
Appeared in the 9th International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 1

Charlotte: Metacomputing on the Web
�

Arash Baratloo Mehmet Karaul Zvi Kedem Peter Wyckoff
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

New York, NY 10012, USA

Abstract
The World Wide Web has the potential of being used as

an inexpensive and convenient metacomputing resource.
This brings forward new challenges and invalidates many
of the assumptions made in offering the same functional-
ity for a network of workstations. We have designed and
implemented Charlotte which goes beyond providinga set
of features commonly used for a network of workstations:
(1) a user can execute a parallel program on a machine she
does not have an account on; (2) neither a shared file sys-
tem nor a copy of the program on the local file system is
required; (3) local hardware is protected from programs
written by “strangers”; (4) any machine on the Web can
join or leave any running computation, thus utilizing the
dynamic resources.

Charlotte combines many complementary but isolated
research efforts. It comprises a virtual machine model
which isolates the program from the execution environ-
ment, and a runtime system which realizes this model
on the Web. Load balancing and fault masking are pro-
vided by the runtime system transparent to the program-
mer. Charlotte provides distributed shared memory with-
out relying on operating system or compiler support. It is
implemented soley in Java without any native code, thus
providing the same level of security, heterogeneity, and
portability as Java.

In this paper, we describe the design and implementa-
tion of Charlotte and present initial performance results.

Keywords: Metacomputing, Distributed Computing,
Parallel Programming Environments, World Wide Web.

1 Introduction
Over the last few years, the Internet has grown rapidly

connecting millions of mostly idle machines. Its latest
reincarnation as the World Wide Web has greatly increased
its potential for utilization in diverse settings, including its
potential to be used as a gigantic computing resource. On

�

This research was partially supported by NSF under grant numbers
CCR-94-11590, CDA-94-21935, and GER-94-54173; and by AFOSR
under grant number F49620-94-1-0132.

the other hand, utilizationof local area networks as a paral-
lel computing platform has been attractive for many years.
There have been numerous research projects aimed at this
goal. Based on their success, and as a natural evolutionary
step, attempts have been made to extend existing systems
from local area networks to wide area networks.

However, utilizing the Web as a metacomputing re-
source introduces new difficulties and problems different
from those that exist in local area networks. First, many of
the challenges that have been looked at individually (e.g.,
security, programmability, and scheduling) need to come
together in a comprehensive manner. And second, the Web
invalidates many of the assumptions used to build paral-
lel environments for workstation clusters. For example,
there is lack of a shared file system, no one has accounts
on all connected machines, and it is not a homogeneous
system. An environment to effectively utilize the Web as
a metacomputing resource needs to address the following
important issues: programmability, heterogeneity, porta-
bility, security, dynamic execution environment, and scal-
ability.

Programming (Virtual Machine) Model: Generally,
neither the programmer nor the end-user wants to deal with
a dynamic and an unpredictable environment such as the
Web. In fact, users are not interested in knowing whether
their programs are running locally or remotely (perhaps in
a distributed manner). For the Web to become an effec-
tive computing platform, the programming model needs to
be decoupled from the dynamics of the execution environ-
ment. That is, programs need to be developed for a uni-
form and predictable virtual machine; the runtime system
needs to realize the virtual machines. Otherwise, the task
of program development becomes nearly intractable. We
are not aware of any existing system providing a satisfac-
tory solution for the Web.

Heterogeneity and Portability: The Web contains dif-
ferent types of hardware, running different operating sys-
tems, connected with different networks. Heterogeneity
and portabilityare imperative to encompass the Web. Cur-
rent heterogeneous systems are low level and generally
employ a message-passing paradigm. High level systems

Appeared in the 9th International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 2

based on virtual shared memory, generally do not support
heterogeneous environments.

