Appeared in the Sth International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 1

Charlotte: Metacomputing on the Web*

Arash Baratloo

Mehmet Karaul

Zvi Kedem Peter Wyckoff

Department of Computer Science
Courant Institute of Mathematical Sciences
New York University
New York, NY 10012, USA

Abstract

The World Wide Web hasthe potential of being used as
an inexpensive and convenient metacomputing resource.
This brings forward new challenges and invalidates many
of the assumptions made in offering the same functional -
ity for a network of workstations. We have designed and
implemented Charlottewhich goes beyond providinga set
of features commonly used for a network of workstations:
(1) auser can execute apardle program on amachine she
does not have an account on; (2) neither a shared file sys-
tem nor a copy of the program on the local file system is
required; (3) loca hardware is protected from programs
written by “strangers’; (4) any machine on the Web can
join or leave any running computation, thus utilizing the
dynamic resources.

Charlotte combines many complementary but isol ated
research efforts. It comprises a virtual machine model
which isolates the program from the execution environ-
ment, and a runtime system which realizes this model
on the Web. Load baancing and fault masking are pro-
vided by the runtime system transparent to the program-
mer. Charlotte provides distributed shared memory with-
out relying on operating system or compiler support. Itis
implemented soley in Java without any native code, thus
providing the same level of security, heterogeneity, and
portability as Java.

In this paper, we describe the design and implementa-
tion of Charlotte and present initia performance results.

Keywords: Metacomputing, Distributed Computing,
Paralel Programming Environments, World Wide Web.

1 Introduction

Over thelast few years, the Internet has grown rapidly
connecting millions of mostly idle machines. Its latest
reincarnation asthe World Wide Web hasgreatly increased
itspotentia for utilizationin diverse settings, includingits
potential to be used as a gigantic computing resource. On

*This research was partially supported by NSF under grant numbers
CCR-94-11590, CDA-94-21935, and GER-94-54173; and by AFOSR
under grant number F49620-94-1-0132.

theother hand, utilization of local areanetworksasaparal-
lel computing platform has been attractivefor many years.
There have been numerous research projects aimed at this
goal. Based ontheir success, and asanatural evolutionary
step, attempts have been made to extend existing systems
from local area networksto wide area networks.

However, utilizing the Web as a metacomputing re-
source introduces new difficulties and problems different
fromthosethat exist inlocal areanetworks. First, many of
the challenges that have been looked at individualy (e.g.,
security, programmability, and scheduling) need to come
together in acomprehensive manner. And second, theWeb
invalidates many of the assumptions used to build paral-
lel environments for workstation clusters. For example,
thereis lack of a shared file system, no one has accounts
on all connected machines, and it is not a homogeneous
system. An environment to effectively utilize the Web as
a metacomputing resource needs to address the following
important issues. programmability, heterogeneity, porta-
bility, security, dynamic execution environment, and scal-
ability.

Programming (Virtual Machine) Model: Generaly,
neither theprogrammer nor the end-user wantsto deal with
a dynamic and an unpredictable environment such as the
Web. In fact, users are not interested in knowing whether
their programs are running locally or remotely (perhapsin
a distributed manner). For the Web to become an effec-
tive computing platform, the programming model needsto
be decoupled from the dynamics of the execution environ-
ment. That is, programs need to be developed for a uni-
form and predictable virtual machine; the runtime system
needs to realize the virtual machines. Otherwise, the task
of program devel opment becomes nearly intractable. We
are not aware of any existing system providing a satisfac-
tory solution for the Web.

Heterogeneity and Portability: The Web containsdif-
ferent types of hardware, running different operating sys-
tems, connected with different networks. Heterogeneity
and portability areimperativeto encompass the Web. Cur-
rent heterogeneous systems are low level and generaly
employ a message-passing paradigm. High level systems

Appeared in the Sth International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 2

based on virtual shared memory, generally do not support
heterogeneous environments.

Security and Accessibility: Cooperative work over
the Web requires many facets of security measures. People
need reassurance to alow “strangers’ to execute computa
tionson their machines. On local areanetworksthisisac-
complished by an administrator maintaining user access-
rights and user accounts. Thus, the network becomes
available only to atrusted set of users. Thisisnot afea
sible solution for the Web. In an ideal situation, any ma-
chine on the Web can contribute to any ongoing computa
tion on the Web. We are not aware of any existing system
that provides such a solution.

