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Abstract—Distribution state estimation is crucial for planning
and operation of active distribution networks. This paper extends
two state-of-the-art state estimation techniques, namely Weighted
Least Squares (WLS) and Ensemble Kalman Filter (EnKF), to
unbalanced three-phase distribution networks. These networks are
assumed to be equipped with smart meters and distribution-
level phasor measurement units (D-PMUs), which are capable
of measuring voltage and current phasors. We evaluate the two
state estimation methods through extensive simulations in realistic
settings where the secondary (low voltage) distribution system is
accurately modelled, D-PMUs are installed only at a small number
of buses in the primary system, and their measurements are noisy
and become available for state estimation after a certain delay.
Our results indicate that both methods achieve a sufficiently low
error despite the small number of installed D-PMUs, and while
EnKF outperforms WLS in some scenarios, the difference between
the results gets smaller with more accurate D-PMU measurements.
When both voltage and current phasor measurements are available,
WLS yields more accurate results under realistic assumptions and
is therefore more suitable for real-world applications.

Index Terms—State estimation, power distribution system, pha-
sor measurement unit, ensemble Kalman filter, weighted least
squares.

I. INTRODUCTION

The large-scale installation of renewable energy systems, such
as solar photovoltaics and wind turbines has transformed the
distribution system from a passive to an active network with
bidirectional power and information flows, and complex dynam-
ics that span multiple timescales. The expected growth in the
adoption of electric vehicles, and proliferation of energy storage
devices and power electronics will exacerbate the complexity of
the network even further. This calls for a new control paradigm
which requires accurate monitoring of the distribution system
through various types of sensors along with distribution system
estate estimation (DSSE) tools [1]–[3].

The weighted least square (WLS) method is traditionally used
to solve the state estimation problem at the transmission level
relying on redundant data from various sources [4]. But unlike
transmission systems which are fully monitored, distribution
systems contain a considerably larger number of components
and are currently monitored only at a small number of locations
across the network for cost reasons. Therefore, state estimation
techniques that can deal with limited visibility and other specific
requirements of distribution system, such as unbalanced loads
and radial network configuration, must be developed [5]. In pre-
vious work, the WLS method has been extended to distribution
system; this includes node voltage based methods [6] and branch

current based methods [7]. The system states (i.e. node voltages
or branch currents) are represented in either polar or rectangular
form. A review of different WLS methods for DSSE can be
found in [8].

If the measurement errors are independent, identically dis-
tributed and follow a Gaussian distribution, the WLS objective
function gives the best possible performance except for specific
ill-conditioned cases [9]. However, the limitation of WLS-based
methods is that they solve the problem in a single snapshot and
do not incorporate any information from the previous states. To
address this shortcoming, several attempts have been made to
date to utilize forecast-aided state estimation methods, such as
Kalman filters, to improve over WLS [10], [11]. However, most
of these methods failed to improve upon WLS-based methods.
In recent work, Carquex et al. [12] proposed a method based on
Ensemble Kalman Filter (EnKF) for DSSE and showed that it
outperforms WLS. However, the two methods are only compared
in a balanced 33-bus test system containing only the primary
distribution nodes. Moreover, it is assumed that D-PMUs only
capture voltage measurements and that they are available to the
state estimator without any delay. These assumptions do not hold
in practice. Thus, a more comprehensive comparison between
WLS and EnKF-based methods is warranted to understand
which method is more suitable for real-world implementation.

This paper seeks to provide a more comprehensive and
realistic comparison between two state-of-the-art state estimation
techniques which are reported to exhibit superior performance
for DSSE. Our contribution is twofold:
• We extend the state-of-the-art state estimation techniques

to make them suitable for performing real-time state esti-
mation in unbalanced three-phase networks1. We explain
how current phasors can be incorporated in the problem
formulation to improve the state estimation accuracy.

• We carry out a thorough comparison between WLS and
EnKF-based methods by studying how the number and
precision of D-PMUs, communication delay, and time step
of performing state estimation affect the results.

The rest of the paper is organized as follows: Section II describes
the state estimation problem. The WLS and EnKF-based DSSE
methods are briefly presented in Section III and evaluated
through simulations carried out on a 33-bus system in Section IV.
Section V concludes the paper and provides directions for future
work.

