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ABSTRACT
Commercial buildings are comprised of multiple mechanical and

electrical systems that work in tandem to provide a healthy, safe,

and comfortable environment for occupants. These systems have

complex interactions with each other, and consume a large amount

of energy. In this paper, we apply three model-free deep reinforce-

ment learning algorithms to jointly control HVAC and blind systems

in a multi-zone test building, in scenarios with and without auto-

matic dimming of the lights in response to daylight levels. The

control agents are trained through interactions with a building

simulator that generates traces for the movement of occupants. We

investigate the three-way trade-off between energy use, thermal

comfort, and visual comfort, and discuss how the joint control of the

building systems could provide a better trade-off compared to when

they are controlled separately. We compare the performance of the

proposed control algorithms assuming the availability of occupancy

data with two spatial resolutions, and confirm through experiments

that a better trade-off can be achieved should zone-level occupancy

information become available. Incorporating zone-level occupancy

information, we show that 11.0% and 31.8% more energy can be

saved respectively in heating and cooling seasons over existing

rule-based baselines that control the same building systems.

CCS CONCEPTS
•Computingmethodologies→ Simulation evaluation; •The-
ory of computation→ Reinforcement learning.
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1 INTRODUCTION
Commercial buildings consume a significant amount of energy

worldwide. The commercial sector in the United States used ap-

proximately 9.3 quadrillion British thermal units (Btu) in 2019,

accounting for 12% of the country’s delivered energy consump-

tion [3]. About 40% of this energy is used for space heating, cooling,

ventilation, and lighting by two major building systems: Heating,

Ventilation, and Air Conditioning (HVAC) and lighting. In Canada,

a country with a colder climate, these two systems account for more

than 70% of the commercial building energy use [5]. This energy

is primarily used to enhance Indoor Environmental Quality (IEQ),

which is determined by several factors including air quality, and

thermal and visual comfort.

Extensive research has been done in the past few decades to

explore how to save on the energy used by building systems, while

maintaining thermal and visual comfort of occupants. In particular,

various rule-based, model-based, and model-free control techniques

have been employed to obtain energy-efficient operation policies for

HVAC, lighting, and blind systems. Rule-based techniques are based

on a set of control rules defined by the facilities manager. Model-

based techniques take advantage of a physics-based or data-driven

dynamic model that explains the state evolution (e.g., heat transfer,

air flow, occupant movement), whereas model-free techniques aim

to learn a control policy through interactions with building sys-

tems or a simulated environment. Model-free techniques are more

promising when the goal is to control multiple building systems

with complex interactions that cannot be precisely modelled [11].

Despite the tremendous progress toward energy-efficient control

of building systems, there are several important questions that are

yet to be addressed. We outline these research questions below:

(a) Howdoes the joint control of building systems affect the
whole-building energy use?Due to the complex interactions

between building systems, the control decisions made in one

system could affect the performance of the other ones. For

example, closing blinds in an overheated zone may reduce the

energy use of the HVAC system during the day, but this comes

at the price of increasing the energy use of the lighting system

because lights must be turned on to satisfy the visual comfort

requirement. Dimming lights, on the other hand, reduces the

amount of energy used for lighting but it may also change the

HVAC energy consumption as it influences the internal heat

gain. Modelling interactions between building systems in addi-

tion to the uncertainty of the environment is indeed a difficult

task. To contain complexity, related work either controls a sin-

gle building system [6, 22, 39], neglecting the interplay between

this system and the other systems, or considers the interactions

between two or more systems in a single zone [7, 8, 11]. To

our knowledge, there is no work that quantifies the amount

https://doi.org/10.1145/3447555.3464855
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of energy that can be saved in a multi-zone building when

building systems are controlled jointly.

(b) What are the best trade-offs between energy use, ther-
mal comfort, and visual comfort? The trade-off between

energy use and thermal comfort has been widely studied in

the context of optimal HVAC control. However, there is little

work that navigates the three-way trade-off between energy

saving, thermal comfort, and visual comfort. This is a barrier

to the deployment of the control techniques in real buildings

as the facilities manager cannot easily trade energy savings

for extra comfort (and vice versa). Ideally, they should be able

to tweak some weight parameters to make trade-offs within

Pareto-efficient choices.