Dynamic Execution Environment: The Web isady-
namic environment comprised of many administrativedo-
mains; for example, machines become available and un-
available abruptly and network delays are unpredictable.
Existing systems address these issues by providing some
level of load balancing and fault masking. However, the
extent of uncertainty is much greater on the Web.

A comprehensive solutionfor the Web requiresthat all
of theseissuesberesolved. No system currently addresses
all or even amagjority of these. In this paper, we present a
system called Charlotte that addresses these issues.

The research leading to our system started as atheoret-
ical work where provable methods for executing paralle
computations on abstract asynchronous processors were
developed [11, 1]. The outline of the virtual machine in-
terface to actua system was proposed in [10]. Theoreti-
cal resultsweretheninterpretedin the context of networks
of workstationsin [5]. The above were significantly ex-
tended and validated in the Calypso [2] system for ho-
mogeneous networks. Charlotte builds on these and other
complementary research efforts by offering a unified pro-
gramming and execution environment for the Web. Our
work on Charlotte has resulted in severa original contri-
butions which are summarized below:

o Charlotte is the first programming environment for
parallel computing using a secure language. The
Java programming language guards against mis-
chievous code attacking local resources. Charlotte
is built on top of Java without relying on any native
code. This means that a Charlotte program provides
the same level of security and reassurance as a Java
program.

¢ Charlotteisthefirst environment that allowsany ma-
chine on the Web to participatein any ongoing com-
putation. Two key factors make this possible. First,
the system does not require a shared file system, nor
does it require the program to reside on alocal file
system before a machine can participatein a compu-
tation. The Charlotte runtime system transmits the
program to participating machines. Second, it is not
necessary for a user to have an account (or any other

type of privilege) to utilize a machine on the Web.
The decision to involve a machine in a computation
is made by the owner of that machine. These factors
mean that potentially any machine can contribute to
any running Charlotte computation on the Web.

¢ A novel technique for providing a distributed shared
memory abstractionwithout rel ying on operating sys-
tem or compiler support. Current techniques for
shared memory require either support from the op-
erating system (in the form of setting page access-
rights) or a compiler (to generate the necessary run-
time code at each memory access). Shared memory
systems based on operating system support are nei-
ther system independent nor safe. Compiler-based
shared memory systems are tied to a particular pro-
gramming language and a particular target language.
Our approach does not suffer from these limitations,
which makes it possible to provide virtua shared
memory at the programming language level.

¢ We extend some of our previouswork originaly de-
veloped in a different setting to deal with the dy-
namics of the Web. Two integrated techniques, ea-
ger scheduling and two-phase idempotent execution
strategy are used for load balancing and fault toler-
ance.

o We leverage existing isolated contributions by pro-
viding a unified and comprehensive solution. The
Java programminglanguageisused for heterogeneity
and portability. Our programming environment can
be conceptualy dividedinto avirtual machine model
and a run-time system. The virtual machine model
provides a reliable shared memory machine to the
programmer and i sol atesthe program from the execu-
tion environment. The run-time system realizes this
model on a set of unpredictable, dynamically chang-
ing, and faulty machines.

2 Redated Work

PVM [17] and MPI [8] are representatives of mes-
sage passing systems. They provide portability and good
performance, but they are low level. Systems such as
CARMI [15] and [9] augment PV M’ sfunctionality by pro-
viding resource management services. However, they are
limited to local area networks: there is no support for dy-
namic load-balancing and fault masking, they require the
programto reside at each site (or ashared file system), and
they require the user or the system to have an account on
each machine participating in the computation. These fac-
tors severely limit their use as an interface to a metacom-
puting framework on the Web.

Another class of systems for distributed computing
focuses on providing distributed shared memory (DSM)

Appeared in the Sth International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 3

across loosaly-coupled machines. IVY [13] and Tread-
Marks [12] are representatives of DSM systems. Cilk [3]
is a comprehensive system providing resource manage-
ment and fault-tolerance in addition to DSM. However, it
makes similar assumptions about the file system and user
privileges as message passing systems, which again, lim-
itsits applicability to the Web. In addition, DSM systems
in general, do not work on heterogeneous environments.

