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Abstract—Significant cost reduction in recent years has made
solar power an economically competitive power source in many
regions today. In view of this, and the widespread introduction of
electric vehicles (EVs) to the mass market, we study public EV
charging stations with on-site solar generation that are backed up
by conventional power from the grid. Since the carbon footprint of
conventional power is higher than solar power, charging deadlines
can critically affect the total solar energy available to charging
stations and therefore the overall carbon footprint of the charging
service. In this paper, we propose a method to quantify how
much carbon footprint can be reduced as a function of the
charging deadline by describing a performance-guaranteed fair
power allocation algorithm in a public charging station. This
enables us to study the three-way tradeoff between the charging
deadline, the utility of EV owners, and the carbon footprint of
EV charging. We find that our algorithm makes nearly optimal
use of available green energy, while still guaranteeing that solar
charging performs no worse than grid charging.

I. INTRODUCTION

The cost of solar power generation has fallen tremendously
over the past few years [1], causing global installations to
increase by over 50 percent a year since 2006 [2]. In 2013,
the installed cost of best-in-class rooftop solar photovoltaic
systems fell to less than $4 per watt of peak capacity for US
residential customers, and studies suggest that it will fall to
$2.30 by 2015 [2]. This makes solar power an economically-
viable and environmentally-friendly alternative to conventional
power even if subsidies disappear entirely. In view of this steep
cost reduction and the expected widespread introduction of
electric vehicles (EVs) to the mass market, we envision the
widespread use of solar generation to meet the EV charging
demand.

Currently, only a limited number of charging stations are
available for public use. However, the increasing penetration of
plug-in EVs into the power grid in recent years is motivating
the rapid development of charging infrastructure. We anticipate
that future charging stations can be powered by on-site solar
photovoltaic systems. Due to the intermittency of solar power,
it must be backed up by conventional power to create a reliable
supply mix. Thus, future charging stations are likely to have a
grid connection in addition to on-site solar generation, which
peaks at almost the same time that most EVs are parked
and plugged in to chargers at public and workplace charging
stations [3], [4]. We believe that solar power can become the
primary supply source in these charging stations for economic
and environmental reasons.

The grid connection enables the charging service provider

(CSP) to give a worst-case performance guarantee to EV own-
ers. For example, the CSP could guarantee that connected EVs
are charged to a certain level by their deadlines, regardless of
the incoming solar irradiation. Note that a worst-case guarantee
of this type can be improved by extending the deadlines.
Additionally, the charging deadlines are the key determinant of
the overall carbon footprint of the charging service; the later
the deadlines are, the more solar energy would be available
for EV charging, reducing the use of conventional energy and
the associated carbon footprint. Thus, extending the charging
deadlines is also beneficial to the CSP. This motivates us to
quantify the benefits of shifting the deadline by a certain value
from the perspective of the CSP and EV owners.

In this paper, we study how a proposed day-ahead al-
gorithm allocates power in a public charging station capa-
ble of simultaneously charging multiple EVs. This algorithm
minimizes the carbon footprint of EV charging, provides a
performance (i.e., a utility) better than or equal to the guar-
anteed performance, and is proportionally fair to EV owners
with different arrival times, deadlines, and energy demands.
Assuming perfect knowledge of future EV arrivals and incom-
ing solar irradiation, the algorithm can be used to obtain the
maximum performance and the minimum carbon footprint of
EV charging for specific charging deadlines. This provides a
benchmark for comparing different charging deadlines in terms
of the optimal performance and carbon footprint. Moreover,
this algorithm could be used to obtain approximate charging
schedules, given predictions of EV arrivals and departures, and
incoming solar irradiation over the charging interval, which
we intend to study in future work. We make three specific
contributions:

• We propose a day-ahead algorithm for finding
the carbon-minimizing performance-guaranteed fair
power allocation to EVs in a public charging station
with solar generation and multiple charging points.

• Using real traces of solar power generation, we nu-
merically evaluate the three-way tradeoff between the
carbon footprint of EV charging, the deadline, and the
utility of EV owners.

