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Background

The growing adoption of power electronic devices and large non-linear
loads has increased harmonic-related power quality problems.
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Figure: Harmonic currents.

source: https://electrical-engineering-portal.com/definition-of-harmonics-and-their-origin

Sparse Bayesian Harmonic State Estimation


https://electrical-engineering-portal.com/definition-of-harmonics-and-their-origin

Harmonic State Estimation (HSE)

e Locate the harmonic sources;
e Estimate harmonic voltage distribution.
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Problem formulation

HSE aims to estimate state variables, x, from harmonic
measurements, z, given the measurement noise, &:

z(h) = ®(h)x(h) + &, (1)
where
[ Vi (h) ] [ary - aym |
Vi (k1) (h) (k)1 T ALk
z(h) = ! ,q) h) = ! )
(h) li1y(h) (h) biayp - bruyi
(ko) (h) DLyt 7 by

where ®(h) is the system matrix with aiy = [YH(h)fl]L(i)W(j) and
by = Y (M) YR (W) iywe) -
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Problem formulation

Sparsity
The state variable is sparse when there is a small number of sources
producing harmonics simultaneously at each harmonic order:

[Ix(h)llo <'s,
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Problem formulation

Sparsity
The state variable is sparse when there is a small number of sources
producing harmonics simultaneously at each harmonic order:

[Ix(h)llo <'s,

0o Problem
Taking sparsity of x(h) into account, the HSE problem can be
formulated as:
min  |]x(h)]fo (PO)
st. [[z(h) = ®(h)x(h)l|2 < 7.
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It is not trivial to solve this problem!

An /1 minimization is solved as a convex relaxation of this
problem (P0).

e The /1 method is incapable of finding the sparse solution when the
columns of ®(h) are weakly orthogonal.
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It is not trivial to solve this problem!

An /1 minimization is solved as a convex relaxation of this
problem (P0).

e The /1 method is incapable of finding the sparse solution when the
columns of ®(h) are weakly orthogonal.

Challenges:
e Limited measurements pose an under-determined equation;

e The strong correlation between the columns of the system
matrix.
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Our contribution is twofold

e \We propose a novel harmonic state estimator based on sparse
Bayesian learning (SBL) [1].

e We show through simulations that the proposed state estimator
outperforms existing methods in terms of estimation and
localization errors.
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The Proposed State Estimator

SBL-based Estimator
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The re-weighting parameter u; promotes the sparsity of x, and the
weight parameter \ trades off sparsity and estimation error.
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Observability analysis

Definition

s-Observability [2]: A power system is s-observable if the state
variables satisfying the sparsity condition ||x||o < s can be determined
uniquely given harmonic measurements z.

Lemma
Sufficient Condition [3]: A power system is s-observable if
Spark(®) > 2s.
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IEEE 14-bus test system with three evaluation metrics

e Three metrics are considered for evaluation, i.e., the identification
error, the localization success rate (LSR), and the
root-mean-square error (RMSE).

€x(ha ’) = |Xies(h) - Xitr(h)| ) (5)
ISR = MV % 100%, (6)
N
! M ry _ M es)|2
RMSEm = \/2'21’ ag(xll\% 2()] ; (7)
N
! M VY — M. Vves 2
RMSEynm = \/Z'1| 28( Il\3 (V7). : (8)
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Noise-Free Case
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Figure: The identification error of injected current magnitudes for the meter
configuration M, [2] in the noise-free scenario.

M,: 9 harmonic meters installed on transmission lines measuring
current phasors.
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Noise-Free Case
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Figure: Comparing LSR of Lasso and SBL for different harmonic order under
M,. The LSR increased by 8.3% on average.
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Noise-Free Case
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Figure: Comparing RMSE of Lasso with that of SBL.



Noise-Free Case

Summary of results:

e the proposed state estimator achieves an identification error of less
than 1.6 x 107° and can locate harmonic sources with an average
success rate of 97.92%.

e Our method outperforms Lasso in terms of estimation and
localization error.
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Weak orthogonality of the system matrix
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Figure: LSR of the proposed state estimator versus Lasso with 9 harmonic
meters when the system matrix has weak orthogonality.
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Weak Orthogonality of the System Matrix
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Figure: RMSE of the proposed state estimator versus Lasso with 9 harmonic
meters when the system matrix has weak orthogonality.
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Weak Orthogonality of the System Matrix

Summary of results:

e The proposed SBL-based state estimator converges to the sparest
solution even when the system matrix has weak orthogonality.
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Summary

Takeaways

e The proposed SBL-based harmonic state estimator has superior
performance despite the strong correlation between columns of the
system matrix; this eliminates the need to check the RIP or
coherence condition.

e The proposed state estimator outperforms the state-of-the-art in
terms of estimation and localization errors using limited
measurements.
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Summary

Takeaways

e The proposed SBL-based harmonic state estimator has superior
performance despite the strong correlation between columns of the
system matrix; this eliminates the need to check the RIP or
coherence condition.

e The proposed state estimator outperforms the state-of-the-art in
terms of estimation and localization errors using limited
measurements.

Future work

e We will explore the optimal placement of harmonic meters.

e We intend to extend the HSE framework to distribution systems.
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