 1.83

Total 40225 (1341) 20770 (692) 30 1.33 1.67 10.7

* The Andrew benchmark reports its timing results with a resolution of 1 second. The 0
seconds in the table indicate a measurement between 0 and 1 second.
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latex2html, and make perform a relatively large number of system calls
that Ufo intercepts, mainly open, close, and stat. This results in Ufo
overheads between 17% and 29%, when run locally, and higher overheads,
when run remotely. The remote overheads, while large, should be accept-
able to the user, since accessing remote files is expected to cost extra time.
The local overheads, on the other hand, are incurred only because the
application is running under Ufo even though it is not using any of its
functionality. To avoid unnecessary overhead, the user may choose to run
only part of the applications under Ufo. For example, the authors achieve
this by configuring their X Windows environment to start a terminal
window under Ufo and another without Ufo. All future applications started
from the Ufo-enabled terminal window will have access to the remote file
system services, while the applications from the other terminal window do
not use Ufo and thus incur no overhead. Ufo also provides the option for the
user to manually detach from running applications should the need for this
arise.

The ghostscript test, on the other hand, performs few calls that Ufo
intercepts and never writes to the remote server; as a result the Ufo
overhead is very low even in the remote test. This sort of overhead should
be unnoticeable to the user.

The last eight tests are the integer applications from the SPEC95
benchmark suite. These were chosen as examples of compute-intensive
applications that do not perform extensive file system operations. For these
applications the observed overhead is very small in the local and even in
the remote tests. Small perceived overheads should also be expected for
interactive applications such as text editors, since the user is not likely to

Table V. Run Times for Some Larger Unix Applications. The Standard OS numbers are in
seconds, and the remaining columns show times relative to Standard OS (e.g., 1.24 means

1.24 times slower). The first two columns show the total number of system calls executed by
the application and of system calls intercepted by Ufo. The number of system calls per

second is given in parentheses.

System Calls
System Calls
Intercepted Standard Ufo Ufo Ufo

Application Total (Calls/sec.) Total (Calls/sec.)
OS (in
sec.)

Local
File

Remote
Cached

Remote
No Cache

latex 7638 (588) 4396 (338) 13.0 1.24 1.35 6.92
spell 3168 (1320) 810 (338) 2.4 1.17 1.21 4.58
latex2html 53569 (1145) 14523 (310) 46.8 1.29 1.76 5.01
make 22783 (735) 6762 (218) 31.0 1.22 1.24 3.38
ghostscript 5495 (1340) 167 (41) 4.1 1.05 1.07 1.37
0.99.go 131 (0.16) 48 (0.06) 833 1.05 1.06 1.10
124.m88ksim 161 (0.34) 18 (0.04) 469 1.00 1.01 1.08
126.gcc 21234 (61.91) 1008 (2.94) 343 1.01 1.01 1.06
129.compress 40 (0.12) 14 (0.04) 344 1.01 1.01 1.00
130.li 250 (0.53) 60 (0.13) 476 1.00 1.02 1.05
132.ijpeg 1050 (2.17) 45 (0.09) 484 1.00 1.00 1.03
134.perl 6019 (13.50) 42 (0.09) 446 1.02 1.00 1.03
147.vortex 8490 (14.10) 27 (0.04) 602 1.00 1.00 1.01
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notice the difference between 28 msec. and 611 msec. when opening a local
file.

6.4 Summary of Experimental Results

As expected, we find that intercepting system calls can be very expensive,
and remote accesses are orders of magnitude higher than local accesses.
For programs such as the Iostone benchmark (Table IV)—which performs
many open, close, and stat calls—the Ufo overhead for local files is too large
to be ignored. Clearly, such programs should not be run under Ufo if they
only access local files, since this will incur a large overhead even though
the program does not utilize any of the extended functionality. If remote
files need to be accessed, then programs like Iostone will run slow, but this
is mainly due to the network latency and access protocol overhead which by
far outweighs the Catcher and Ufo overhead as shown in Table III. In this
case, Ufo proves to be a convenient tool. Furthermore the user can choose to
run only a portion of his or her applications under Ufo by setting up his or
her X Windows environment as explained before. Applications that need
access to remote files can have it, and the remaining processes will not
incur any overhead. An additional benefit from the fact that Ufo uses
system call interposition is that the user can have Ufo dynamically attach
to a running process and detach from it. This gives the user extra flexibility
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Fig. 4. Performance overhead for some of the benchmarks.
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unavailable with alternative methods for user-level OS extension (e.g.,
modified standard libraries).