(c) Will incorporating zone-level occupancy informationno-
ticeably change the performance of a control policy? To
make possible higher energy and cost savings without compro-

mising comfort, most control techniques incorporate occupant

presence or count information at the building level. This makes

sense because estimating the number of occupants in each

zone is difficult without having a number of sensors installed

there [16, 37]. Should this information become available, the

thermal and visual discomfort can be calculated for each in-

dividual occupant that is present in a given zone. However, it

is unclear whether incorporating high spatial resolution oc-

cupancy data could help achieve a better trade-off between

energy consumption, thermal comfort, and visual comfort.

(d) Howdoes the performance of a given control policy vary
across seasons? The outside air temperature can affect the

performance of optimal HVAC control algorithms, so studies

often train agents for more than one season. For the joint con-

trol of building systems, the difference between seasons can

become evenmore prominent. For example, to improve thermal

comfort and reduce energy use, blinds should be open during

the day in winter to heat up the building, and vice versa in the

summer. Understanding how the control performance varies

across seasons and whether there is a specific model-free con-

trol algorithm that outperforms others in all cases requires a

comprehensive evaluation of building controls in both heating

and cooling seasons. This has not been explored in previous

work and will provide insight into control strategy selection.

To address these questions, this paper studies the joint control of

HVAC, lighting, and blind systems in a five-zone test building mod-

elled in EnergyPlus [9]. We use state-of-the-art deep reinforcement

learning (RL) algorithms to determine the optimal control policies

for HVAC and blinds, while a daylight auto-dimming strategy is

used for lighting control. These algorithms are suitable for this

problem because they can handle large state and action spaces, and

learn the complex interactions between multiple building systems
1
.

We make three specific contributions:

• We utilize three model-free RL algorithms to train agents

that can jointly control the supply air temperature and blind

angle setpoints for every zone in our test building. These

include two actor-critic algorithms, namely Proximal Policy

Optimization (PPO) and Soft Actor Critic (SAC), and a Q-

learning algorithm, called Branching Dueling Q-Network

1
Code is available at https://github.com/sustainable-computing/COBS-joint-control

(BDQN). We evaluate these algorithms in different scenarios

in terms of the achieved reward, convergence speed, and

stability, following the guidelines provided in [35].

• We investigate the three-way trade-off between energy con-

sumption, thermal comfort, and visual comfort. We discuss

the best weight factors for the terms in the reward func-

tion; these weights will allow for maximizing energy savings

while keeping thermal and visual discomfort below specified

thresholds.

• We compare the performance of these algorithms with exist-

ing baselines in heating and cooling seasons with building-

level and zone-level occupancy information. We show that

the energy use would be further reduced if we knew the

occupancy state of all zones in a building. This highlights

the importance of monitoring or estimating the occupancy

state of every zone through multimodal sensor fusion.

2 RELATEDWORK
Numerous attempts have been made to optimally control HVAC,

lighting, shading, and other building systems. The control strategies

can be broadly divided into three categories: rule-based, model-

based, and model-free. Table 1 shows example control strategies

from each category. Regardless of which control strategy is adopted,

occupancy information can be incorporated in the control loop

to achieve an acceptable trade-off between energy savings and

occupant comfort.

In the rule-based approach, control rules and schedules are de-

fined by the facilities manager based on their intuition about how

the building occupancy varies over time. It is shown in [4] that

using static per-zone schedules can considerably reduce the energy

consumption of HVAC. In another study [28], it is shown that a

rule-based lighting controller can lower the building energy use

by up to 12% without negatively affecting the visual comfort of

occupants. Rule-based controllers are easy to implement and do not

require training complex models, but their performance is highly

dependent on the quality of the rules. In practice, the control perfor-

mance degrades over time with changes in the occupancy schedule

and outside air temperature.

In the model-based approach, dynamic models for heat transfer,

occupancy, and different components of building systems are uti-

lized in the control loop to minimize the energy use over a time

horizon subject to a set of constraints. While a high-order heat

transfer model can accurately determine the temperature of every

zone in the building, proper identification of this model is diffi-

cult. Alternatively, low-order thermal models can be built using a

data-driven approach if enough training data is available [17, 40].

