Calculating the VC-Dimension of Decision Trees

Özlem Aslan1 Olcay Taner Yıldız2 Ethem Alpaydın1

1Department of Computer Engineering
Boğaziçi University

2Department of Computer Engineering
Işık University

24th International Symposium on Computer and Information Sciences, 2009
Outline

1. Introduction
 - Model Complexity
 - VC Dimension

2. Proposed Method
 - Exhaustive Search Algorithm
 - Estimating VC-Dimension By Regression
 - Complexity Control Using VC-Dimension Estimates

3. Conclusion
1. Introduction
 - Model Complexity
 - VC Dimension

2. Proposed Method
 - Exhaustive Search Algorithm
 - Estimating VC-Dimension By Regression
 - Complexity Control Using VC-Dimension Estimates

3. Conclusion
1. Introduction
 - Model Complexity
 - VC Dimension

2. Proposed Method
 - Exhaustive Search Algorithm
 - Estimating VC-Dimension By Regression
 - Complexity Control Using VC-Dimension Estimates

3. Conclusion
Outline

1. Introduction
 - Model Complexity
 - VC Dimension

2. Proposed Method
 - Exhaustive Search Algorithm
 - Estimating VC-Dimension By Regression
 - Complexity Control Using VC-Dimension Estimates

3. Conclusion
Underfit vs Overfit

Calculating the VC-Dimension of Decision Trees
Calculating the VC-Dimension of Decision Trees

Best Model

- \(x_1 < \alpha_3 \)
- \(x_2 < \beta_4 \)

\[\beta_4 \]

\[x_2 \]

\[\alpha_3 \]

\[x_1 \]
Structural Risk Minimization

\[E_g = E_t + \frac{\epsilon}{2} \left(1 + \sqrt{1 + \frac{4E_t}{\epsilon}} \right) \]

(1)

\[\epsilon = a_1 \frac{V[\log(a_2 N/V) + 1]}{N} - \log(\nu) \]

(2)

(Vapnik95)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_t)</td>
<td>training error</td>
</tr>
<tr>
<td>(V)</td>
<td>VC dimension of the model</td>
</tr>
<tr>
<td>(\nu)</td>
<td>confidence level</td>
</tr>
<tr>
<td>(a_1) and (a_2)</td>
<td>empirically fitted constants</td>
</tr>
<tr>
<td>(N)</td>
<td>sample size</td>
</tr>
</tbody>
</table>
Calculating the VC-Dimension of Decision Trees
Outline

1. Introduction
 - Model Complexity
 - VC Dimension

2. Proposed Method
 - Exhaustive Search Algorithm
 - Estimating VC-Dimension By Regression
 - Complexity Control Using VC-Dimension Estimates

3. Conclusion
Procedure

- An exhaustive search algorithm to calculate the exact VC-dimensions.
- Fit a regressor so that we can estimate the VC-dimension of any tree.
- VC-dimension estimates in pruning to validate that they are indeed good estimates.
Illustration

Calculating the VC-Dimension of Decision Trees
Computational Complexity

\[\sum_{N=1}^{\infty} \binom{2d}{N} 2^N |H| \]

- The full tree with depth 4 and for 4 input features requires 2 days to complete on a quad-core computer.
- Depth 5 and for 5 input features will require approximately 10^{13} days.
- We can run the exhaustive search algorithm only on few H and on cases with small d and $|H|$.
Experimental Setup

- We thoroughly searched decision trees with depth up to four.
- We use the fact that two isomorphic trees have the same VC dimension.
Regression Model

154 training instances

\[V = 0.7152 + 0.6775 V_I + 0.6775 V_r - 0.6600 \log d + 1.2135 \log M \]

\(R^2 \) is 0.9487.
Experimental Setup

- CVprune
- SRMprune
- NOprune
Experimental Setup

Functions:

\[
F_1 = x_0x_1 + x_0x_2 + x_1x_2 \\
F_2 = x_0x_1 + x_0x_2 + x_0x_3 + x_1x_2 + x_1x_3 + x_2x_3 \\
F_3 = x_0x_1' + x_0'x_1
\]

- The number of input features \(d = 8 \) and \(d = 12 \)
- Five different noise levels \(\rho = 0.0, 0.01, 0.05, 0.1, \) and \(0.2 \).
- Four different sample size percentage \(S = 10, 25, 50, 100 \).
$d = 12$, $\rho = 0.0$, and $S = 100$