Security and Accessibility: Cooperative work over
the Web requires many facets of security measures. People
need reassurance to allow “strangers” to execute computa-
tions on their machines. On local area networks this is ac-
complished by an administrator maintaining user access-
rights and user accounts. Thus, the network becomes
available only to a trusted set of users. This is not a fea-
sible solution for the Web. In an ideal situation, any ma-
chine on the Web can contribute to any ongoing computa-
tion on the Web. We are not aware of any existing system
that provides such a solution.

Dynamic Execution Environment: The Web is a dy-
namic environment comprised of many administrative do-
mains; for example, machines become available and un-
available abruptly and network delays are unpredictable.
Existing systems address these issues by providing some
level of load balancing and fault masking. However, the
extent of uncertainty is much greater on the Web.

A comprehensive solution for the Web requires that all
of these issues be resolved. No system currently addresses
all or even a majority of these. In this paper, we present a
system called Charlotte that addresses these issues.

The research leading to our system started as a theoret-
ical work where provable methods for executing parallel
computations on abstract asynchronous processors were
developed [11, 1]. The outline of the virtual machine in-
terface to actual system was proposed in [10]. Theoreti-
cal results were then interpreted in the context of networks
of workstations in [5]. The above were significantly ex-
tended and validated in the Calypso [2] system for ho-
mogeneous networks. Charlotte builds on these and other
complementary research efforts by offering a unified pro-
gramming and execution environment for the Web. Our
work on Charlotte has resulted in several original contri-
butions which are summarized below:

� Charlotte is the first programming environment for
parallel computing using a secure language. The
Java programming language guards against mis-
chievous code attacking local resources. Charlotte
is built on top of Java without relying on any native
code. This means that a Charlotte program provides
the same level of security and reassurance as a Java
program.

� Charlotte is the first environment that allows any ma-
chine on the Web to participate in any ongoing com-
putation. Two key factors make this possible. First,
the system does not require a shared file system, nor
does it require the program to reside on a local file
system before a machine can participate in a compu-
tation. The Charlotte runtime system transmits the
program to participating machines. Second, it is not
necessary for a user to have an account (or any other

type of privilege) to utilize a machine on the Web.
The decision to involve a machine in a computation
is made by the owner of that machine. These factors
mean that potentially any machine can contribute to
any running Charlotte computation on the Web.

� A novel technique for providing a distributed shared
memory abstractionwithout relying on operating sys-
tem or compiler support. Current techniques for
shared memory require either support from the op-
erating system (in the form of setting page access-
rights) or a compiler (to generate the necessary run-
time code at each memory access). Shared memory
systems based on operating system support are nei-
ther system independent nor safe. Compiler-based
shared memory systems are tied to a particular pro-
gramming language and a particular target language.
Our approach does not suffer from these limitations,
which makes it possible to provide virtual shared
memory at the programming language level.

� We extend some of our previous work originally de-
veloped in a different setting to deal with the dy-
namics of the Web. Two integrated techniques, ea-
ger scheduling and two-phase idempotent execution
strategy are used for load balancing and fault toler-
ance.

� We leverage existing isolated contributions by pro-
viding a unified and comprehensive solution. The
Java programming language is used for heterogeneity
and portability. Our programming environment can
be conceptually divided into a virtual machine model
and a run-time system. The virtual machine model
provides a reliable shared memory machine to the
programmer and isolates the program from the execu-
tion environment. The run-time system realizes this
model on a set of unpredictable, dynamically chang-
ing, and faulty machines.

2 Related Work
PVM [17] and MPI [8] are representatives of mes-

sage passing systems. They provide portability and good
performance, but they are low level. Systems such as
CARMI [15] and [9] augment PVM’s functionalityby pro-
viding resource management services. However, they are
limited to local area networks: there is no support for dy-
namic load-balancing and fault masking, they require the
program to reside at each site (or a shared file system), and
they require the user or the system to have an account on
each machine participating in the computation. These fac-
tors severely limit their use as an interface to a metacom-
puting framework on the Web.