These models have proven to be useful for Model Predictive Con-

trol (MPC), lowering the energy consumption of the HVAC system

while maintaining thermal comfort [25, 34]. Model-based reinforce-

ment learning techniques have recently been proposed to optimize

HVAC operation [12, 36]. The basic idea is to learn the system dy-

namics using a neural network. This neural network is then used to

solve anMPC problem.While model-based HVAC control strategies

have great performance, explaining interactions between multiple

building systems requires more complex models which cannot be

easily trained, especially in a building with heterogeneous spaces.
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Table 1: A representative subset of relatedwork for different
occupancy levels, control points and methods. For similar
control scenarios, more recent studies were chosen.

Thermal
Zones Occupancy Control

Variables
Control
Method

[19] 4 Zones

Building-level

(Binary)

Temp. setpoint Rule-based

[28] 20 Zones

Room-level

(Count)

Lights (on/off)

Blinds (angle)

Rule-based

[25] 1 Zone N/A Temp. setpoint MPC

[31] 3 Zones

Building-level

(Estimated Count)

Temp. setpoint Model-based

[14] 4 Zones

Building-level

(Binary)

Temp. setpoint MPC

[7] 1 Zone

Building-level

(Binary)

HVAC (on/off)

Window (open/closed)

Q-learning

[8] 1 Zone

Building-level

(Binary)

Lights (on/off)

Blinds (step changes in angle)

Q-learning

[23] 1 Zone Not mentioned

HVAC (heating/cooling power)

Window (open/closed)

Door (open/closed)

Deep Q-learning

[11] 1 Zone

Building-level

(Count)

HVAC setpoint

Light (dimming level)

Blinds (angle)

Windows (open pct.)

BDQN

[26] 1 Zone N/A HVAC on/off DDPG

[15] 1 Zone N/A

Temp. setpoint

Humidity setpoint

DDPG

[6] 5 Zones

Room-level

(Binary)

SAT setpoint PPO

Building systems can also be controlled using a model-free ap-

proach. In recent years, model-free reinforcement learning algo-

rithms have been applied to address the optimal control of the

HVAC system [33]. Instead of relying on a built-in thermal model,

they provide the opportunity for trial-and-error learning through

direct interactions with building systems or an external simulated

environment. There are three main types of model-free RL algo-

rithms, namely Q-learning (value-based), actor-critic, and policy

gradient methods. The Q-learning algorithm updates action values

(i.e., Q-values) for each state based on the observation. It is generally

more sample efficient than other model-free RL algorithms. Actor-

critic methods are also adopted to control the HVAC system. They

learn the control policy as well as the Q-values to update the control

policy. Policy gradient algorithms are considered the least sample

efficient model-free RL algorithms, yet there are usually more stable

than the other RL algorithms. Of the 77 papers that applied RL to

building controls and were reviewed in [33], three-quarters (59)

used valued-based methods, some (12) used actor-critic methods,

and a few (3) used policy gradient approaches. (The remaining 3

were model-based approaches.) Despite the large number of rein-

forcement learning algorithms that are used in the building control

domain, they are seldom compared in terms of their performance,

stability, and convergence speed.

Joint control of building systems: The whole building energy
consumption can be further reduced when building systems are

jointly controlled compared to when only HVAC is controlled [11].

Still, the joint control of multiple building systems is challenging

because it increases dimensions of state space and action space, and

makes it harder to learn an optimal policy due to complex inter-

actions between systems. Previous work focuses on zone-level en-

ergy optimization through the joint control of lights and blinds [8],

HVAC and windows [7, 10], and all these four systems [11, 21].

The problem space becomes increasingly large as more zones are

included; none of these studies address the joint control of building

systems in a multi-zone building.

Incorporating occupancy information: Building occupancy

is one of the main factors that determine its energy consumption.