Recently, with theintroductionof Java, another class of
systemsisbecoming available. HORB [16] and the E pro-
gramming language [7] are two such examples. HORB is
adistributed Object Oriented system. It extends Javawith
awel understood programming model, RPC, and persis-
tent objects. Charlotte and HORB are similar in that they
both utilize Javain providing heterogeneity, interoperabil -
ity, and security. However, we provide a virtual machine
model, shared memory abstractions, |oad-balancing and
fault-masking.

The E programming language extends Java by adding
message passing through channels, and richer security
through cryptographic and authentication. We do not ad-
dresstheseissues. For example, wedo not authenticatethe
correctness of results: malicious sites could make them-
selves available and report wrong answers. However,
Charlotte’'sdesign is not tied to any particul ar language or
system, making it possibleto leverage systems such as E.

3 Charlotte'sProgramming Model

If a parallel program is to utilize the Web, its execu-
tion environment is not known at devel opment time—the
number of available machines, their location, their capa-
bilities, and the network cannot be predicted ahead of time.
In general, a program’s execution environment will differ
for each invocation. To deal with the dynamics of the ex-
ecution environment, either the programmer must explic-
itly write adaptive programs, or a software environment,
such as a runtime system, must deal with the dynamics.
We fedl that the former solution puts too much strain on
the programming effort. We conjecture that for an effec-
tive utilization of the Web, the programming model must
be decoupled from the execution environment. Programs
should be developed for auniform and predictable virtua
machine, thus, simplifying the task of program develop-
ment; the runtime system should implement virtual ma-
chines and deal with the dynamics.

Charlotte allows high level programming based on the
parallelism of the problem and independent of the execut-
ing environment. Programs are written for a virtua par-
allel machine with infinitely many processors sharing a
common name-space. Integrating a machine into a run-
ning computation, balancing the loads among different
machines, detecting and removing failed machinesfrom a
computation, and maintaining the coherence of distributed
data are transparently provided by the runtime system.

public class MatrixMilt extends Droutine {
public static int Size = 500;

public Dfloat a[][] = new Dfl oat[Si ze] [Si ze];
public Dfloat b[][] new Df |l oat [Si ze] [Si ze] ;
public Dfloat c[][] new Df | oat [Si ze] [Si ze] ;

public MatrixMilt() {

}
public void drun(int nunfTasks, int id) {
int sum
for(int i=0; i<Size; i++) {
sum = 0;
for(int j=0; j<Size; j++)
sum += a[id][j].get()*b[j][i].get();
clid][i].set(sum;
}
public void run() {
b.a.rBegi n();
addDrouti ne(this, Size);

par End() ;

Figure 1: Matrix multiplicationin Charlotte.

3.1 Parallde Stepsand Concurrent Routines

An execution of a Charlotte program consists of a-
ternating sequentia and parallel steps. A sequentia step
consists of standard sequentia Java code. Computation-
aly intensive parts of a program are done in paralé
steps by one or more routines. A routine is analogous
to a standard thread in Java, except for its capability to
execute remotely. A paralle step starts with the key-
word (which isin redlity a function call) par Begi n and
ends with par End. There can be any number of rou-
tines defined within one paralld step. The first argument
to addDr out i ne isasubclass of Dr out i ne implement-
ing drun(). drun() takestwo arguments: the num-
ber of concurrent routines and the routine identifier (in
the range O,. . . ,nuniTasks—1). The second parameter
of addDr out i ne defines the number of instancesto run
concurrently (which is passed to dr un()). The closing
par End serves as a synchronization barrier.

Figure 1 shows a Charlotte program which multiplies
two square matrices using 500 routines. Each routine is
responsiblefor producing onerow of the resultant matrix.
The important pointsto note here are:

e Theprogram’sparalldismisbased onthe paralelism
of the problem at hand and not the execution environ-
ment. The same program can execute on one or any
number of machines depending on availability.

Appeared in the Sth International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 4

e The programmer need not be aware of the fact that
thisapplication can be executed in a distributed fash-
ion, utilizing multiple machines on the Web.

¢ Integrating machines into the computation, load-
balancing, fault-masking, and data coherence are
transparent.

e Theservices provided by Charlottedo not requireany
language or compiler modifications.