1Our code is written in MATLAB and can be downloaded from GitHub:
https://github.com/sustainable-computing/benchmarking-state-estimators
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II. STATE ESTIMATION

State estimation (SE) is a process that concerns estimating
the state(s) of a system utilizing redundant data from sev-
eral sources, including measurements and pseudo-measurements.
The state variables are usually voltage phasors of the nodes
denoted by x = [θ2, θ3, ..., θN , v1, v2, ..., vN ], where N is the
total number of nodes [8]. The phase angle of the first node is
considered as the reference, hence it is not included in the state
vector. We note that this vector uniquely determines the state
of the power system because other unknown variables such as
current phasors can be computed accordingly from the load flow
equations. Other representations of the state, such as imaginary
and real parts of the voltage, phase angle and magnitudes of the
line currents, and real and imaginary parts of the line currents
are equally valid and could be used for state estimation [13].

To solve the state estimation problem, we need to have three
types of data [8]:
• The network model representing the network configuration

and line parameters (impedance/admittance values). Al-
though the network model is usually available for transmis-
sion systems, it may not be known for distribution systems
in practice due to the lack of instrumentation beyond the
distribution substation, frequent reconfiguration of feeders,
and connection of new loads. Nevertheless, the network
configuration and model parameters can be learned from
the available measurements as discussed in [14]. In this
paper we make the common assumption that the network
model is available to the state estimator.

• Real-time measurements which could be acquired from
the distribution supervisory control and data acquisition
(DSCADA) and the distribution automation system, or col-
lected by a network of D-PMUs. A D-PMU is a networked
sensor which is specifically designed for distribution sys-
tems and can provide synchronized three-phase voltage and
current phasors for a certain location in the distribution
network. D-PMUs are not currently installed at a large
number of buses due to cost reasons.

• Load demands which could be measured by end-devices
such as smart meters or predicted based on historical data.
Note that smart meters typically sample the load data every
15 minutes or longer, which is much slower than the sam-
pling rate of D-PMUs. In addition, most of the commercial
meters rolled out today merely report the sampled data
at the end of the day [12]. Therefore, load demand data
is unavailable in an online fashion for state estimation.
To alleviate this problem, pseudo-measurements, which are
load demand predictions based on historical load data, are
used.

III. METHODOLOGY

In this section we briefly explain two powerful techniques,
namely WLS [15] and EnKF [12], which have been applied to
solving the distribution state estimation problem in the literature.
A detailed description of these techniques can be found in the
corresponding references.

A. Weighted Least Squares-based State Estimation
Figure 1 summarizes the state estimation process using the

WLS method. The first step is to collect the required data which

Fig. 1. An illustration of WLS-based state estimation process.

are: a) the network model encoded by the nodal admittance
matrix, b) D-PMU measurements of voltage and current phasors,
and c) pseudo-measurements which are the (predicted) real and
reactive power consumption of the loads at the primary nodes.
The covariance matrix of the measurement errors needs to be
defined as discussed later.

Let us denote the measurement vector by z. We can write

z = h(x) + e, (1)

where

z =


z1
z2
...
zm

 , h(x) =

h1(x1, x2, · · ·xn)
h2(x1, x2, · · ·xn)

...
hm(x1, x2, · · ·xn)

 , e =

e1
e2
...
em

 ,
x is the system state vector, hi(x) is a nonlinear function
that relates the state vector to the ith measured value, and e
is a vector that collects measurement errors. The errors are
assumed to be independent random variables with zero mean
and finite variance. This results in a diagonal covariance matrix
R = diag{σ2

1 , σ
2
2 , ..., σ

2
m}.