Another class of systems for distributed computing
focuses on providing distributed shared memory (DSM)

Appeared in the 9th International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 3

across loosely-coupled machines. IVY [13] and Tread-
Marks [12] are representatives of DSM systems. Cilk [3]
is a comprehensive system providing resource manage-
ment and fault-tolerance in addition to DSM. However, it
makes similar assumptions about the file system and user
privileges as message passing systems, which again, lim-
its its applicability to the Web. In addition, DSM systems
in general, do not work on heterogeneous environments.

Recently, with the introductionof Java, another class of
systems is becoming available. HORB [16] and the E pro-
gramming language [7] are two such examples. HORB is
a distributed Object Oriented system. It extends Java with
a well understood programming model, RPC, and persis-
tent objects. Charlotte and HORB are similar in that they
both utilize Java in providing heterogeneity, interoperabil-
ity, and security. However, we provide a virtual machine
model, shared memory abstractions, load-balancing and
fault-masking.

The E programming language extends Java by adding
message passing through channels, and richer security
through cryptographic and authentication. We do not ad-
dress these issues. For example, we do not authenticate the
correctness of results: malicious sites could make them-
selves available and report wrong answers. However,
Charlotte’s design is not tied to any particular language or
system, making it possible to leverage systems such as E.

3 Charlotte’s Programming Model

If a parallel program is to utilize the Web, its execu-
tion environment is not known at development time—the
number of available machines, their location, their capa-
bilities, and the network cannot be predicted ahead of time.
In general, a program’s execution environment will differ
for each invocation. To deal with the dynamics of the ex-
ecution environment, either the programmer must explic-
itly write adaptive programs, or a software environment,
such as a runtime system, must deal with the dynamics.
We feel that the former solution puts too much strain on
the programming effort. We conjecture that for an effec-
tive utilization of the Web, the programming model must
be decoupled from the execution environment. Programs
should be developed for a uniform and predictable virtual
machine, thus, simplifying the task of program develop-
ment; the runtime system should implement virtual ma-
chines and deal with the dynamics.

Charlotte allows high level programming based on the
parallelism of the problem and independent of the execut-
ing environment. Programs are written for a virtual par-
allel machine with infinitely many processors sharing a
common name-space. Integrating a machine into a run-
ning computation, balancing the loads among different
machines, detecting and removing failed machines from a
computation, and maintaining the coherence of distributed
data are transparently provided by the runtime system.

public class MatrixMult extends Droutine
�

public static int Size = 500;
public Dfloat a[][] = new Dfloat[Size][Size];
public Dfloat b[][] = new Dfloat[Size][Size];
public Dfloat c[][] = new Dfloat[Size][Size];

public MatrixMult()
�

�����
�

public void drun(int numTasks, int id)
�

int sum;
for(int i=0; i<Size; i++)

�

sum = 0;
for(int j=0; j<Size; j++)

sum += a[id][j].get()*b[j][i].get();
c[id][i].set(sum);�

�

public void run()
�

�����

parBegin();
addDroutine(this, Size);
parEnd();
�����

�
�

Figure 1: Matrix multiplication in Charlotte.

3.1 Parallel Steps and Concurrent Routines
An execution of a Charlotte program consists of al-

ternating sequential and parallel steps. A sequential step
consists of standard sequential Java code. Computation-
ally intensive parts of a program are done in parallel
steps by one or more routines. A routine is analogous
to a standard thread in Java, except for its capability to
execute remotely. A parallel step starts with the key-
word (which is in reality a function call) parBegin and
ends with parEnd. There can be any number of rou-
tines defined within one parallel step. The first argument
to addDroutine is a subclass of Droutine implement-
ing drun(). drun() takes two arguments: the num-
ber of concurrent routines and the routine identifier (in
the range 0, ����� ,numTasks � 1). The second parameter
of addDroutine defines the number of instances to run
concurrently (which is passed to drun()). The closing
parEnd serves as a synchronization barrier.