• We identify three different regimes, each correspond-
ing to a range of deadlines, and discuss whether the
CSP or EV owners would benefit from extending the
deadlines in each regime.

The rest of the paper is laid out as follows. In Section II we
survey related work on scheduling EV charging. We present
our model in Section III and formulate three optimization
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Fig. 1. Different components of the system.

problems that must be solved by the proposed algorithm to
obtain the optimal carbon footprint in Section IV. We discuss
the results of numerical simulations in Section V and conclude
the paper in Section VI.

II. RELATED WORK

Controlling electric vehicle charging has been extensively
studied in the past. However, most existing work focuses on
the potential impacts of introducing EVs into the distribution
network, such as transformer overloading, branch congestion,
and voltage drop. To this end, many control algorithms have
been proposed ranging from real-time to day-ahead, and dis-
tributed to centralized, see for example References [5]–[9].

A substantial body of literature also studies the problem
of power allocation to EV chargers in a public charging
station that is supplied by the grid and collocated renewable
generation [3], [4], [10], [11]. In Reference [12], the problem
of charging scheduling in a charging station with stochastic EV
arrivals, variable electricity prices, and intermittent renewable
generation is modeled as a constrained stochastic optimization
problem which can be studied using the Markov decision pro-
cess framework. The objective is to minimize the mean waiting
time of EVs. Reference [10] formulates the EV scheduling
problem as an infinite-horizon Markov decision process with
the objective of maximizing a social welfare function, which
takes into account the utility of EV owners, the electricity
cost associated to the charging schedule, and the penalty
for failing to meet the deadlines. Reference [3] studies the
same problem assuming EV arrivals, the electricity price, and
available renewable energy are deterministic. The authors find
the charging schedule that maximizes the operating profit of
the CSP. Reference [4] proposes different online EV charging
strategies to maximize a weighted average of the state of
charge of plugged-in EVs. It vaguely touches on the notion
of fairness in power allocation.

This work differs from these in three ways. First, our
main goal is to reduce the carbon footprint of EV charging.
Second, our approach does not guarantee that the charging
deadlines will be met. Instead, we provide a worst-case guar-
antee based on the deadlines and the limited availability of
conventional energy due to access line constraints. If deadlines
cannot be met, we allocate the available energy fairly among
active chargers, always providing the guaranteed worst-case

performance. Third, we study the three-way tradeoff between
the charging deadlines, the carbon footprint, and the utility of
EV owners. This work draws on the notion of proportional
fairness, originally developed for resource allocation in the
Internet [13], [14], that has been recently extended to the EV
charging problem [9], [15].

III. MODEL

Consider a public charging station with multiple identical
charging points. The charging station is supplied by solar
power from an on-site photovoltaic system with installed
capacity of Gmax peak Watts, in addition to conventional power
from the grid as depicted in Figure 1. The access link which
connects the charging station to the power grid is rated at
Cmax Watts, and power flows only in one direction, i.e., from
the grid to the charging station1. We use a time slotted model
with time slots of equal length, denoted τ , and assume that
demand and supply are fixed within a time slot. We denote
the amount of conventional energy used in time slot t and the
available solar energy from the photovoltaic system in time slot
t by C(t) and G(t) respectively. We assume that both supply
sources are connected to the load through a line rated at Lmax,
where Lmax ≥ Cmax. Hence, the charging system can provide
a maximum of Cmax without solar generation, while it can
potentially provide up to min{Lmax, Cmax +Gmax} with solar
generation. Note that a portion of solar generation is curtailed
if G(t) > Lmax.

We assume a homogeneous EV population. We also assume
that chargers are capable of charging EVs at a rate not greater
than ρ Watts, and the peak charging power is fixed and
independent of the state of charge (SOC) of the battery in every
time slot. Let P es (t) be the amount of energy that the charger
stores in the battery of EV s in the time slot t2. Suppose
that the EV indexed by s arrives and connects to a designated
charger in the beginning of the time slot as. Upon arrival, the
EV driver sets the charging deadline to the end of time slot
as + d, where parameter d is the same for all EVs.