According to the 2012 Commercial Buildings Energy Consumption

Survey (CBECS) [2], a building that was occupied for all 168 hours

in a week consumed 46% more energy per square foot than a build-

ing that was occupied for only 80 hours in a week. Incorporating

more occupancy information can help to optimize control poli-

cies. For example, Turley et al. [30] evaluate the energy efficiency

and human comfort with different occupancy patterns using MPC,

and shows that incorporating the number of occupants in every

room is essential for higher energy savings. Unfortunately, such

occupancy data is hard to collect at scale, so most previous studies

incorporate binary occupancy information (occupied/vacant) at

building or floor-level. In this paper, we study both building-level

and zone-level occupancy schedules, and examine if it makes sense

economically to install occupancy sensors in every zone.

Novelty of this work: As shown in Table 1, no previous work

covers the following comprehensive exploration of this research

area:

• We control the window blinds, lights
2
and HVAC in a com-

mercial building.

• We focus on a multi-zone building with 5 zones.

• We explore how reward parameters must be tuned to navi-

gate the three-way trade-off between energy use, thermal

comfort, and visual comfort.

• We provide a comprehensive comparison of RL-based and

rule-based control strategies.

• We evaluate the performance of each control algorithm with

both building-level and zone-level occupancy information.

3 BACKGROUND OF BUILDING SYSTEMS
Commercial buildings are controlled by mechanical and electrical

systems, such as HVAC, lighting, and shading. The HVAC sys-

tem consumes a considerable amount of energy to provide heated,

cooled, and conditioned air to occupants, thereby maintaining com-

fortable and healthy indoor conditions. This along with the fact

that buildings can store heat due to their thermal mass and have

different spatio-temporal occupancy patterns makes the HVAC con-

trol problem important and nontrivial. Lights, on the other hand,

are often controlled using a reactive strategy because illuminance

will change immediately after a control policy is implemented.

Figure 1 offers a generic visualization of a typical HVAC system

for a medium size office building. It consists of a centralized air

handling unit (AHU) that moves conditioned air through the build-

ing via a duct system. In the AHU, the outside air and the return

air from zones are mixed together. The mixed air is then heated or

cooled to a specified temperature before it is pushed through the

2
Our RL agents do not control lighting directly. Rather, rule-based (auto) dimming is

utilized for lighting control.
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Figure 1: A diagram of an air handling unit (AHU) feeding
a number of variable air volume (VAV) systems at termi-
nal zones. The components depicted here match the compo-
nents of the HVAC system that we consider in this work.

duct system by a fan. In larger office buildings, multiple AHUs may

be required. Variable air volume (VAV) systems are often used in

office buildings because they allow for zone-specific control with a

single AHU. A terminal VAV box exists in each zone. It is responsi-

ble for controlling the amount of supply air by opening and closing

a damper. A reheat coil may be present in the VAV box to heat the

supply air in the zone to the desired temperature. This allows each

zone to have its own thermostat with a unique temperature prefer-

ence, which is often expressed by a thermal comfort range in which

no corrective action needs to be taken by the VAV controller. The

HVAC can be controlled at the system level, e.g., using the supply

air temperature (SAT) setpoint [6], or at the zone level using the

thermostat temperature setpoints [11] or mass flow rate setpoint.

The HVAC energy consumption is the total energy consumed by

VAV systems, AHU heating and cooling coils, and the fan.

Auxiliary building systems, such as lighting and blinds, also

have a large effect on occupant comfort and whole-building energy

use [8]. The lighting system affects the building energy use, the

visual comfort of occupants, and to a lesser extend the thermal com-

fort of occupants as lights produce heat when they are on. It may

consist of dimmable or non-dimmable lights which are located in

different building spaces. Dimmable lights are normally controlled

using a reactive strategy. They can be dimmed linearly between the

maximum and minimum light outputs according to the available

daylight measured at some point in the zone. In a simulation, the

daylight illuminance is calculated based on cloud Blinds are usually

mounted on the inside of windows and consist of a series of equally-

spaced slats that are oriented horizontally. The blind controller can

change the slat angle from 0 to 180 degrees. By controlling the blind

angle, it is possible to change the ratio of direct and diffuse solar

radiation passing through the blind. Opening or closing blinds thus

changes the amount of heat gain and the illuminance level, thereby

affecting both visual and thermal comfort conditions.