Figure 1 shows a Charlotte program which multiplies
two square matrices using 500 routines. Each routine is
responsible for producing one row of the resultant matrix.
The important points to note here are:

� The program’s parallelism is based on the parallelism
of the problem at hand and not the execution environ-
ment. The same program can execute on one or any
number of machines depending on availability.

Appeared in the 9th International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 4

� The programmer need not be aware of the fact that
this application can be executed in a distributed fash-
ion, utilizing multiple machines on the Web.

� Integrating machines into the computation, load-
balancing, fault-masking, and data coherence are
transparent.

� The services provided by Charlottedo not require any
language or compiler modifications.

3.2 Distributed Shared Memory Semantics
In a Charlotte program, the data is logically partitioned

into private and shared segments. Private data refers to
what is local to a routine and cannot be seen by others.
The shared data is distributed and can be seen by others.
For reasons to be discussed in Section 5, we have chosen
to implement distributed shared memory within the lan-
guage, at the data type level. That is, for every basic data
type in Java, there is a corresponding Charlotte data type
implementing its distributed version. For example, where
Java provides int and float types, Charlotte provides
Dint and Dfloat types (classes). Since Java prohibits
operator overloading, distributed objects are accessed and
modified with explicit function calls (get() and set()). The
consistency and coherence of the distributed data is main-
tained by the runtime system.

In an attempt to improve performance, many DSM sys-
tems have introduced multiple memory-consistency se-
mantics [14]. The decision as to which consistency model
is best suited for a particular application is left to the pro-
grammer. We feel this generally complicates a task the re-
searchers were seeking to simplify. In Charlotte, we pro-
vide a single and intuitive memory semantics: Concurrent
Read and Exclusive Write (CR&EW). This means that one
or more routines can read a data variable, and at most one
can modify its value. More specifically, a read operation
returns the value of the object at the time the parallel step
began, and a write operation becomes visible at the com-
pletion of the parallel step.

The CR&EW semantics are implemented with the
Atomic Update protocol. Intuitively, this means that write
operations are performed locally and propagated at the
completion of the routine. The advantages of this proto-
col are that (a) network traffic is reduced by packing many
modifications into one network packet; (b) write opera-
tions are efficient since they are performed locally and do
not require invalidation; (c) atomic execution of routines is
guaranteed (each one is executed in an all-or-nothingfash-
ion); (d) each routine can execute in isolation and can be
verified independently of the execution order; (e) it simpli-
fies the control logic in the coherence protocol. It should
also be noted that the atomicity of updates is fundamen-
tal for our load balancing and fault masking techniques,
which will be discussed later.

4 Runtime System

The Charlotte package provides three major services:
(1) scheduling service, (2) memory service, and (3) com-
puting service. In the current prototype, the scheduling
service, the memory service, and parts of the computing
service executing the sequential steps are fused into a sin-
gle process—the management service, or the manager for
short. The computing service performs the computation-
ally intensive parallel routines. We refer to the processes
that perform the computing service as workers. A single
manager and one or more workers together implement the
virtual machine model that the program was written for.

We assume that a user has one machine under her con-
trol and that this machine is highly reliable. The user, how-
ever, wishes to utilize other machines on the Web which
may be unreliable. We will sketch the overall execution
strategy here.

When a user starts executing a Charlotte program, it
logically runs as two separate processes: one performing
as the manager, the other performing as a worker. The
manager executes the program until it reaches a parallel
step. Upon reaching this point, it calculates the number of
instances for each addDroutine and creates a Dispatch
Table for bookkeeping. We will refer to each instance of
a routine as a job. The manager then waits (if necessary)
for workers to contact it. In general, this will happen after
a worker finishes a previous assignment and is willing to
work. However, a worker could just appear any time and
be integrated into the computation. In general, the man-
ager keeps giving jobs to workers until they are done. The
association of workers and managers will be described in
Section 4.2. We will first describe the load-balancing and
fault-masking techniques used.