3.2 Distributed Shared Memory Semantics

In aCharlotte program, the dataislogically partitioned
into private and shared segments. Private data refers to
what is loca to a routine and cannot be seen by others.
The shared data is distributed and can be seen by others.
For reasons to be discussed in Section 5, we have chosen
to implement distributed shared memory within the lan-
guage, at the datatypelevel. That is, for every basic data
type in Java, there is a corresponding Charlotte data type
implementing itsdistributed version. For example, where
Java providesi nt and f | oat types, Charlotte provides
Di nt and Df | oat types (classes). Since Java prohibits
operator overloading, distributed objects are accessed and
modified with explicit function calls (get() and set()). The
consistency and coherence of the distributed datais main-
tained by the runtime system.

In an attempt to improve performance, many DSM sys-
tems have introduced multiple memory-consistency se-
mantics [14]. The decision asto which consistency model
is best suited for a particular application isleft to the pro-
grammer. Wefed thisgeneraly complicatesatask there-
searchers were seeking to simplify. In Charlotte, we pro-
videasingleand intuitivememory semantics. Concurrent
Read and Exclusive Write (CR& EW). This meansthat one
or more routinescan read a data variable, and at most one
can modify its value. More specifically, aread operation
returns the value of the object at the timethe paralel step
began, and a write operation becomes visible at the com-
pletion of the paralld step.

The CR&EW semantics are implemented with the
Atomic Update protocol. Intuitively, this means that write
operations are performed locally and propagated at the
completion of the routine. The advantages of this proto-
col arethat (a) network traffic is reduced by packing many
modifications into one network packet; (b) write opera
tions are efficient since they are performed locally and do
not requireinvalidation; (c) atomic execution of routinesis
guaranteed (each oneisexecuted in an all-or-nothing fash-
ion); (d) each routine can execute in isolation and can be
verified independently of the execution order; (€) it smpli-
fies the control logic in the coherence protocol. It should
also be noted that the atomicity of updates is fundamen-
tal for our load balancing and fault masking techniques,
which will be discussed | ater.

4 Runtime System

The Charlotte package provides three magjor services:
(1) scheduling service, (2) memory service, and (3) com-
puting service. In the current prototype, the scheduling
service, the memory service, and parts of the computing
service executing the sequential stepsare fused into asin-
gle process—the management service, or the manager for
short. The computing service performs the computation-
aly intensive paralel routines. We refer to the processes
that perform the computing service as workers. A single
manager and one or more workerstogether implement the
virtual machine modd that the program was written for.

We assume that auser has one machine under her con-
trol and that thismachineishighly reliable. The user, how-
ever, wishes to utilize other machines on the Web which
may be unrdiable. We will sketch the overall execution
strategy here.

When a user starts executing a Charlotte program, it
logically runs as two separate processes: one performing
as the manager, the other performing as a worker. The
manager executes the program until it reaches a parallée
step. Upon reaching thispoint, it cal cul ates the number of
instances for each addDr out i ne and creates a Dispatch
Table for bookkeeping. We will refer to each instance of
aroutine as ajob. The manager then waits (if necessary)
for workersto contact it. In generd, thiswill happen after
a worker finishes a previous assignment and is willing to
work. However, a worker could just appear any time and
be integrated into the computation. In general, the man-
ager keeps giving jobsto workersuntil they aredone. The
association of workers and managers will be described in
Section 4.2. We will first describe the oad-balancing and
fault-masking techniques used.

41 Load Balancing and Fault Masking

As the manager assigns jobs to workers, it has the op-
tion of assigning a job repeatedly until it is executed to
completion by at |east oneworker. Thistechniqueiscalled
eager scheduling. Obvioudly, eager scheduling does not
provide correct program behavior without a suitable mem-
ory management scheme—as the same program fragment
could get executed multiple times. However, it should
be clear that given an appropriate memory management
scheme, eager scheduling alone has the following proper-
ties:

e Aslong asat least one worker does not continuously
fail, al jobswill be completed.

o New workers can be integrated into a computation
anytime, even inthe middle of a paralle step.

e A crash-failed machine or a dow machine running
aworker process is transparently bypassed by faster
workers, providing fault tolerance.

