An Ideal Regression Method Satisfies:

Regularized M-estimator

\[
\tilde{f}_M \in \arg \min_{f \in \mathbb{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \rho(y_i - f(x_i)) + \frac{\lambda}{2} \| f \|_{F_2}^2 \right\},
\]
where \(\mathbb{H} \) is some reproducing kernel Hilbert space, \(\rho \) is a loss function, and \(\lambda \in \mathbb{R} \), is some loss function

"regularized empirical risk minimization"

Loss consistent

As \(n \to \infty \) and \(\lambda \to 0 \),

\[
\mathbb{E}(\rho(y - \tilde{f}_M(x))) \to \inf_{f \in \mathbb{H}} \mathbb{E}(\rho(y - f(x))).
\]

Under mild conditions on the kernel, distribution and loss, regularized M-estimators are consistent.

Robust

Bounded response: result remains in a bounded set, no matter how a single training pair is perturbed.

- A rather weak form of robustness, essentially requiring nonzero finite sample breakdown point.
- Most known robust M-estimators are based on minimizing a non-convex loss function.

Computationally tractable

The estimator can be found in polynomial time.

- For instance, when \(\rho \) is convex.

Contributions

- No, for M-estimators (we prove formally)
- Yes, for the proposed algorithm

Theoretical Properties

Robustness?

Theorem 3: Assume \(\ell \) is Lipschitz and \(\psi \) is bounded. Consider the perturbation of a single data point \((y_i, x_i)\). The convex relaxation of VM maintains bounded response if

1. Either \(\psi \) or \((x_i, y_i) \) remains bounded.
2. \(\nabla \ell(y_i, y) \to \infty, \forall (x_i, y_i) \to \infty \) and \(\ell(\cdot, k(x_i, x_j)) \to \infty \).

Experiments

Synthetic: Linear model with Gaussian noise.

\(d = 5, n_{train} = 100, n_{test} = 10000 \).

Methods:

- **blue**—non-convex, **red**—proposed

Performance Measure:

RMSE on clean test data.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Learning Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>4.99</td>
</tr>
<tr>
<td>Huber</td>
<td>5.16</td>
</tr>
</tbody>
</table>

Theoretical Properties

Reformulation

Dualize \(\ell \) with its Fenchel conjugate \(\ell^* \) and solve for \(\alpha \)

\[
\begin{align*}
\min_{\alpha \in \mathbb{R}^+} & \quad \sup_{\theta \in \mathbb{R}^+} \left\{ \psi(\theta) - \theta \ell^*(\theta) - \frac{1}{2} \psi'(\theta) \langle K \odot \theta \rangle \right\}
\end{align*}
\]

Rounding

Simply use \(\eta \) (ignoring \(M \)) and re-solve for \(\alpha \).

Reoptimization (optional)

Local improvement by alternating between \(\eta \) and \(\alpha \).

Idea: Variational M-estimators

Variational loss

\[
\rho(\hat{r}) = \begin{cases}
\psi(\hat{r}) & \text{if } \hat{r} = 0 \\
\theta \psi(\hat{r}) + \psi'(\hat{r}) \hat{r} & \text{if } \hat{r} \neq 0
\end{cases}
\]

where \(r = y - f(x) \) is the residual, \(\eta \) is the outlier indicator, and \(\psi(\eta) \) is a penalty for outlier attribution.

Variational M-estimator

\[
\min_{\eta \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^{n} \left[\eta_i (y_i - f(x_i)) + \psi(\eta_i) \right] + \frac{\lambda}{2} \| \eta \|_1,
\]

and its dual

\[
\min_{\eta \in \mathbb{R}^n} \psi(\eta) + \frac{\lambda}{2} \| \eta \|_1 + \frac{1}{2} \| \eta \|_2^2.
\]

where \(K := \odot (x_i, x_j) \) is the kernel matrix.

Not jointly convex in \(\alpha \) and \(\eta \). Alternating minimization cannot guarantee local optimality.

A Polynomial-time Form of Robust Regression

Yaoliang Yu, Özlem Aslan and Dale Schuurmans

Department of Computing Science, University of Alberta

\{yaoliang, ozlem, dale\}@cs.ualberta.ca

Summary

Is consist + robust + tractable regression achievable?

- Properties true or false
- Robustness 1 1 1 0 1 1 1 1
- M-estimators 1 1 1 1 1
- Achievable 0 1 1 1

But, we prove

Theorem 1: (Regularized) M-estimators based on any (non-constant) convex loss cannot have bounded response if the kernel is unbounded.

- This essentially rules out (fixed) convex losses.

Theorem 2: M-estimators based on any bounded (non-convex) loss are \(\text{NP-hard} \) to minimize.

- This essentially rules out (fixed) bounded losses.

Therefore it is unlikely that all desired properties can be achieved by M-estimators.

Convex Relaxation

Dualize \(\ell \) with its Fenchel conjugate \(\ell^* \) and solve for \(\alpha \)

\[
\min_{\alpha \in \mathbb{R}^+} \sup_{\theta \in \mathbb{R}^+} \left\{ \psi(\theta) - \theta \ell^*(\theta) - \frac{1}{2} \psi'(\theta) \langle K \odot \theta \rangle \right\}
\]

Consistency?

Theorem 4: Assume \(\ell \) is Lipschitz and \(\psi \) is bounded. Assume that the data is generated from a mixture of inliers and outliers, where \(P(\text{inlier}) \gg P(\text{outlier}) \). Then the convex relaxation of VM is loss consistent.

Computational tractability?

The convex relaxation is apparently tractable, as long as \(\psi \) and \(\ell \) are convex (and evaluable in poly-time).