4.1 Load Balancing and Fault Masking
As the manager assigns jobs to workers, it has the op-

tion of assigning a job repeatedly until it is executed to
completion by at least one worker. This technique is called
eager scheduling. Obviously, eager scheduling does not
provide correct program behavior without a suitable mem-
ory management scheme—as the same program fragment
could get executed multiple times. However, it should
be clear that given an appropriate memory management
scheme, eager scheduling alone has the following proper-
ties:

� As long as at least one worker does not continuously
fail, all jobs will be completed.

� New workers can be integrated into a computation
anytime, even in the middle of a parallel step.

� A crash-failed machine or a slow machine running
a worker process is transparently bypassed by faster
workers, providing fault tolerance.

Appeared in the 9th International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 5

� Worker processes running on slow machines ask for
jobs less frequently, and thus, do less work. This re-
sults in load balancing that is automatic and transpar-
ent to both the programmer and the user.

A simplistic application of eager scheduling does not
produce a correct program behavior since a single job may
be executed several times. Problems to be addressed in-
clude inconsistent memory views across jobs and even
across various “copies” of the same job, violation of
exactly-once semantics by multiple executions, and exces-
sive data traffic. The memory management technique that
we employ is called two-phase idempotent execution strat-
egy (TIES). TIES guarantees correct execution of shared
memory programs under eager scheduling.

TIES works as follows. Before the execution of a job, a
worker process invalidates its distributed data types. As it
executes, the read data is demand-paged from the manager,
however, the writes occur locally in the workers memory
space. It is at the termination of a job that the dirty data is
sent back to the manager, indicating its completion. The
manager buffers the incoming data, keeping only one copy
of the modifications for each job (despite potential dupli-
cates). It discards all other responses, including those from
slow workers that have completed an old job. The first
phase of TIES ends when at least one invocation of each
job reports back. The second phase consists of the man-
ager applying the modifications to its memory space, com-
pleting the execution of the parallel step.

4.2 Association of Workers and Computations
It is very likely that at any moment there are idle ma-

chines on the Web willing to help in some computation,
and there are computations that could utilize them. Both
sets are dynamic. The first difficulty lies in associating an
idle machine with a computation. It is only when this as-
sociation has been established, and the necessary program
fragment been made accessible, that an idle machine can
contribute to the computation. However, the lack of trust
in allowing “strange programs” to execute on local hard-
ware is a serious issue. The complete problem is of great
importance since it lies at the core of providing an effec-
tive metacomputing environment.

We have adopted a solution that does not scale for set-
tings such as the World Wide Web, but it is an effective
solution for our network at New York University. Over-
simplifying it, when a Charlotte program reaches a parallel
step, it registers itself with a specific daemon process. This
action creates an entry in a URL homepage (see Fig. 2).
Any user in our network can visit this homepage using any
Java-capable browser and see the list of active programs.
If the user wishes to donate some of the CPU power of her
machine, she can simply click on the entry. This will load
the required code to the user’s machine and start assisting
the ongoingcomputation. We plan to automate this feature
by relying on manager lookup services.

Figure 2: Sample list of active Charlotte programs.

Since Charlotte is entirely implemented in Java, it pro-
vides the same security guarantees as Java. Java guaran-
tees the protection of local resources from programs. Al-
though there seem to be security holes in the current im-
plementation [6], there are strong indications that this will
be solved. Charlotte will transparently take advantage of
these improvements. Once users stop being afraid of pro-
grams that come over the network, we feel that they will
have more incentive to allow others to use their idle CPU
cycles

It is important to stress that Charlotte supports hetero-
geneous systems, which makes it possible for any idle ma-
chine to execute a parallel computation along side any
other—a necessity for the Web.

