Cost-Effective Integration of Distributed Solar Generation
A Utility-Centric View

Omid Ardakanian
Steadily Falling Prices of Solar Power

Corporate Solar Projects in USA

1,110 systems totaling 569 megawatts (MW)

Corporate Solar Projects in USA

Solar energy makes financial sense!

1,110 systems totaling 569 megawatts (MW)

High Penetration of Residential Solar Power has Wide Ramifications

• System-wide impacts
 – Higher uncertainty in generation capacity
 – Increased need for ramping flexibility
High Penetration of Residential Solar Power has Wide Ramifications

High Penetration of Residential Solar Power has Wide Ramifications

• Distribution network issues
 – Voltage variability on distribution feeders
 – Reverse power flow and protection problems
Mitigating Solutions for Utilities

• **Upgrading** the network (e.g., install dynamic VAR control)
 – is a costly long-term solution

• **Curtailing** inexpensive solar power
 – is a forfeiture of inexpensive green energy that utilities have paid for

• **Balancing** supply and demand where and to the extent that is possible using **new technologies**
 – requires optimal operation of storage systems and elastic loads within **balancing zones**
What is a Balancing Zone?

Storage and elastic loads are enabling technologies for balancing the grid in sub-seconds.
Today’s Grid Controls are Insufficient!
We Need...

• Coordinated, real-time control of solar inverters, storage systems, and EV chargers – calls for the design of a legacy-compatible, scalable, decentralized overlay architecture for real power control

• Optimal control mechanisms to achieve multiple system-wide and local objectives
Our Approach

• Utility-centric
• Myopic
 – *Due to the lack of accurate predictive models for PV energy, EV mobility, and load*
• Based on real-time measurements
• Decentralized
 – *For scalability and robustness*
Context: Small Businesses

- BMU
- SC
- Grid connection
- Top-level Controller
- Inverter
- EV
- Solar Panel
- Storage
- Controller
- Inverter
- Grid connection
Constraints

• Demand and supply must be in balance in every time slot
 \[S_{\text{Grid}}(t) + S_{\text{Solar}}(t) \pm S_{\text{Storage}}(t) = D_{\text{inelasticLoads}}(t) + D_{\text{EVs}}(t) + D_{\text{SolarCurtailment}}(t) \]

• No network congestion in every time slot
 \[
 \begin{align*}
 \text{line loading } (t) &\leq \text{line setpoint} \\
 \text{transformer loading } (t) &\leq \text{transformer setpoint}
 \end{align*}
 \]

• Unidirectional power flow outside balancing zones in every time slot
 \[S_{\text{Grid}}(t) \geq 0 \quad \text{for each balancing zone} \]

• All storage systems within a balancing zone must be charging or discharging in a given time slot
 – to avoid energy transfer between storage systems
Objectives (in descending order of importance)

- **Revenue-Maximizing Fair Power Allocation**
 \[\max \sum_e \log D_{EV_e}(t) \]

- **Minimizing Solar Curtailment**
 \[\min \sum_i D_{Solar_Curtailment_i}(t) \]

- **Minimizing the Use of Conventional Power**
 \[\min \sum S_{Grid}(t) \]
Revenue-Maximizing Fair Allocation with Minimum Solar Curtailment

• The first two objectives are not conflicting
 – can be optimized at the same time

• Cast as a nonlinear convex optimization
 – gives us the fair power allocation to EVs and an optimal curtailment strategy

• Solved at the substation
Minimizing the Use of Conventional Power

• The last objective, \(\min \sum S_{Grid}(t) \), is separable
 – can be decomposed to several optimization problems, one for each balancing zone

• The linear program can be solved at the edge of every balancing zone
Benchmark Scenarios

• Local control with no energy exchange within balancing zones
 1. local use of solar power without storage
 2. local use of solar power with storage

• Control at the level of balancing zones, assuming no storage
Test Distribution Network

2300 households
1000 small businesses
200 EV chargers

<table>
<thead>
<tr>
<th>Bus</th>
<th>680</th>
<th>634</th>
<th>675</th>
<th>645</th>
<th>646</th>
<th>684</th>
<th>652</th>
<th>611</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Num of homes</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Num of small businesses</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Num of EV chargers</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Storage systems (% of total)</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>PV installations (% of total)</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
</tbody>
</table>
200 PV panels, 100 storage systems each 20kWh with initial SOC 20%

1000 PV panels, 500 storage systems each 20kWh with initial SOC 20%

200 Level1 EV chargers, 2300 homes, 1000 small businesses, and the demand of EVs is 12kWh
Evaluation - cont’d

- Our scheme w/ storage
- Our scheme w/o storage
- BM1: Local use w/ storage
- BM2: Local use w/o storage

Curtailed solar energy (MW/h)

PV installations

200 PVs 400 PVs 600 PVs 800 PVs 1000 PVs
200 Level 1 EV chargers, 600 PV panels, 300 storage systems with initial SOC 20%
Evaluation - cont’d
Conclusion

• Large-scale integration of solar photovoltaic systems, EVs, and storage systems will impair the reliability of the network

• Today’s best practices reduce the cost-effectiveness of solar installations

• Scalable myopic control algorithms developed on a decentralized control architecture enable the utility to simultaneously achieve different objectives