Appeared in the Sth International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 5

o Worker processes running on slow machines ask for
jobs less frequently, and thus, do lesswork. Thisre-
sultsinload balancing that isautomatic and transpar-
ent to both the programmer and the user.

A smplistic application of eager scheduling does not
produce acorrect program behavior sinceasinglejob may
be executed several times. Problems to be addressed in-
clude inconsistent memory views across jobs and even
across various “copies’ of the same job, violation of
exactly-once semantics by multipleexecutions, and exces-
sive datatraffic. The memory management technique that
weemploy iscaled two-phaseidempotent execution strat-
egy (TIES). TIES guarantees correct execution of shared
memory programs under eager scheduling.

TIESworksasfollows. Beforethe execution of ajob, a
worker processinvalidatesitsdistributed datatypes. Asit
executes, theread dataisdemand-paged fromthe manager,
however, the writes occur locally in the workers memory
space. It isat the termination of ajob that thedirty datais
sent back to the manager, indicating its completion. The
manager bufferstheincoming data, keeping only one copy
of the modifications for each job (despite potential dupli-
cates). It discardsall other responses, includingthosefrom
dow workers that have completed an old job. The first
phase of TIES ends when at least one invocation of each
job reports back. The second phase consists of the man-
ager applyingthe modificationsto itsmemory space, com-
pleting the execution of the parallel step.

4.2 Association of Workersand Computations

It isvery likely that at any moment there are idle ma-
chines on the Web willing to help in some computation,
and there are computations that could utilize them. Both
sets are dynamic. Thefirst difficulty liesin associating an
idle machine with a computation. It isonly when this as-
sociation has been established, and the necessary program
fragment been made accessible, that an idle machine can
contribute to the computation. However, the lack of trust
in alowing “strange programs’ to execute on loca hard-
wareisaseriousissue. The complete problem is of great
importance since it lies at the core of providing an effec-
tive metacomputing environment.

We have adopted a solution that does not scale for set-
tings such as the World Wide Web, but it is an effective
solution for our network at New York University. Over-
simplifyingit, when aCharlotteprogram reaches aparalel
step, it registersitself with aspecific daemon process. This
action creates an entry in a URL homepage (see Fig. 2).
Any user inour network can visit thishomepage using any
Java-capable browser and see the list of active programs.
If the user wishes to donate some of the CPU power of her
machine, she can ssimply click on theentry. Thiswill load
the required code to the user’s machine and start assisting
the ongoing computation. We planto automatethisfeature
by relying on manager lookup services.

Hetscape: List of Active Chadotte Programs|

Fle Edit View Go Bookmarks Options Directory Window Help

Back |#eeneni|] Home Reload |2 530 |2 Open |3 Prine |3 Find

Location: |Ihttp: fiellington.cs.nyu.edu/~charlot

What's New | What's Cool |:Handhook i Net Search| Net Directory|

Charlotte, or
Parallel Computing on the Webh

Feel assured that your valuable hardweare and software are protected from malisious and
accidental attacks, and feel good about putting what would have been idle (P cyeles, into o
good use.

Fuollowing is the list of parallel computations. You can help their computation by & simple
mouse click!

& Help wyckoff running on ellington. cs.nyu.edu, (port 34807, pid:34807)
® Help kedem nnning on satchmo.cs . edu (poort:35603, pid 35605)
& Help karanl rnning on satchmo. cs.nyuedu (port:35633, pid:35633)
® Help baratloo mimning on mingns. cs.nyu.edu (port: 35303, pid:34921)

e i

Figure2: Samplelist of active Charlotte programs.

Since Charlotteisentirely implemented in Java, it pro-
vides the same security guarantees as Java. Java guaran-
tees the protection of local resources from programs. Al-
though there seem to be security holesin the current im-
plementation [6], there are strong indi cationsthat thiswill
be solved. Charlottewill transparently take advantage of
these improvements. Once users stop being afraid of pro-
grams that come over the network, we fed that they will
have more incentive to allow others to use their idle CPU
cycles

It isimportant to stress that Charlotte supports hetero-
geneous systems, which makesit possiblefor any idlema
chine to execute a paralldl computation along side any
other—a necessity for the Web.