The basic idea of WLS is to determine the system states that
minimize the difference between the measurement values and
the corresponding values from the measurement function. To this
end, the WLS-based method minimizes the following objective
function [15]:

J(x) = [z − h(x)]>R−1[z − h(x)]. (2)

Note that the inverse of the error covariance matrix is multiplied
in the above equation to give higher weights to more accu-
rate measurements and diminish the effect of inaccurate mea-
surements. Computing the solution requires the measurement
function and its Jacobian. In our work, three-phase line current
phasors are also considered. To derive the measurement function
for line currents, we consider an unbalanced three-phase line for
which the current flowing from the sending node to the receiving
node is given by:

~I3ph =

~Ia~Ib
~Ic

 =

y11 y12 y13
y21 y22 y23
y31 y32 y33

×
~Va1 − ~Va2
~Vb1 − ~Vb2
~Vc1 − ~Vc2

 (3)

We can separate the real and imaginary parts of the equations
to simplify deriving the Jacobian function. For example, the real



Fig. 2. An illustration of EnKF-based state estimation process.

and imaginary parts of Phase A current are:

Ia,real =

g11(Va1cosθa1−Va2cosθa2)−b11(Va1sinθa1−Va2sinθa2)+
g12(Vb1cosθb1−Vb2cosθb2)−b12(Vb1sinθb1−Vb2sinθb2)+
g13(Vc1cosθc1−Vc2cosθc2)−b13(Vc1sinθc1−Vc2sinθc2), (4)
Ia,imag =

g11(Va1sinθa1−Va2sinθa2)+b11(Va1cosθa1−Va2cosθa2)+
g12(Vb1sinθb1−Vb2sinθb2)+b12(Vb1cosθb1−Vb2cosθb2)+
g13(Vc1sinθc1−Vc2sinθc2)+b13(Vc1cosθc1−Vc2cosθc2). (5)

Similar equations can be derived for the other phases. Deriving
the Jacobain function is straightforward. For example, the partial
derivatives of the real part of Phase A current given by (4) with
respect to the voltage magnitude and phase angle of Phase B
voltage at the receiving end are given by:

∂Ia,real
∂Vb2

= −g12cosθb2 + b12sinθb2 (6)

∂Ia,real
∂θb2

= g12Vb2sinθb2 + b12Vb2cosθb2. (7)

The other partial derivatives can be derived in a similar way.
The rest of the process is similar to [15].

B. Ensemble Kalman Filter-based State Estimation
We extend the EnKF-based state estimation process proposed

in [12] to unbalanced three-phase systems and include the three-
phase branch current measurements obtained from D-PMUs in
the PMU data assimilation step. The basic idea of the EnKF-
based method is to utilize the additional information provided
by the load evolution model and the previous system state to
improve the the accuracy of the estimator. The EnKF-based state
estimation process is shown in Figure 2; it comprises a number
of steps discussed in the following.

1) Initial Ensemble: The initial ensemble X0 =
[x01, x

0
2, ..., x

0
ES ] is formed by adding perturbation to the

pseudo-measurements. Here ES is the ensemble size which
is chosen to be equal to 500 in this work, similar to [12].
Note that in this implementation, real and reactive power
consumption of nodes in the primary network are considered as
the states of the system. Thus, the state vector is represented by
x = [P1, P2, ..., PN , Q1, Q2, ..., QN ]. These states can be easily
converted to conventional phase angle and magnitude of nodal
voltages by performing a load flow. The added perturbations
represent the error statistics of the pseudo-measurements.

2) Ensemble Integration: In this step, which is essentially the
prediction step of Kalman filter, the ensembles are individually
updated based on the load evolution model as follows:

Xt
P = Xt−1 +W (8)

where W = [w1, w2, ..., wES ] and wi is a vector of size 2N
representing the uncertainty of the load evolution model.

3) Assimilation of Pseudo-Measurements: In this step, the
pseudo-measurements are used to update the predicted states
Xt

P . First, the time-correlated error is removed and then the
pseudo-measurement error and model noise covariance matrices
are utilized to calculate the Kalman gain matrix K. The updated
ensemble Xt

U is calculated subsequently as discussed in [12].
4) Assimilation of Phasor Measurements: The measurements

coming from D-PMUs are now utilized to update the Xt
U

calculated in the previous step. The process is similar to [12], the
only difference being that after assimilating the voltage phasors,
the process is repeated again this time using the current phasors.
First, an ensemble ZV = [zV1 , z

V
2 , ..., z

V
ES ] is computed using the

voltage measurements from D-PMUs by adding a perturbation
matrix EV drawn from a distribution which represents the D-
PMU measurement error. Similar to WLS, each measurement
vector zVi is related to the state vector by a function h, which is
the power-flow solution in this case. In other words, to get the
measurement function values for each member of the ensemble
Xt

U , power flow analysis has to be performed. As the ensemble
size is typically chosen between 500 and 1000 [16], solving
power flow for each member makes the computational cost of
running EnKF-based state estimation much higher than WLS.