5 A Novel Technique for DSM
To provide the abstraction of a single address space to

multiple programs running on different computers, DSM
systems must detect accesses to shared memory and prop-
agate updates. For a shared memory system to be real-
ized over the Web, hardware and operating system inde-
pendence is a necessity, and language/compiler indepen-
dence is desirable. In Charlotte, we achieve both.

5.1 Existing Techniques
There have been two approaches to implement DSM

at the software level: one relies on virtual memory page
protection and the other on a compiler to provide software
write detection.

Traditional software-based shared memory systems
rely on virtual memory page protection [13, 2, 12]. De-
tection of a data access is done by protecting the mem-
ory pages and catching the page-fault signal generated by

Appeared in the 9th International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 6

the operating system. A write operation sets a dirty-bit for
each page, indicating that the change needs to be propa-
gated. The granularity of shared data segments is deter-
mined by the system—a virtual memory page. This can
result in false sharing when the same memory page is ac-
cessed independently by multiple processes. Since page
size and data format vary across different machines and
operating systems, this is not a viable option for a hetero-
geneous environment such as the Web.

Another technique to implement DSM relies on com-
piler and runtime support [18]. A compiler inserts the nec-
essary code to detect and service an access to the shared
memory region. This approach has the advantage that the
granularity can be controlled, meaning that it alleviates
false sharing. On the other hand, it requires that the sys-
tem continuously evolves with the language it is based on.

Charlotte’s shared memory abstraction is neither op-
erating system nor compiler based. We were introduced
to the feasability of software write detection by the work
in [18]. However, rather than using a compiler, we
chose to realize shared memory abstraction throughshared
name-space. This method combines the advantages of
both previous methods:

� Programs can run on any combination of hardware
and operating systems where Java is available.

� Charlotte does not need to evolve with every change
to the Java language and compilers.

� The abstraction of shared memory can be provided in
a heterogeneous environment.

� The granularity of shared data can be controlled dy-
namically.

5.2 Prototype Implementation
Charlotte’s distributed shared memory is implemented

within the language, at the data type level; that is, through
Java classes. In addition to a value field, each data ob-
ject maintains its state which can be one of not valid,
readable, or dirty. A not valid state indicates that
the object does not contain a correct value; readable in-
dicates that the object contains a correct value that can be
used in a read operation; and dirty indicates that the local
value is correct and that it has been modified.

Distributed objects are read and written through class
member functions. A read operation on a readable
or a dirty object returns its value. Otherwise, its
value is retrieved from one of the manager processes over
the network, and then changes state to readable—this
corresponds to demand-paging. On a write operation,
the value is modified and the object changes state to
dirty—this corresponds to setting the dirty bit. A dirty
object propagates its value at the end of the job.

The problem in this implementation comes up when
an instance of an object in not valid state is accessed.

How does this particular instance convey its identity to the
manager to retrieve its value? After all, the manager has
many instances of the same class. Our solution is based
on a unique identifier, assigned deterministically based on
instantiation order. This requires that distributed objects
be instantiated in the same order at each site. For sim-
plicity, we chose to instantiate all the distributed objects in
the constructor of a single class. This guarantees that each
replica of a distributed object is assigned the same identi-
fier.

We have implemented two techniques to improve the
performance of shared memory in Charlotte. First, a read
operation does not result in transferring the value of a sin-
gle item. Instead, multiple items are shipped in a single
network packet. The size of each packet can be set dynam-
ically at runtime, thus adjusting the granularity of shared
memory. Second, the information as to which objects are
invalidated is piggy-backed with the manager’s job assign-
ment. Thus, each worker page-faults on read-only data
items at most once. Our general implementation is not par-
ticularly efficient, but simple and tractable.