5 A Nove Techniquefor DSM

To provide the abstraction of a single address space to
multiple programs running on different computers, DSM
systems must detect accesses to shared memory and prop-
agate updates. For a shared memory system to be real-
ized over the Web, hardware and operating system inde-
pendence is a hecessity, and language/compiler indepen-
denceisdesirable. In Charlotte, we achieve both.

5.1 Existing Techniques

There have been two approaches to implement DSM
at the software level: one relies on virtual memory page
protection and the other on acompiler to provide software
write detection.

Traditional software-based shared memory systems
rely on virtual memory page protection [13, 2, 12]. De-
tection of a data access is done by protecting the mem-
ory pages and catching the page-fault signal generated by

Appeared in the Sth International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 6

the operating system. A write operation sets adirty-bitfor
each page, indicating that the change needs to be propa
gated. The granularity of shared data segments is deter-
mined by the system—a virtual memory page. This can
result in fal se sharing when the same memory page is ac-
cessed independently by multiple processes. Since page
size and data format vary across different machines and
operating systems, thisis not a viable option for a hetero-
geneous environment such as the Web.

Another technique to implement DSM relies on com-
piler and runtimesupport [18]. A compiler insertsthe nec-
essary code to detect and service an access to the shared
memory region. This approach has the advantage that the
granularity can be controlled, meaning that it alleviates
fase sharing. On the other hand, it requires that the sys-
tem continuously evolves with the languageit isbased on.

Charlotte's shared memory abstraction is neither op-
erating system nor compiler based. We were introduced
to the feasability of software write detection by the work
in [18]. However, rather than using a compiler, we
chosetoredlize shared memory abstraction through shared
name-space. This method combines the advantages of
both previous methods:

e Programs can run on any combination of hardware
and operating systems where Javais available.

¢ Charlotte does not need to evolve with every change
to the Javalanguage and compilers.

e Theabstraction of shared memory can beprovidedin
a heterogeneous environment.

e The granularity of shared data can be controlled dy-
namically.

5.2 Prototype I mplementation

Charlotte' s distributed shared memory isimplemented
withinthelanguage, at the datatypelevel; that is, through
Java classes. In addition to a val ue field, each data ob-
ject maintains its state which can be one of not val i d,
readabl e, or dirty. A not _val i d state indicates that
the abject does not contain a correct value; r eadabl e in-
dicates that the object contains a correct value that can be
used inaread operation; anddi r t y indicatesthat thelocal
valueis correct and that it has been modified.

Distributed objects are read and written through class
member functions. A read operation on a readabl e
or adirty object returns its val ue. Otherwise, its
valueisretrieved from one of the manager processes over
the network, and then changes state to r eadabl e—this
corresponds to demand-paging. On a write operation,
the val ue is modified and the object changes state to
di rt y—this correspondsto settingthedirty bit. Adirty
object propagates itsvalue at the end of the job.

The problem in this implementation comes up when
an instance of an object in not _val i d state is accessed.

How doesthisparticular instanceconvey itsidentity tothe
manager to retrieve its value? After all, the manager has
many instances of the same class. Our solution is based
on auniqueidentifier, assigned deterministically based on
instantiation order. This requires that distributed objects
be instantiated in the same order at each site. For sim-
plicity, we chosetoinstantiateall the distributed objectsin
the constructor of asingleclass. Thisguaranteesthat each
replica of adistributed object is assigned the same identi-
fier.

We have implemented two techniques to improve the
performance of shared memory in Charlotte. First, aread
operation does not result in transferring the value of asin-
gleitem. Instead, multiple items are shipped in a single
network packet. Thesize of each packet can be set dynam-
ically at runtime, thus adjusting the granularity of shared
memory. Second, the information as to which objects are
invalidatedispiggy-backed withthe manager’sjob assign-
ment. Thus, each worker page-faults on read-only data
itemsat most once. Our general implementationisnot par-
ticularly efficient, but simple and tractable.

In summary, our approach for realizing distributed
shared memory on loosely coupled machines does not rely
on virtual pages (operating system) nor a compiler. Sim-
ilar to compiler based systems, it runsin the user-space,
supports variable data granularity, and avoids fa se shar-
ing. On the other hand, it is not dependent on any partic-
ular implementation of the language or compiler. Itisim-
portant to note that this technique is not tied to any par-
ticular memory coherence model—thisis a general tech-
niguethat can be used to implement many different mem-
ory coherence models. For example, both sequential and
release consistency memory models can be implemented
using our technique.