To perform the assimilation for voltage phasors, an augmented
ensemble X̂t

U is formed as follows:

X̂t
U = [x̂1, x̂2, ..., x̂ES ] (9)

where x̂i = [xTi , h
T (xi)]. Now the updated ensemble Xt

V can
be calculated by:

Xt
V = Xt

U +KV (ZV − ĤX̂t
U ) (10)

KV = cov(Xt
U , ĤX̂

t
U )
(

cov(ĤX̂t
U ) + cov(ZV )

)−1
. (11)

where Ĥ is a selection matrix. After updating the ensemble
using the D-PMU voltage measurements, the update process is
repeated another time with Xt

U replaced by Xt
V for assimilating

D-PMU current measurements. This part is different from [12].
In particular, an ensemble ZI = [zI1 , z

I
2 , ..., z

I
ES ] is computed

similar to ZV , and then an augmented ensemble is formed as:

X̂t
V = [x̂1, x̂2, ..., x̂ES ] (12)

where x̂i = [xTi , h
T (xi)]. Now the updated ensemble Xt

I can
be calculated by:

Xt
I = Xt

V +KI(ZV − ĤX̂t
V ) (13)

KI = cov(Xt
V , ĤX̂

t
V )
(

cov(ĤX̂t
V ) + cov(ZI)

)−1
(14)

Finally, the average of the calculated ensemble at time t, Xt =
Xt

I , will give the estimated states. Xt is then used for ensemble
integration in the next timestep. More information about the
EnKF-based state estimator can be found in [12].



IV. EXPERIMENTAL RESULTS

To evaluate the proposed state estimators, we use the 33-bus
test system [17] as the primary distribution network. We also
consider the secondary (low voltage) feeders in our simulations
to get more accurate results. To model the secondary network,
we adopt the IEEE European low voltage test feeder [18]. It is
assumed that a low-voltage feeder is connected to each of the
primary nodes. Figure 3 illustrates how the low voltage network
is connected to one of these nodes, i.e., Node 25. Low-voltage
networks with the same configuration are connected to all the
nodes of the primary system.

There are 55 low-voltage single-phase loads under each pri-
mary node resulting in an unbalanced three-phase network. To
represent the loads, we utilize sample household consumption
data provided in the ADRES-CONCEPT project [19]2 The
data set contains real and reactive power consumption of 30
households with 1-second resolution over two weeks: one week
in winter and one in summer. Since our simulation is done for a
24-hour time window, the data is sliced into 24-hour segments.
Therefore, in total 420 sample 24-hour load consumption data
are obtained. We then add random Gaussian noise with 10%
standard deviation to each sample to increase the size of data set;
we specifically create a total of 4200 unique sample household
load data. We further increase the original 1-second resolution of
the load data to 500 milliseconds by using linear interpolation.
This allows for studying how the delay in receiving D-PMU
measurements could influence the state estimation accuracy.

We also use the real power consumption at the primary
nodes provided in [17] to determine the appropriate level of
aggregation at each low-voltage node (i.e., the houses connected
to the same low-voltage node). We select houses randomly and
connect them to each secondary node until the sum of all loads
in the low-voltage network under each primary node reaches the
load given in the 33-bus system data. It is assumed that all load
nodes at the secondary distribution network are equipped with
smart meters. Although these meters are capable of recording
voltage magnitude in addition to active and reactive power, we
only utilize the power data. We also assume that the smart
meters report the data at the end of day. We utilize this data
to estimate aggregated load demands at the primary nodes. The
aggregated load demands are then used to forecast the day-ahead
load demands (i.e. pseudo-measurements). As this forecasting is
not within the scope of this study, we assume that such data is
available for all primary nodes (per phase).