Lights, blinds, and HVAC systems have complex interactions. As

explained, opening blinds during the day will influence the interior

daylight illuminance, providing natural lighting and heating up

the zone due to the solar radiation. If the zone temperature goes

above the desired zone temperature, the HVAC system will supply

more cool air to the zone, affecting the total energy consumption

of the HVAC system. On the other hand, switching on the lights

Figure 2: The layout of the medium office building studied
in this work, including the daylighting reference points.

Figure 3: The number of occupants in each zone during
working hours.

in a zone will increase illuminance and energy use at the same

time. Thus, there are many ways to navigate the three-way trade-

off between the energy use, thermal comfort, and visual comfort.

While thermal and visual comfort requirements can be satisfied

when these systems are controlled independently, this comes at

the price of increased energy consumption. The joint control of

building systems enables finding a better trade-off between the

energy use, and thermal and visual comfort.

4 METHODOLOGY
This paper explores rule-based and RL-based joint control of the

building systems for a 5-zone office building in Pittsburgh, Penn-

sylvania in January (heating season) and July (cooling season). The

floor area of this building is 5,000 square feet and it has been used

in previous work [6, 28]. The control setpoints that we adjust using

different algorithms are supply air temperature setpoint and blind

angle setpoint. The building is simulated in the EnergyPlus [9]

environment and is controlled via the COmprehensive Building

Simulator (COBS) [38] which interacts with EnergyPlus. COBS is

used in this work to programmatically execute rule-based control

scenarios and to train the RL agents. The office building we control

is depicted in Figure 2, and the relevant design details are described

in the following sections. We now present our control scenarios,

problem formulation, and model-free RL algorithms.

4.1 Simulation Environment
4.1.1 HVAC Design. As shown in Figure 1, the HVAC system is a

packaged VAV system with one heating coil and one cooling coil in

addition to VAV reheat coils. Similar to [6], we use the SAT setpoint

as the HVAC control point. Other VAV setpoints are controlled

using a feedback control strategy. The VAV reheat coils are turned

off in the cooling season.



On the Joint Control of Multiple Building Systems with Reinforcement Learning e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy

Table 2: Control scenarios and corresponding baselines.
HVAC Blinds Lighting Baseline

SAT setpoint Always open Not controlled (1)

SAT setpoint Always open Auto dimming (3)

SAT setpoint Using the same setpoint Not controlled (2)

SAT setpoint Using the same setpoint Auto dimming (4)

SAT setpoint Using different setpoints Not controlled (2)

SAT setpoint Using different setpoints Auto dimming (4)

4.1.2 Occupancy. Two occupancy conditions are considered, namely

building-level and zone-level occupancy schedules. The building-

level occupancy schedule assumes that all zones are occupied from

8:00 and 18:00. The zone-level occupancy schedule determines the

number of occupants that are present in each zone at any given

point in time. This helps model the amount of heat emitted by

occupants and better assess thermal and visual comfort of the occu-

pants in each zone. We use the COBS platform to generate several

zone-level occupancy schedules. Figure 3 illustrates the number of

occupants in each zone throughout a day.

4.1.3 Window Blinds. White painted metal blinds are present on

the windows in all four perimeter zones. Each slat is 2.5 cmwide and

the separation between slats is 1.875 cm. We assume that windows

are not motor-operated, hence the blind angle and position can be

adjusted without any constraints.

4.1.4 Daylighting. Zonal illuminance values are used for rule-

based lighting control and to evaluate the visual comfort of the

occupants. They are measured at desk height (76.2cm) using day-

lighting reference points in EnergyPlus, the positions of which are

specified in Figure 2. Zone 5 does not have any daylighting refer-

ence points because auto dimming does not occur in zones without

windows. We turn on the lights when Zone 5 is occupied and turn

them off when occupancy is zero.

4.2 RL Problem Formulation
In this section we describe the Markov decision process (MDP)

framework, including state and action spaces, and the reward func-

tion. At each time step, the building and its surrounding environ-

ment are in some state st . The agent exerts a control action at to
control building systems. This action causes a random state tran-

sition to st+1. The RL agents are trained in six specific scenarios

for controlling HVAC, blind and lighting, as outlined in Table 2.