6 Experiments

Here we present initial performance results. Experi-
ments were conducted using up to 10 Sun SPARCstation 5
machines connected by a10Mbit Ethernet. Reported times
arewall clock times, and hence account for all overheads.
Speedups are with respect to a sequential execution of a
standard Java program. The same executable was tested
in each case: the program and the runtime parameters did
not change.

A C program runs an order of magnitude faster than
a Java program. However, Java compilers, due to be
released later this year, will provide performance much
closer to C. We expect our resultsto carry over.

We chose a scientific application from dtatisti-
ca physics—computing the 3D Ising moddl [4]. Thisisa
simplified model of magnets on athree dimensional lattice
which can be used to describe qualitatively how small sys-
tems behave. Computing the Ising model involvesan ex-
ponential number of independent tasks and very littledata

Appeared in the Sth International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 7

[] Time

1300
1200 +
1100 +
1000 +
900 —+
800
700 +
600]
500
400 +
300

200 + /

100 +

— Equivalent Machines

— Speedup

~ 10 300 — -5
-9

. 8 = 1 [[4 4
r7 200 |

L 6 + 3
-5

-4 42
L3 100 +

,2 41
-1

0 0 0

S 1 2 3 4 6 7 8

(@)

] INnnns

5F 4F 3F 2F 1F OF
+ + o+ 4+ o+ o+
OH 2H 4H 6H 8H 10H

(b)

Figure 3: Performance of a Charlotte program running the Ising model. The x-axis denotesthe individua experiments. In
part (a), S represents the sequential execution, and the others represent the execution of a Charlotte program running on 1
to 10 machines. In Part (b), F (full) and H (half) represent a machine which contributes 100% and 50% of its CPU cycle,
respectively. Theleft y-axis denotesthetime. The right y-axis denotes equival ent machines and the speedup.

movement.

We performed three experiments. First, we study the
performance and overhead of Charlotte. Second, We ex-
amine the utilization of slow machines in a computation.
In particular, we are interested to see whether the addi-
tion of low machines will affect the overal performance.
Third, we analyze how well the system can integrate ma-
chines into an ongoing computation, and how efficiently
failures can be masked.

A seguential Java programto compute the [sing mode,
with a period of 23, ran in 1,186 seconds. The equiva
lent Charlotte program ran in 1,230 seconds on one ma-
chine (themanager process and oneworker process ran on
the same machine). This resultsin 96% efficiency. The
same program on two machines (one machine running the
manager and one worker, and the second machine running
the second worker) ran in 609 seconds. This represents a
speedup of 1.95 and 97% efficiency compared withthe se-
guentia Java program. Fig. 3 (a) shows the performance
for 1 through 10 workers. Given the high level program-
ming model and a need for optimization, we were grati-

fied that the program achieves 93% efficiency with 10 ma-
chines. Thisis competitive with other systemsthat do not
provideload balancing and fault masking which Charlotte
does.

In the second set of experiments we eva uate how effi-
ciently Charlotte can handle an environment composed of
some fast and some slow machines. This modelsa“real”
setting on the Web. We used machines that were available
100% and machines that were available 50% of thetime.
We performed six tests. In al tests, the number of actua
machines varied from 5 to 10, athough the effective num-
ber of machines was always 5. For example, weran atest
with 3 machines that were available 100% of thetime and
4 machines that were available 50% of thetime. AsFig. 3
(b) indicates, Charlotte’ sload bal ancing techniqueiseffec-
tivein thisenvironment.

In the fina experiment we measure how effectively a
machine can beintegrated into a running computation and
how well Charlotte handles failures. In this test, we ran
the program on five machines (one machine running the
manager and oneworker, and the other four machines run-

Appeared in the Sth International Conference on Parallel and Distributed Computing Systems (PDCS), 1996 8

ning workers only). After 100 seconds, one worker was
crashed and instantly a new worker started. After another
100 seconds, two workers were crashed and instantly two
new workerswere started. Thisprogram completedin275
seconds, as opposed to 248 seconds in a perfect setting.
This indicates that Charlotte performs well in a dynamic
Situation.