Other applications, such as make, and latex incur a 22%–24% overhead
on local files—noticeable, but perhaps acceptable to the user even when the
functionality of Ufo is not required. For remote files these applications
incur overheads of 24% in the best case and 600% in the worst case,
depending on the kind of file caching used. In most cases the user expects
that working on remote files would be slower, so the use of the extra
functionality provided by Ufo should be worth the additional overhead,
especially when the only alternative is to manually transfer files using
FTP. Many other applications, such as compute-intensive programs or text
editors, make infrequent use of the system calls trapped by Ufo (though
they may use other calls such as read and write). For such applications,
user-perceived delays are much smaller: on the order of a few percent. In
this case, running applications under Ufo makes no appreciable difference.

From these observations we can draw the conclusion that the Catcher is
a good tool for implementing operating system extensions that require the
interception only of relatively infrequent system calls. An example of such
an extension is the Ufo file system when running real-life applications. On
the other hand, this method is not ideal for extensions which intercept
frequently occurring system calls.
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Fig. 5. Personalized user-level OS extensions for accessing a variety of remote resources.
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Finally, we would like to mention that we are aware of some opportuni-
ties for improving the current Catcher prototype and many opportunities
for improving Ufo. For example, optimizing the file name check in Ufo (to
determine whether a file is local or remote) alone will result in a significant
reduction of the running time. For example, we expect to reduce the
overhead for the open system call from 611 to below 400 microseconds.

7. CONCLUSIONS AND FUTURE WORK

In this article, we presented a general way of extending operating systems
functionality using the debugging and tracing facilities provided by many
Unix operating systems. Selected system calls are intercepted at the user
level and augmented to obtain the desired functionality. This mechanism
forms the basis for Ufo, a file system providing transparent access to
remote files on FTP and HTTP servers. Ufo proved to be a useful tool which
we now use on a daily basis. As our experimental results show, its
overhead, while quite large for intercepted system calls, is acceptable for
most applications.

We believe that our approach is a promising way for individual users to
develop and experiment with future operating system extensions, since this
can be done completely at the user level. Essentially, each user sees a
personalized version of the operating system, extensions do not affect other
users and are compatible with existing applications as those need not be
recompiled or relinked. In the past, operating systems research had a hard
time to carry over to the general public. With our approach, researchers can
make their extensions easily available, and users can run them without
relying on the system administrator for installation.

There are plenty of avenues for future work and research. For example,
we have several ideas on how to improve the performance of the Catcher
and Ufo. We also plan to implement new protocol modules in Ufo, e.g.,
based on NFS, WebNFS, and the rlogin protocols. We have experimented
with several other OS extensions suitable for cluster of workstation envi-
ronments. For example, we have developed a prototype that attaches to a
process, checkpoints it, and then can restart it at a later time or migrate it
to another processor. Similarly, we have a prototype Catcher which inter-
cepts all forks and execs and sometimes decides to execute some processes
on other workstations. While both tools are still at a very crude stage, we
have already seen some of their potential benefits. Similar benefits can be
expected for paging virtual memory to the memory of idle processors
instead of to a slow local disk. By combining these extensions, one could
build a personalized OS layer that provides transparent access to a variety
of remote resources such as CPU time, memory, and file systems (Figure 5).
With the Catcher method, different users can choose to have different
personalized views of the operating system by running different OS exten-
sions.

Another interesting research area is protected computing. The system
calls define the capabilities a process has and resources it can obtain
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(memory, disk access, CPU time). We can use the Catcher to limit the
resources a process can access or obtain. This approach, implemented in
Janus [Goldberg et al. 1996], is especially interesting in the current
development of global computing, where one user may run an untrusted
binary fetched from the Internet.

Finally, we intend to generalize our design of the Catcher, since it can
not only intercept system calls, but also signals and hardware traps which
are delivered to the application. We intend to build a Catcher toolbox which
can be used for OS courses and research projects.
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