Through interactions with the simulated environment, each agent

learns an optimal policy π , that is a sequence of control actions

starting from state s . When blinds are controlled, the agent either

learns a policy that adjusts all the blind setpoints in the same way,

or a policy that adjusts them independently. Note that lighting is

not controlled by the RL agent. Hence, there is either no lighting

control or the auto dimming strategy is adopted.

4.2.1 State. The state at time t , denoted by st , consists of the

following observations: the temperature in each zone including the

plenum (
◦C), the number of occupants in each zone (for building-

level occupancy schedule, all zones share the same value of 0 or

1, indicating whether the building is occupied), the hour of the

day (0-24), the slat angle of the blinds (degrees) in each of the four

zones that havewindows, the ambient temperature (
◦C), and the site

solar radiation (W ). In addition to these observations, it contains the

ambient temperature and site solar radiation for the next twelve 15-

minute time steps. These forecast are assumed to be perfect. Thus,

each state consists of 18 observations and 24 predicted values.

4.2.2 Action. The action at time t , denoted by at , determines the

control decision made in each building system. The action space

differs depending on the control scenario and the agent type. The

control scenario determines the number of control points while

the agent type affects the range of possible actions pertaining to a

control point. We always control the SAT setpoint for each control

scenario in a range of [−20, 20◦C] + TMA, where the TMA is the

mixed air temperature. The blinds can be controlled with different

setpoints, jointly according to the same setpoint, or not controlled

at all; in the latter case it is assumed that blinds are not available in

the building. The action for each blind is between 0 and 180.

The SAC agent (described next) considers a continuous action

space for each control point, while other RL agents consider discrete

actions
3
. In particular, we discretize the action for SAT setpoint to

20 and blinds to 18 evenly spaced values. Therefore, in the most

complex control scenarios, where we control the blinds using differ-

ent setpoints, the action space is 5-dimensional for the SAC agent

and there are 2,099,520 (184 × 20) possible actions for other agents.
This large action space makes it difficult to find the optimal policy.

To effectively find the optimal policy with this large action space,

we deploy a feature sharing neural network for each agent. That

is, instead of having a large number of cells for all possible actions,

after a few hidden layers we create multiple branches in the neural

network. The number of branches is the same as the number of

control points we have in each scenario. For example, we have 5

distinct branches when we have different setpoints for blinds (4

branches for blind setpoints and one for the SAT setpoint). The

same idea was used in [11] to reduce the size of neural networks.

4.2.3 Reward. The reward function balances three competing ob-

jectives: the total facility energy consumption including both the

HVAC system and lights (denoted by E), the occupant thermal com-

fort (denoted by Tc ), and the occupant visual comfort (denoted by

Vc ). It can be written as follows:

R = −ρENorm(E) − ρTNorm(Tc ) − ρV Norm(Vc ) (1)

where ρE , ρT and ρV are weight factors (reward parameters) that

represent the relative importance of different terms in the reward

function. These parameters can take values from {0.1, 0.4, 0.7, 1.0}.
We consider all reward functions that are obtained by assigning

these values to the parameters in a combinatorial fashion. The

Norm() function is defined as:

Norm(x) = (x − xmin )/(xmax − xmin ). (2)

It is used to scale each term in the reward function. The process

used to calculate E, Tc and Vc is described next.

Energy Consumption: Since both HVAC and lighting systems

run on electricity only in our test building, we use the total elec-

tricity consumed by HVAC and lighting systems as a measure of

the total facility energy use:

E = EHVAC + EL (3)

3
We got better results when we discretized the action space for the other two agents.
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where EHVAC is the electricity consumed by the HVAC system and

EL is the electricity consumed by the lights located in zones that

have windows
4
(both are expressed inWh). Note that we do not

take into account the energy consumed to operate the blinds since

it is negligible compared to the other components.

Thermal Comfort: The occupant thermal comfort is calculated

according to the Predicted Mean Vote (PMV) specified by Fanger’s

model [13], which has been used in building control since the 1960s.

