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Background

The growing adoption of power electronic devices and large non-linear
loads has increased harmonic-related power quality problems.

Figure: Harmonic currents.

source: https://electrical-engineering-portal.com/definition-of-harmonics-and-their-origin
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Harmonic State Estimation (HSE)

• Locate the harmonic sources;
• Estimate harmonic voltage distribution.
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Problem formulation

HSE aims to estimate state variables, x , from harmonic
measurements, z , given the measurement noise, ξ:

z(h) = Φ(h)x(h) + ξ, (1)

where

z(h) =



VL(1)(h)
...

VL(κ1)(h)
IL(1)(h)

...
IL(κ2)(h)


,Φ(h) =



aL(1)1 · · · aL(1)N̄
...

. . .
...

aL(κ1)1 · · · aL(κ1)N̄

bL(1)1 · · · bL(1)N̄
...

. . .
...

bL(κ2)1 · · · bL(κ2)N̄


,

where Φ(h) is the system matrix with aL(i)j = [Y H(h)−1]L(i)W (j) and

bL(i)j = [Y bf (h)Y H(h)−1]L(i)W (j) .
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Problem formulation

Sparsity

The state variable is sparse when there is a small number of sources
producing harmonics simultaneously at each harmonic order:

||x(h)||0 ≤ s,

`0 Problem

Taking sparsity of x(h) into account, the HSE problem can be
formulated as:

min ||x(h)||0 (P0)

s.t. ||z(h)− Φ(h)x(h)||2 ≤ η.
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It is not trivial to solve this problem!

An `1 minimization is solved as a convex relaxation of this
problem (P0).

• The `1 method is incapable of finding the sparse solution when the
columns of Φ(h) are weakly orthogonal.

Challenges:

• Limited measurements pose an under-determined equation;

• The strong correlation between the columns of the system
matrix.
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Our contribution is twofold

• We propose a novel harmonic state estimator based on sparse
Bayesian learning (SBL) [1].

• We show through simulations that the proposed state estimator
outperforms existing methods in terms of estimation and
localization errors.
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The Proposed State Estimator

SBL-based Estimator

x̂ (k) = arg min
x

1

2
||z̃ − Φ̃x ||22 + λ

2N̄∑
i=1

u
(k)
i |xi |, (2)

γ
(k)
i = x̂

(k)
i /u

(k)
i , (3)

u
(k+1)
i = [Φ̃>·i (λI + Φ̃Γ(k)Φ̃>)−1Φ̃·i ]

1
2 , (4)

The re-weighting parameter ui promotes the sparsity of x , and the
weight parameter λ trades off sparsity and estimation error.
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Observability analysis

Definition
s-Observability [2]: A power system is s-observable if the state
variables satisfying the sparsity condition ||x ||0 ≤ s can be determined
uniquely given harmonic measurements z .

Lemma
Sufficient Condition [3]: A power system is s-observable if
Spark(Φ) > 2s.
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IEEE 14-bus test system with three evaluation metrics

• Three metrics are considered for evaluation, i.e., the identification
error, the localization success rate (LSR), and the
root-mean-square error (RMSE).

εx(h, i) := |xesi (h)− x tri (h)| , (5)

LSR :=
Mc

M
× 100%, (6)

RMSEIM :=

√∑N̄
i=1 |Mag(x tri )−Mag(xesi )|2

N̄
, (7)

RMSEVM :=

√∑N
i=1 |Mag(V tr

i )−Mag(V es
i )|2

N
, (8)
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Noise-Free Case

Figure: The identification error of injected current magnitudes for the meter
configuration Ma [2] in the noise-free scenario.

Ma: 9 harmonic meters installed on transmission lines measuring
current phasors.
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Noise-Free Case
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Figure: Comparing LSR of Lasso and SBL for different harmonic order under
Ma. The LSR increased by 8.3% on average.
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Noise-Free Case
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Figure: Comparing RMSE of Lasso with that of SBL.
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Noise-Free Case

Summary of results:

• the proposed state estimator achieves an identification error of less
than 1.6× 10−6 and can locate harmonic sources with an average
success rate of 97.92%.

• Our method outperforms Lasso in terms of estimation and
localization error.
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Weak orthogonality of the system matrix
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Figure: LSR of the proposed state estimator versus Lasso with 9 harmonic
meters when the system matrix has weak orthogonality.
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Weak Orthogonality of the System Matrix
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Figure: RMSE of the proposed state estimator versus Lasso with 9 harmonic
meters when the system matrix has weak orthogonality.
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Weak Orthogonality of the System Matrix

Summary of results:

• The proposed SBL-based state estimator converges to the sparest
solution even when the system matrix has weak orthogonality.
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Summary

Takeaways

• The proposed SBL-based harmonic state estimator has superior
performance despite the strong correlation between columns of the
system matrix; this eliminates the need to check the RIP or
coherence condition.

• The proposed state estimator outperforms the state-of-the-art in
terms of estimation and localization errors using limited
measurements.

Future work

• We will explore the optimal placement of harmonic meters.

• We intend to extend the HSE framework to distribution systems.
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