We also assume that EVs remain plugged in until the
deadline, and chargers become inactive and stop charging once
the deadline is passed. We represent the set of time slots that
the EV indexed by s was plugged in to an active charger by
Ts = [as, · · · , as + d], and use Is(t) to indicate whether the
EV s is connected to an active charger in the time slot t:

Is(t) =

{
1 if t ∈ Ts
0 otherwise

A. Utility

We assume that user satisfaction depends on the ratio of
the energy stored in the battery of an EV over the charging
interval to the initial energy demand. We define the utility of
the EV driver s as

us,d =

∑
t∈Ts

P es (t)

es
=

∑
t∈T P

e
s (t)× Is(t)
es

1Note that Cmax is indeed the available capacity of the most congested line
or transformer in the transmission and distribution networks.

2To simplify the conversion between energy and power, the unit of C(t),
G(t), and P e

s (t) is Watt-τ in our model, that is, the energy corresponding
to 1 W of power over a duration of τ seconds.



where es is the initial charging demand of s in Watt-τ , and T
is the set of time slots in the charging interval, containing all
the time slots since the earliest arrival to the latest deadline.
This definition takes into account the arrival time, the deadline,
and the initial energy demand. Hence, us,d = 1 means that the
EV has been fully charged by the deadline.

We adopt the notion of proportional fairness which is an
axiomatically justified fairness criterion [14]. It can be shown
that proportional fairness is achieved if we maximize the
value of a global objective function defined as the sum of the
logarithm of the utility function of the users [13]. Observe that
log(us,d) is infinitely differentiable, increasing, and strictly
concave on its domain.

B. Carbon Footprint

We model the carbon footprint of EV charging as
f(
∑
t∈T C(t)), where f is an increasing convex function of

the total amount of conventional energy used over the charging
interval, T . Thus, the carbon footprint of solar generation is
assumed to be zero3.

IV. OPTIMIZATION PROBLEMS

In this section, we formulate a sequence of three convex op-
timization problems to find a carbon-minimizing performance-
guaranteed proportionally fair power allocation to EV chargers.
Assuming perfect knowledge of solar generation and EV
arrival times, an off-line algorithm can find the lowest possible
carbon footprint of EV charging by solving these optimization
problems. We note that in practice these optimization problems
can be solved using predictions of solar generation and EV
arrival times over the charging interval, to obtain near-optimal
conventional energy use and power allocation.

The solution to the first problem is the worst-case per-
formance guarantee assuming no photovoltaic system and a
deadline d. It is worst-case because a charging station without
the photovoltaic system is limited to Cmax ≤ Lmax and has
the highest carbon footprint. This first problem gives us a
lower bound on the utility that each EV should expect for a
given deadline d. The solution to the second problem gives
us the minimal carbon footprint, i.e., the minimal use of
conventional power, necessary to offer at least the guaranteed
performance to each user while respecting the deadline d. The
solution to the third optimization problem is a proportionally
fair power allocation to EV chargers that meets the guaranteed
performance and also results in the optimal carbon footprint.

A. The Worst-Case Guarantee

In Optimization Problem 1, we compute the utility of EVs
if conventional power is fairly distributed among the chargers
given the deadline d, assuming that solar generation is zero
and EV arrival times are known. The solution to this problem,
denoted u∗s,d, will be used as the worst-case guarantee that the
CSP can provide to its customers. Note that the SOC of the EV
cannot exceed its battery capacity because of Constraint (2).

3This is just a simplifying assumption. In reality, the carbon footprint
of solar generation is non-zero due to emissions during manufacturing. It
is straightforward to account for this by changing the objective function in
Problem 2, described in Section IV; this still results in a convex problem.