In summary, our approach for realizing distributed
shared memory on loosely coupled machines does not rely
on virtual pages (operating system) nor a compiler. Sim-
ilar to compiler based systems, it runs in the user-space,
supports variable data granularity, and avoids false shar-
ing. On the other hand, it is not dependent on any partic-
ular implementation of the language or compiler. It is im-
portant to note that this technique is not tied to any par-
ticular memory coherence model—this is a general tech-
nique that can be used to implement many different mem-
ory coherence models. For example, both sequential and
release consistency memory models can be implemented
using our technique.

6 Experiments

Here we present initial performance results. Experi-
ments were conducted using up to 10 Sun SPARCstation 5
machines connected by a 10MbitEthernet. Reported times
are wall clock times, and hence account for all overheads.
Speedups are with respect to a sequential execution of a
standard Java program. The same executable was tested
in each case: the program and the runtime parameters did
not change.

A C program runs an order of magnitude faster than
a Java program. However, Java compilers, due to be
released later this year, will provide performance much
closer to C. We expect our results to carry over.

We chose a scientific application from statisti-
cal physics—computing the 3D Ising model [4]. This is a
simplified model of magnets on a three dimensional lattice
which can be used to describe qualitatively how small sys-
tems behave. Computing the Ising model involves an ex-
ponential number of independent tasks and very little data

Appeared in the 9th International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 7

Figure 3: Performance of a Charlotte program running the Ising model. The x-axis denotes the individual experiments. In
part (a), S represents the sequential execution, and the others represent the execution of a Charlotte program running on 1
to 10 machines. In Part (b), F (full) and H (half) represent a machine which contributes 100% and 50% of its CPU cycle,
respectively. The left y-axis denotes the time. The right y-axis denotes equivalent machines and the speedup.

movement.
We performed three experiments. First, we study the

performance and overhead of Charlotte. Second, We ex-
amine the utilization of slow machines in a computation.
In particular, we are interested to see whether the addi-
tion of slow machines will affect the overall performance.
Third, we analyze how well the system can integrate ma-
chines into an ongoing computation, and how efficiently
failures can be masked.

A sequential Java program to compute the Ising model,
with a period of 23, ran in 1,186 seconds. The equiva-
lent Charlotte program ran in 1,230 seconds on one ma-
chine (the manager process and one worker process ran on
the same machine). This results in 96% efficiency. The
same program on two machines (one machine running the
manager and one worker, and the second machine running
the second worker) ran in 609 seconds. This represents a
speedup of 1.95 and 97% efficiency compared with the se-
quential Java program. Fig. 3 (a) shows the performance
for 1 through 10 workers. Given the high level program-
ming model and a need for optimization, we were grati-

fied that the program achieves 93% efficiency with 10 ma-
chines. This is competitive with other systems that do not
provide load balancing and fault masking which Charlotte
does.

In the second set of experiments we evaluate how effi-
ciently Charlotte can handle an environment composed of
some fast and some slow machines. This models a “real”
setting on the Web. We used machines that were available
100% and machines that were available 50% of the time.
We performed six tests. In all tests, the number of actual
machines varied from 5 to 10, although the effective num-
ber of machines was always 5. For example, we ran a test
with 3 machines that were available 100% of the time and
4 machines that were available 50% of the time. As Fig. 3
(b) indicates, Charlotte’s load balancing technique is effec-
tive in this environment.

In the final experiment we measure how effectively a
machine can be integrated into a running computation and
how well Charlotte handles failures. In this test, we ran
the program on five machines (one machine running the
manager and one worker, and the other four machines run-

Appeared in the 9th International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 8

ning workers only). After 100 seconds, one worker was
crashed and instantly a new worker started. After another
100 seconds, two workers were crashed and instantly two
new workers were started. This program completed in 275
seconds, as opposed to 248 seconds in a perfect setting.
This indicates that Charlotte performs well in a dynamic
situation.

7 Conclusion
Charlotte supports some of the key functionalitycritical

for harnessing the Web as a metacomputing resource for
parallel computations.