<table>
<thead>
<tr>
<th>Function</th>
<th>Error Rate</th>
<th>Number of Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NOprune</td>
<td>CVprune</td>
</tr>
<tr>
<td></td>
<td>NOprune</td>
<td>CVprune</td>
</tr>
<tr>
<td>F_1</td>
<td>0.0± 0.0</td>
<td>0.0± 0.0</td>
</tr>
<tr>
<td>F_2</td>
<td>0.0± 0.0</td>
<td>0.0± 0.0</td>
</tr>
<tr>
<td>F_3</td>
<td>3.9± 2.8</td>
<td>8.5± 7.0</td>
</tr>
</tbody>
</table>
Complexity Control Results

$\rho = 0.2$, $S = 100$, and $F = F_2$

<table>
<thead>
<tr>
<th>d</th>
<th>Error Rate</th>
<th>Number of Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO prune</td>
<td>CV prune</td>
</tr>
<tr>
<td>8</td>
<td>38.1 ± 4.1</td>
<td>37.8 ± 5.3</td>
</tr>
<tr>
<td>12</td>
<td>35.5 ± 1.2</td>
<td>28.2 ± 3.0</td>
</tr>
</tbody>
</table>
\(\rho = 0.2, \ S = 100, \) and \(F = F_2 \)

<table>
<thead>
<tr>
<th>(d)</th>
<th>(d)</th>
<th>Error Rate</th>
<th>Number of Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)</td>
<td>(NO) prune</td>
<td>(CV) prune</td>
<td>(SRM) prune</td>
</tr>
<tr>
<td>8</td>
<td>38.1± 4.1</td>
<td>37.8± 5.3</td>
<td>35.3± 2.7</td>
</tr>
<tr>
<td>12</td>
<td>35.5± 1.2</td>
<td>28.2± 3.0</td>
<td>21.0± 0.6</td>
</tr>
</tbody>
</table>
$d = 12$, $S = 50$, and $F = F_1$

<table>
<thead>
<tr>
<th>ρ</th>
<th>Error Rate</th>
<th>Number of Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO prune</td>
<td>CV prune</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0± 0.0</td>
<td>0.0± 0.0</td>
</tr>
<tr>
<td>0.01</td>
<td>3.6± 0.5</td>
<td>1.5± 0.3</td>
</tr>
<tr>
<td>0.05</td>
<td>12.2± 0.8</td>
<td>5.0± 0.5</td>
</tr>
<tr>
<td>0.1</td>
<td>21.7± 0.9</td>
<td>12.8± 4.7</td>
</tr>
<tr>
<td>0.2</td>
<td>35.7± 1.4</td>
<td>29.3± 5.4</td>
</tr>
</tbody>
</table>
$d = 8$, $\rho = 0.05$, and $F = F_3$

<table>
<thead>
<tr>
<th>S</th>
<th>Error Rate</th>
<th></th>
<th>Number of Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO prune</td>
<td>CV prune</td>
<td>SRM prune</td>
</tr>
<tr>
<td>100</td>
<td>19.0±5.9</td>
<td>25.3±14.9</td>
<td>15.8±8.6</td>
</tr>
<tr>
<td>50</td>
<td>23.7±14.7</td>
<td>28.9±17.2</td>
<td>23.4±14.6</td>
</tr>
<tr>
<td>25</td>
<td>27.0±11.7</td>
<td>37.4±15.7</td>
<td>27.0±11.7</td>
</tr>
<tr>
<td>10</td>
<td>41.7±17.1</td>
<td>45.0±17.2</td>
<td>41.7±17.1</td>
</tr>
</tbody>
</table>
Outline

1 Introduction
 - Model Complexity
 - VC Dimension

2 Proposed Method
 - Exhaustive Search Algorithm
 - Estimating VC-Dimension By Regression
 - Complexity Control Using VC-Dimension Estimates

3 Conclusion
Conclusion

- VC-dimension calculation by exhaustive search
- Estimation of VC-dimension via regression
- VC-dimension used in SRM based model selection
- Find trees that are as accurate as in CV pruning
Future Work

- The approach can easily be extended to univariate decision trees with discrete and/or continuous features.
- Extension to K-class
Extension

Discrete features with 3 values:

\[V = -3.0014 + 0.5838 V_1 + 0.5838 V_2 + 0.5838 V_3 + 2.5312 \log d + 1.9064 \log M \]

\(R^2 \) is 0.91.

4 values:

\[V = -1.6294 + 0.5560 V_1 + 0.5560 V_2 + 0.5560 V_3 + 0.5560 V_4 + 3.9830 \log d - 0.4073 \log M \]

\(R^2 \) is 0.861.
Extension

Discrete features with 5 values:

\[V = 14.4549 + 0.3924V_1 + 0.3924V_2 + 0.3924V_3 + 0.3924V_4 + 0.3924V_5 - 4.7687 \log d - 1.3857 \log M \]

\(R^2 \) is 0.782.