Optimization Problem 1
Inputs: d, es, Is(t), Cmax,S, T

max
Pe(t)

∑
s∈S

log us,d (1)

s.t. us,d ≤ 1 ∀s ∈ S (2)∑
s∈S

P
e
s (t)Is(t) ≤ C

max ∀t ∈ T (3)

0 ≤ P e
s (t) ≤ ρ ∀t ∈ T, s ∈ S (4)

Observe that the grid is the only supply source in the worst
case and therefore the available energy for EV charging in
every time slot is limited to Cmax (≤ Lmax).

B. Minimum Carbon Footprint for the Guaranteed Perfor-
mance

In Optimization Problem 2, given the available solar energy
in every time slot, we compute how much conventional energy
must be drawn from the grid in every time slot so as to
minimize the overall carbon footprint of EV charging and
provide a utility to every EV owner that is higher than or
equal to the utility guaranteed in the worst-case, i.e., u∗s,d. We
denote the optimal amount of conventional energy used in time
slot t by C∗d(t).

Optimization Problem 2
Inputs: d, es, u∗s,d, Is(t), G(t), Cmax, Lmax,S, T

min
pe(t),C(t)

f(
∑
t∈T

C(t)) (5)

s.t. u
∗
s,d ≤ us,d ≤ 1 ∀s ∈ S (6)∑

s∈S
P

e
s (t)Is(t) ≤ C(t) +G(t) ∀t ∈ T (7)

∑
s∈S

P
e
s (t)Is(t) ≤ L

max ∀t ∈ T (8)

0 ≤ C(t) ≤ Cmax ∀t ∈ T (9)

0 ≤ P e
s (t) ≤ ρ ∀t ∈ T, s ∈ S (10)

We remark that Constraint 7 is an inequality constraint
since G(t) represents the available solar energy which might
be less than the used solar energy if solar generation is
curtailed. This happens when G(t) >

∑
P es (t)Is(t) because

it is assumed that the surplus energy cannot be transferred to
the grid.

C. Fair Allocation of Available Energy to EV Chargers

In Optimization Problem 3, we find a proportionally fair
power allocation to EV chargers that meets the guaranteed
performance, minimizes the carbon footprint by using no
more than

∑
t∈T C

∗
d(t) conventional energy over the charging

interval, and respects the physical constraints of the system.
Similar to the other two problems, this problem formulation
depends on the arrival times of EVs, and the solar generation
over the charging interval.

In the next section, we solve these optimization problems to
quantify the benefits of extending the deadlines for EV owners
and for the CSP.

V. RESULTS

In this section, we solve the convex optimization problems
using AMPL modelling language and Minos solver, running



Optimization Problem 3
Inputs: d, es, u∗s,d, Is(t), G(t), C∗d (t), L

max,S, T

max
Pe(t),C(t)

∑
s∈S

log us,d (11)

s.t. u∗s,d ≤ us,d ≤ 1 ∀s ∈ S (12)∑
s∈S

P
e
s (t)Is(t) ≤ C(t) +G(t) ∀t ∈ T (13)

∑
s∈S

P
e
s (t)Is(t) ≤ L

max ∀t ∈ T (14)

∑
t∈T

C(t) ≤
∑
t∈T

C
∗
d (t) (15)

0 ≤ C(t) ≤ Cmax ∀t ∈ T (16)

0 ≤ P e
s (t) ≤ ρ ∀t ∈ T, s ∈ S (17)

on a server with two six-core Intel Xeon processors, to find
the minimum carbon footprint of EV charging along with the
utilities of EV owners for a given population of EVs and a solar
irradiation time series. For a certain size of EV population, we
randomly generate ten different arrival patterns (as described
below) and report the mean and the standard deviation of the
parameters of interest.