To get the required data for implementing WLS and EnKF,
the loads connected to the low-voltage feeder of each primary
node are aggregated to generate the primary load profiles (active
and reactive power consumption at each primary node). The
pseudo-measurements are then obtained by calculating the mean
and standard deviation of the aggregated load profiles at each
primary node for one-hour intervals. The load profiles are also
used to calculate the load evolution model at each primary node
for the whole simulation period (i.e. 24 hours). The error time-

2The data was generated in the research project "ADRES-Concept" (EZ-IF:
Developement of concepts for ADRES- Autonomous Decentralized Regenerative
Energy Systems, project no. 815 674). This project was funded by the Austrian
Climate and Energy Fund and performed under the program "ENERGIE DER
ZUKUNFT".

Fig. 3. The one-line diagram of the modified IEEE 33-bus test system. The
IEEE European low-voltage system is connected to each of the nodes in the
primary network.

correlation for each interval is also calculated using the load
profiles.

We add a Gaussian white noise with 0.017% standard devia-
tion to the voltage and current phasors obtained by solving power
flow at each timestep to simulate D-PMU measurements. The
standard deviation is chosen according to the specification of a
commercial D-PMU device, dubbed as µPMU [20]. To evaluate
the performance of the methods under different scenarios, the
average root mean-squared error of voltage phasors [12] is used
which is defined as:

ARMSE =

√√√√ 1

TN

T∑
t=1

N∑
i=1

(|V tr
i − V es

i |)2 (15)

where V tr
i and V es

i are the true and estimated voltage phasor
of node i, respectively.

For all test cases, unless mentioned otherwise, the time-step
is 60 seconds, the delay is 500 ms, σPMU = 0.00017, and 5 D-
PMUs are placed in the primary network. D-PMU locations are
the same as [12] and are determined using a greedy method [21].
Specifically, the D-PMUs are placed in the network according
to the following map:

ρ = {33, 32, 31, 18, 17, 30, 16, 29, 15, 14,
13, 28, 12, 11, 10, 9, 8, 27, 26, 17}

Note that 20 is the maximum number of D-PMUs considered
in our work. For example, if we are to place 5 D-PMUs in the
network, we connect them to nodes 33, 32, 31, 18, 17, as shown
in Figure 3. The substation is always equipped with a D-PMU.
We assume that a D-PMU measures voltage and current phasors
of all three phases.



Fig. 4. ARMSE of WLS and EnKF for different PMU standard deviation values.
Note that the x-axis is logarithmic.

Our code is written in MATLAB and the network is simulated
in OPENDSS [22] which is responsible for calculating the nodal
admittance matrix and solving power flow equations.

A. Effects of PMU’s Accuracy
To show how the accuracy of D-PMU measurements can

affect the accuracy of the results, we consider different standard
deviations for D-PMU readings from 0.017%, which is the accu-
racy of µPMU [20], up to 1%. The PMU accuracy limit defined
in IEEE Standard c37.118.1-2011 [23] is 1% which corresponds
to 0.33% standard deviation. Figure 4 shows ARMSE values for
WLS and EnKF, assuming that 5 D-PMUs are placed at the same
nodes in each case.

It can be seen that for all cases having both voltage and current
measurements from D-PMUs gives more accuracy compared
to just considering voltage measurements. For 1% standard
deviation, EnKF outperforms WLS in both cases: using just
voltage measurements, and using both voltage and current mea-
surements. The difference between EnKF and WLS becomes
smaller as PMU measurements become more precise. For the
highest precision considered in our study, which pertains to
the existing D-PMU technology, WLS with voltage and current
measurements gives the most accurate results. We attribute this
to the fact that when the PMU measurement error is large, the
load evolution model derived from historical data can be more
important for reducing the estimation error, whereas when the
measurement error is small, the accurate online measurements
outcompete the historical data.