7 Conclusion

Charlottesupportssome of thekey functionality critical
for harnessing the Web as a metacomputing resource for
paralel computations.

It provides programmers with a convenient and stable
virtual machine interface to the heterogeneous and unpre-
dictably behaving execution environment. The program-
ming mode! is based on shared memory and employs the
emerging Java standard enhanced with a few classes for
expressing paralelism. Thus, heterogeneity and security
are provided to the extent supported in Java. Furthermore,
theruntime environment reali zes automatic load bal ancing
and fault tolerance, both critical to the effective utilization
of the Web. No other system providesthis gamut of func-
tionality for parallel computing in awide area network of
heterogeneous machines.

Although Charlotte is currently handicapped by the
dow performance of interpreted Java, this will be trans-
parently resolved once Java compilers are rel eased.

References

[1] Y. Aumann, Z. Kedem, K. Pdem, and M. Rabin.
Highly efficient asynchronous execution of large-
grained parale programs. In Proc. of 34th |IEEE
Annual Symposiumon Foundationsof Computer Sci-
ence, 1993.

[2] A.Baratloo, P. Dasgupta, and Z. Kedem. Caypso: A
novel software system for fault-tolerant parallel pro-
cessing on distributed platforms. In Proc. of |EEE
International Symposiumon High-PerformanceDis-
tributed Computing, 1995.

[3] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson,
K. Randdl, A. Shaw, and Y. Zhou. Cilk: An Effi-
cient Multithreaded Runtime System. In Proc. Sym-
posium on Principals and Practice of Paralld Pro-
gramming, 1995.

[4] N.Biggs. Interaction models: Coursegiven at Royal
Hollaway College, University of London. Cam-
bridge University Press, 1977.

[5] P. Dasgupta, Z. Kedem, and M. Rabin. Paralle
processing on networks of workstations: A fault-
tolerant, high performance approach. In Proc. of the
15th International Conference on Distributed Com-

puting Systems, 1995.

[6] D. Dean, E. Felten, and D. Wallach. Java Security:
From HotJava to Netscape and Beyond. To appear
in Proc. IEEE Symposium on Security and Privacy,
1996.

[7] Electric Communities. The E Programming lan-
guage. Available at http://www.communities.com/e/
epl.html.

[8] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:
Portable Parallel Programming with the Message-
Passing-Interface. MIT Press, 1994.

[9] J. Juand Y. Wang. Scheduling PVM Tasks. Operat-
ing Systems Review, July 1996.

[10] Z.Kedem and K. Palem. Transformationsfor theau-
tomatic dirivation of resilient paralel programs. In
Proc. of IEEE Workshop on Fault-Tolerant Parallel
and Distributed Systems, 1992.

[11] Z. Kedem, K. Palem, and P. Spirakis. Efficient ro-
bust parallel computations. In Proc. of 22nd ACM
Symposium on Theory of Computing, 1990.

[12] P Keleher, S Dwarkadas, A. Cox, and
W. Zwaenepod. TreadMarks: Distributed shared
memory on standard workstationsand operating sys-
tems. In Proc. of the Winter USENIX Conference,
1991.

[13] K. Li. IVY: A Shared Virtua Memory System for
Paralel Computing. In Proc. International Confer-
ence on Parallel Processing, 1988.

[14] D. Mosberger. Memory Consistency Models. Tech-
nica Report number TR92/11, University of Ari-
zona, 1992.

[15] J. Pruyneand M. Livny. Parallel Processing on Dy-
namic Resourceswith CARMI. In Proc. of the Work-
shop on Job Scheduling Strategies for Parallel Pro-
cessing, 1995.

[16] H. Satoshi. The Magic Carpet for Network Comput-
ing: HORB Flyer’sGuide. Availableat http://ring.etl.
go.j p/openlab/horb/doc/guide/guide.html.

[17] V.Sunderam, G. Geist, J. Dongarra, and R. Manchek.
The PVM concurrent computing system: Evolution,
experiences, and trends. Parallel Computing, 1994.

[18] M. Zekauska, W. Sawdon, and B. Bershad. Software
Write Detection for aDistributed Shared Memory. In
Proc. of Symposiumon OSDI, 1994.