Our simulation scenario involves a public EV charging
station with rooftop photovoltaic arrays and a grid connection,
and a finite population of customers that charge their EVs
at this station. The charging station has a certain number of
Level 1 EV chargers [16] with a maximum load of 1.8kW
per charger. The number of chargers is assumed to be not
less than the number of customers using this service; hence,
a customer can always find an available charging spot upon
arrival. The customers arrive at the charging station everyday
after 7am, plug in their EV upon arrival, and set the deadline
to x hours after their arrival, where x takes value from the set
{4, 4.5, · · · , 10.5, 11}. We set the length of every time slot to
five minutes and model EV arrivals using a Poisson distribution
with parameter λ = 2.08 per time slot so that on average 50
EVs arrive in two hours. We assume that all EVs have a 24kWh
battery, and their SOC at the arrival time is 0.5.

We use one-minute resolution solar irradiance data from
US Virgin Islands Bovoni 2 measurement station [17] and
choose the panel size so as to obtain the maximum solar power
of Gmax. We also set Lmax to 90kW, and assume that the carbon
footprint of conventional generating plants is proportional to
the amount of energy they supply over the planning interval4,
i.e., f(

∑
t∈T C(t)) = α×

∑
t∈T C(t). We study the following

three cases.

A. Plenty of Solar Power

We first assume that the rooftop photovoltaic system is
huge compared to the load size, permitting the algorithm
to rely entirely on solar power to satisfy the guaranteed
performance. Specifically, if solar energy is enough to obtain
C∗d(t) = 0 for every time slot t, every EV owner attains
a utility higher than the guaranteed utility as a result of
proportionally fair power allocation.

To see this, suppose that the installed capacity of the
photovoltaic system is 80kW and the access link is rated at
Cmax = 10kW; this ensures that the utility guaranteed in the

4We ignore the fact that carbon footprint of electricity generation might
vary with time, e.g., might be higher during peak periods.
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Fig. 2. Average energy supplied by different sources for different deadlines
in multiple simulation runs when EV population is 10, Gmax = 80kW , and
Cmax = 10kW .
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Fig. 3. The average utility, us,d, achieved as a result of Problem 3 and
the guaranteed utility, u∗s,d for different deadlines when EV population is 10,
Gmax = 80kW , and Cmax = 10kW .

worst-case is relatively low. Now if the charging station is
comprised of 10 identical EV chargers the total EV charging
demand would be 10× 24× 0.5 = 120kWh. Figure 2 depicts
the simulation results for different charging deadlines. It can
be readily seen that the algorithm can meet the performance
guarantee for all values of the deadline by relying entirely
on solar energy; this results in zero carbon footprint and is
therefore the optimal solution. Note that the use of solar energy
grows with the deadline until all EVs can be fully charged; this
happens when the deadline is seven hours after the arrival.

Figure 3 shows the average utility of EV owners and the
worst case guaranteed utility. The proportionally fair power
allocation algorithm gives every EV owner a utility which is
much higher than the guaranteed one. Note that the average
utility is one when the deadline is seven hours after the arrival,
confirming that EVs all fully charged at this point.
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Fig. 4. Average energy supplied by different sources for different deadlines
in multiple simulation runs when EV population is 50, Gmax = 40kW , and
Cmax = 50kW . Note that error bars represent one standard error.

Since the carbon footprint of EV charging is zero for all
deadlines, EV owners can attain a higher utility be extending
their deadlines from four hours to seven hours without increas-
ing the carbon footprint. A further extension of the deadlines
does not benefit anyone in this case.

B. Limited Solar Power

We now turn our attention to the case that the solar energy
is not sufficient; thus, conventional energy must be used in
addition to solar energy to satisfy the worst-case performance
guarantee. This would be the case, for example, when the
installed capacity of the photovoltaic system is 40kW, the
access link rated at 50kW, and the EV population is 50 (the
total charging demand is 50× 24× 0.5 = 600kWh).

Figure 4 shows the simulation results for different charging
deadlines. Observe that the amount of solar energy available
for EV charging increases with the deadline until sunset, and
all the available solar energy is used for EV charging by the
algorithm. However, since the available solar energy is not
sufficient to satisfy the guaranteed performance, the use of
conventional energy also increases with the deadline. In fact,
its rate of increase is higher than that of solar energy when
the deadline is shifted to the evening.