B. Effects of Delay
In many simulation studies, it is assumed that the PMU data is

received instantaneously. However, in practice, there are always
some delays associated with PMUs, including the processing
and communication delay which is typically on the order of
tens of milliseconds, and the buffering delay which could reach
hundreds of milliseconds. Here, to investigate the effect of these
delays on the performance of the state estimation methods,
500ms delay is considered. Similar to the previous cases, it is
assumed that 5 D-PMUs are installed at the same nodes for
all test cases. The ARMSE values of WLS and EnKF methods
averaged over 5 independent runs are compared with or without

TABLE I
THE EFFECT OF DELAY ON THE ACCURACY OF THE METHODS

Method No delay 500ms delay
WLS w/ voltage 0.001677 0.001685
EnKF w/ voltage 0.001471 0.001482
WLS w/ voltage and current 0.000426 0.000468
EnKF w/ voltage and current 0.000509 0.000544

Fig. 5. ARMSE of WLS and EnKF for different number of PMUs.

delay in Table I. It can be seen that this delay does not have much
impact on the performance of these methods, especially when
only voltage measurements are available. This suggests that
phasor measurements can be buffered at the D-PMU device and
sent periodically to the utility data centre or other aggregation
nodes to carry out state estimation, without sacrificing accuracy.

C. Effects of the Number of D-PMUs
In this section we investigate whether increasing the number

of D-PMUs installed in the primary distribution network reduces
the state estimation error. In all cases, we assume that the
substation is always equipped with a D-PMU and place 0, 2,
5, 10, and 20 D-PMUs in other nodes in the primary network
following the map provided at the beginning of this section.
Figure 5 indicates the performance of all methods improves as
we increase the number of D-PMUs. However, there is not much
improvement after adding 5 D-PMUs, which implies that 5 D-
PMUs are enough to obtain satisfactory accuracy. Moreover,
WLS with both current and voltage measurements has the
highest accuracy among the methods we considered.

D. Effects of the state estimation time step
To study the effect of state estimation time step on the

accuracy of the methods, different values (from 20 seconds
up to 10 minutes) are considered and the average results of 5
independent runs are shown in Figure 6. For all these cases, we
consider 5 D-PMUs (as shown in Figure 3) with 500ms delay.
It can be seen that when only voltage phasor measurements
are considered, EnKF outperforms WLS for all time-steps,
whereas when both voltage and current phasor measurements
are considered, WLS outperforms EnKF.

V. DISCUSSION & CONCLUDING REMARKS

We carried out a thorough comparison between WLS and
EnKF state estimation methods in the context of a distribution



Fig. 6. ARMSE of WLS and EnKF-based state estimators for a different number
of D-PMUs.

system, while taking into account practical considerations such
as measurement error, data availability, and delay. We extended
two state-of-the-art methods for real-time state estimation in
unbalanced three-phase networks. Since the existing synchropha-
sor technology is capable of measuring current phasors in
addition to voltage phasors, we leveraged current measurements
to perform state estimation. Simulations conducted on a 33-bus
test distribution system as the primary network and the IEEE
European low-voltage test feeder as the secondary distribution
system connected to each primary node, indicate that including
current measurements can reduce the average RMS error of
the methods by roughly 60 − 70%. A further comparison
between WLS and EnKF methods, using current and voltage
measurements, reveals that WLS is more accurate when the
standard deviation of PMU error is 0.017%, which is the case
for some of the currently available commercial D-PMUs, such as
µPMU. Our experimental results also suggest that considering
500ms delay would not have a major impact on the accuracy
of state estimation, especially when only voltage measurements
are considered. Should the end-to-end delay increase beyond
this level, the error will increase eventually. Another interesting
finding is that installing only a small number of D-PMUs could
significantly improve the accuracy of the methods. The average
RMS error decreases quickly for the first 5 D-PMUs, but remains
fairly constant afterwards. Finally, our simulations show that
the state estimation time step does not have a major impact on
its accuracy, especially when both voltage and current phasors
measurements are incorporated. We observed that the accuracy
of the methods does not change significantly when the time step
is increased from 20 seconds to 10 minutes.

In future work, we plan to extend the methods by including
some distributed generation units in the test system to study how
these methods could handle the extra uncertainty introduced by
them. We also intend to address the problem of PMU placement
as some simple experiments revealed that it has a noticeable im-
pact on the performance of both methods. Furthermore, we will
strive to determine the minimum number of PMUs necessary to
reach a desired level of accuracy.
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