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Overview — Problem Definition

« How to reliably estimate the number of occupants in the many

rooms of a commercial building?
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Estimated Occupancy Count: t)




Overview — Applications of Occupant Count
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Overview — Problem Definition

« How to reliably estimate the number of occupants in the many
rooms of a commercial building?

« Well-studied problem at the room level, but how about a large
building?
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Overview — Domain Adaptation

« How to build a general model that can be reused in multiple
rooms/buildings?
« How to build a black-box model for a room/building with

no/limited available labeled data

« Solution: modify a well-tuned model for one room/building to

adapt it to the target room/building leveraging some information



Overview — Experiments

- Data collected from two buildings located in Canada and Denmark
- Buildings have different room sizes, types, and sensing modalities

Ground truth data collected using cameras  Ground truth data extracted from room calendars

CO, Room Temperature
Damper Position Air Flow
Building A Building B
Outside Temperature Outside Temperature

Cloud Coverage Cloud Coverage




Outline

« Challenges and previous work
« Methodology
« Results

. Takeaways and future work



Challenges

- Multiple sensing modalities

Cameras Wireless Network  Thermal Arrays HVAC Sensors
[Erickson 13] [Zou 17] [Beltran 13] [Ardakanian 18]
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Different sensing modalities
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Different sensing modalities
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Carbon Dioxide Concentration (ppm)

Wait... Can HVAC sensors be used for occupancy estimation?
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Challenges

« Multiple sensing modalities, some are less correlated with
occupancy (HVAC sensors)

« Several sensor data fusion algorithms

o Physics-based model to quantify heat gain due to occupancy
m Have to customize for each room/building. Too complex to build high-order models.
o Black-box model

m Easier to build, but requires large amounts of labelled data for training

10



Challenges

« Multiple sensing modalities, some are less correlated with
occupancy (HVAC sensors)

. Different sensor data fusion algorithms (black-box model)

o Time-series models (using a sequence of data to predict)
= RNN/NARX

o Single snapshot prediction models (using one data point to predict)
m SVR/SVM /Random Forest
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Challenges

« Multiple sensing modalities, some are less correlated with

occupancy (HVAC sensors)
. Different sensor data fusion algorithms (black-box model)

« Ground truth data is often sparse or nonexistent (expensive to

collect)

https://pixabay.com/photos/camera-monitoring-813747/ —I 2
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Our hypothesis is...

models that are built in a controlled environment (source domain)

can be reused in a new environment (target domain) after some

adaptation

and that the adapted model has higher accuracy than a model

built from scratch for the target domain
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Domain Adaptation

Basic Idea: transform a well-trained model from a source domain

to a related target domain after performing some modifications

on the model.

14



Domain Adaptation

Basic Idea: transform a well-trained model from a source domain

to a related target domain after performing some modifications
on the model.

Source data + labels Target data + labels

Source Model Target Model
Source Domain Target Domain
Estimation Model Estimation Model
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Domain Adaptation

Basic Idea: transform a well-trained model from a source domain

to a related target domain after performing some modifications
on the model.

Source data + labels Target data + labels

Transfer
Source Model Target Model
Knowledge
Source Domain Target Domain
Estimation Model Estimation Model
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Domain Adaptation

Basic Idea: transform a well-trained model from a source domain

to a related target domain after performing some modifications

on the model. |
possibly sparse

{ or nonexistent

Source data + labels
Target data + labels

Transfer
Source Model Target Model
Knowledge
Source Domain Target Domain
Estimation Model Estimation Model
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Domain Adaptation

How is it applied to our problem?

- Train a well-suited model in a room equipped with a high-accuracy
occupancy monitoring system (source domain)
+ Adapt it to another room within the same building (target domain) using

some information about the apparent differences between the rooms

Main benefit: we do not need a lot of labeled data in the target domain; hence,

it can be widely applied to the many rooms in a given building
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Assumptions

« Occupancy influences measured quantities in both source and
target domains in a similar way.
« The same types of sensors are deployed in both domains

(same feature space)
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Why domain adaptation is necessary?

Source and target domains may have different distributions

Occupancy
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Why domain adaptation is necessary?

Source and target domains may have different distributions

Occupancy
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Why domain adaptation is necessary?

Temperature
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Why domain adaptation is necessary?

Temperature
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Domain Adaptation Techniques

Unsupervised
learning model
(training step)
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learning model
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Domain Adaptive Recurrent Neural Networks

» Re-weighting (may be carried out for semi-supervised and
unsupervised domain adaptation):

- Adjust the weights of output layer based on the maximum occupancy

- Adjust the weights of input layer corresponding to the CO,, values based on

the size of the room and the ventilation power of the room

» Re-training (only for semi-supervised domain adaptation):

» Use the limited labeled data from the target domain to calibrate the weights
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Methodology
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Applying Domain Adaptation
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Applying Domain Adaptation
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Applying Domain Adaptation

Occupancy
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Applying Domain Adaptation

Temperature
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The whole process...

Source data + labels

N\

Source Model

Source Domain
Estimation Model

Re-weighting
Transfer
> Target Model
Knowledge

Calibrated Model
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Target Domain
Estimation Model

Target data + labels
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Results
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Results
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Results
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Results
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Results
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Results
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Results

— Ground truth occupancy level
---- Estimated occupancy level
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Takeaways

. Time-series black-box model can estimate the number of
occupants accurately

« Domain-adaptation techniques can be applied to occupancy
estimation task to improve the performance

. Domain-adaptation can significantly reduce the amount of

ground truth data required in the target domain
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Directions for future work

« What if the source and target domains are in two different

geographies?

« What if the feature spaces are different?
« Can we apply domain adaptation to other types of models

(e.g., heat transfer models, occupant comfort models, etc.)?
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Questions?
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