The blue curves with triangle and cross markers in Figure 5
show the average utility that EV owners attain as a result of
Problem 3 and the utility guaranteed to them in Problem 1
respectively. Observe that the average utility of EV owners is
always higher than the guaranteed utility and it increases with
the deadline, but never reaches one.

In this case, extending the charging deadline increases the
utility of EV owners but this comes at the price of increasing
the carbon footprint especially when the deadline moves to the
evening. We believe that this tradeoff is very useful for policy
making. For example, if the carbon footprint of the charging
service should not exceed a certain threshold, then the CSP
would be required to put a limit on the charging deadlines.
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Fig. 5. The average utility and the guaranteed utility for different deadlines
and two values of Cmax when EV population is 50 and Gmax = 40kW .

C. Plenty of Conventional Power

We finally study the case when the solar energy is insuffi-
cient (similar to the previous case) but this time the capacity
of the access link is such that a considerably higher utility can
be guaranteed to EV owners in the worst case. To see this,
we need to increase the capacity of the access link to 80kW,
while the rest of the parameters are identical to the previous
case described in Section V-B.

To differentiate this case from the previous case, we first
look at the utilities. The red curves with circle and asterisk
markers in Figure 5 show the average utility that EV owners
attain as a result of Problem 3 and the utility guaranteed to
them in Problem 1 respectively. Observe that EV owners attain
a higher utility as we increase the deadline, until the deadline
reaches 7.5 hours after the arrival. After this point all EVs are
fully charged and the average utility is one.

The Effect of Charging Deadlines: Figure 6 shows the
simulation results for different charging deadlines. We witness
three different behaviours in this case identified by three
regimes. The first regime corresponds to the case that EVs
are not fully charged and the optimal power allocation uses
almost all the available solar energy in addition to conventional
energy to satisfy the guaranteed performance. Thus, the same
tradeoff between the average utility of EV owners and the
carbon footprint of EV charging exists in this regime. In the
second regime all EVs are fully charged and increasing the
deadline only results in more solar energy that can be used for
charging EVs. Therefore, the algorithm replaces some amount
of conventional energy with solar energy to further reduce the
carbon footprint without affecting the utility of EV owners. In
this regime, extending the deadlines does not benefit the EV
owners but it helps reduce the overall carbon footprint of EV
charging. Finally, in the third regime extending the deadlines
does not benefit the EV owners and does not reduce the carbon
footprint of EV charging since there is no more solar energy
available late in the evening.

Figure 7 clearly shows the difference between these three
regimes. In particular, it shows the ratio of the used solar
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Fig. 6. Average energy supplied by different sources for different deadlines
in multiple simulation runs when EV population is 50, Gmax = 40kW , and
Cmax = 80kW . Note that error bars represent one standard error.

energy to the used conventional energy by the algorithm. It
can be readily seen that this ratio does not vary much in
the first regime because the usage of both energy sources
increases at approximately the same rate. However, in the
second regime this ratio grows noticeably as the algorithm
replaces conventional energy by solar energy. Finally in the
last regime this ratio converges to an asymptotic value.

VI. CONCLUSION

Solar power is becoming competitive with conventional
power in many jurisdictions. Powering public EV charging sta-
tions at workplaces using local solar generation is a promising
application because solar power peaks at almost the same time
that utilization of these stations peaks, creating an opportunity
to absorb the available solar energy without the need for
storage and reduce the carbon footprint of EV charging. In
this context, we quantify costs and benefits of shifting EV
charging deadlines. We propose an off-line carbon-minimizing
proportionally fair power allocation algorithm with a guar-
anteed worst-case performance for a public charging station
with multiple charging points. We run numerical simulations
to show how extending the deadlines could change the utility
of EV owners and the carbon footprint of EV charging if this
algorithm is adopted. In future we plan to extend this work to
design an on-line scheduling algorithm that uses predictions to
obtain a near-optimal result. We also plan to include inelastic
loads in our model.
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