It provides programmers with a convenient and stable
virtual machine interface to the heterogeneous and unpre-
dictably behaving execution environment. The program-
ming model is based on shared memory and employs the
emerging Java standard enhanced with a few classes for
expressing parallelism. Thus, heterogeneity and security
are provided to the extent supported in Java. Furthermore,
the runtime environment realizes automatic load balancing
and fault tolerance, both critical to the effective utilization
of the Web. No other system provides this gamut of func-
tionality for parallel computing in a wide area network of
heterogeneous machines.

Although Charlotte is currently handicapped by the
slow performance of interpreted Java, this will be trans-
parently resolved once Java compilers are released.

References
[1] Y. Aumann, Z. Kedem, K. Palem, and M. Rabin.

Highly efficient asynchronous execution of large-
grained parallel programs. In Proc. of 34th IEEE
Annual Symposium on Foundations of Computer Sci-
ence, 1993.

[2] A. Baratloo, P. Dasgupta, and Z. Kedem. Calypso: A
novel software system for fault-tolerant parallel pro-
cessing on distributed platforms. In Proc. of IEEE
InternationalSymposium on High-Performance Dis-
tributed Computing, 1995.

[3] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson,
K. Randall, A. Shaw, and Y. Zhou. Cilk: An Effi-
cient Multithreaded Runtime System. In Proc. Sym-
posium on Principals and Practice of Parallel Pro-
gramming, 1995.

[4] N. Biggs. Interaction models: Course given at Royal
Hollaway College, University of London. Cam-
bridge University Press, 1977.

[5] P. Dasgupta, Z. Kedem, and M. Rabin. Parallel
processing on networks of workstations: A fault-
tolerant, high performance approach. In Proc. of the
15th International Conference on Distributed Com-
puting Systems, 1995.

[6] D. Dean, E. Felten, and D. Wallach. Java Security:
From HotJava to Netscape and Beyond. To appear
in Proc. IEEE Symposium on Security and Privacy,
1996.

[7] Electric Communities. The E Programming lan-
guage. Available at http://www.communities.com/e/
epl.html.

[8] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:
Portable Parallel Programming with the Message-
Passing-Interface. MIT Press, 1994.

[9] J. Ju and Y. Wang. Scheduling PVM Tasks. Operat-
ing Systems Review, July 1996.

[10] Z. Kedem and K. Palem. Transformations for the au-
tomatic dirivation of resilient parallel programs. In
Proc. of IEEE Workshop on Fault-Tolerant Parallel
and Distributed Systems, 1992.

[11] Z. Kedem, K. Palem, and P. Spirakis. Efficient ro-
bust parallel computations. In Proc. of 22nd ACM
Symposium on Theory of Computing, 1990.

[12] P. Keleher, S. Dwarkadas, A. Cox, and
W. Zwaenepoel. TreadMarks: Distributed shared
memory on standard workstations and operating sys-
tems. In Proc. of the Winter USENIX Conference,
1991.

[13] K. Li. IVY: A Shared Virtual Memory System for
Parallel Computing. In Proc. International Confer-
ence on Parallel Processing, 1988.

[14] D. Mosberger. Memory Consistency Models. Tech-
nical Report number TR92/11, University of Ari-
zona, 1992.

[15] J. Pruyne and M. Livny. Parallel Processing on Dy-
namic Resources with CARMI. In Proc. of the Work-
shop on Job Scheduling Strategies for Parallel Pro-
cessing, 1995.

[16] H. Satoshi. The Magic Carpet for Network Comput-
ing: HORB Flyer’s Guide. Available at http://ring.etl.
go.jp/openlab/horb/doc/guide/guide.html.

[17] V. Sunderam, G. Geist, J. Dongarra, and R. Manchek.
The PVM concurrent computing system: Evolution,
experiences, and trends. Parallel Computing, 1994.

[18] M. Zekauska, W. Sawdon, and B. Bershad. Software
Write Detection for a DistributedShared Memory. In
Proc. of Symposium on OSDI, 1994.