The PMV predicts the average vote of a group of people on a 7-

point index ranging from +3 = hot to −3 = cold. Both the ISO 7730

standard [1] and ASHRAE [24] recommend maintaining |PMV |

below 0.5. Thus, we calculate Tc at a given time step as follows:

Tc =

∑
i Oi ·Tc i∑

i Oi
(4)

where Tc i represents the thermal comfort in zone i given by:

Tc i =

{
0, |PMVi | ≤ 0.5

|PMVi | − 0.5, otherwise .
(5)

PMVi and Oi indicate respectively the PMV value and occupancy

state of zone i . Oi is 1 when zone i is occupied and 0 otherwise.

Visual Comfort: In this paper, visual comfort is determined

using the illuminance rates at the daylighting reference points (see

Figure 2). A penalty is applied when the illuminance rates either do

not meet or exceed engineering standards for visual comfort. Ac-

cording to the Illuminating Engineering Society of North America,

the comfort range for office lighting is between 300 lux and 750

lux [20]. Thus, the visual comfort reward for zone i is given by

Vc i =


0 300 ≤ E [Ii ] ≤ 750

300 − E [Ii ] , E [Ii ] < 300

E [Ii ] − 750, E [Ii ] > 750,

(6)

where E [Ii ] is the expected illuminance rate in zone i . The illumi-

nance values, Ii , are obtained from the daylighting reference points

labelled in Figure 2. We take the average of the illuminance values

of the reference points in each zone and denote it by E [Ii ]. Notice
that the illuminance value will never fall below 300 lux during the

occupancy time as the indoor artificial light can always provide

enough illuminance when they are on. Then, the total visual reward

Vc is calculated as follows:

Vc =

∑
i Oi ·Vc i∑

i Oi
. (7)

4.3 Deep Reinforcement Learning Algorithms
We use three model-free RL algorithms to control building systems.

Soft Actor-Critic (SAC) is an actor-critic based off-policy max-

imum entropy RL algorithm with a stochastic actor [18]. It maxi-

mizes both the expected reward and the entropy, allowing the agent

to explore more widely and simultaneously consider multiple near-

optimal policies. It is shown to have stable performance, and be

robust to noise and the choice of hyperparameters. The state value

function, soft Q-function, and policy are trained by optimizing:

JV (ψ ) = Est∼D

[
1
2

(
Vψ (st ) − Eat∼πϕ

[
Qθ (st ,at ) − log πϕ (at |st )

] )2]
4
We ignore the electricity consumption of lights in Zone 5, which does not have a

window, since we cannot affect this energy consumption.

JQ (θ ) = E(st ,at )∼D

[
1

2

(
Qθ (st ,at ) − Rt + γEst+1∼p [V (st+1)]

)2]
Jπ (ϕ) = Est∼D,ϵt∼N

[
log πϕ

(
fϕ (ϵt ; st ) |st

)
−Qθ

(
st , fϕ (ϵt ; st )

)]
where π is the policy,ψ , θ , and ϕ are the parameters for state value

function, soft Q-function, and policy, Rt is the reward for the (st ,at )
pair, γ is the discount factor, p is the state transition probability, D

is the replay buffer, V is the state value, Q is the state-action value,

and fϕ is the unbiased gradient estimator.

In this study, we use Adam optimizer with a learning rate of

0.0003. We set the discount factor to 0.99 and consider a batch

size of 256. We use a squashed Gaussian policy with two hidden

layers and 256 cells in each layer for the actor network. For the critic

network, we use a network with two 256-cell hidden layers with the

leaky rectified linear unit (ReLU) as the activation function. We use

automatic entropy tuning which allows the agent to automatically

balance exploitation and exploration.

Proximal Policy Optimization (PPO) is another state-of-the-
art policy-gradient algorithm using the actor-critic framework [27].

In PPO, the step size is limited to a trust region [27]. This character-

istic enables faster learning, but the agent might be trapped into a

sub-optimal policy. PPO optimizes the clipped surrogate objective

given by:

L (ϕ) = Êt
[
min

(
rt (ϕ)Ât , clip

(
rt (ϕ), 1 − ϵt , 1 + ϵt

)
Ât

)]
with rt (ϕ) =

πϕ (at |st )
πϕ

old

(at |st )
, where Ât is an estimator of the advantage

function at t , ϵ is a hyperparameter that discourages making up-

dates that are far from the current policy, and clip

(
rt (ϕ), 1− ϵt , 1+

ϵt
)
clips the probability ratio between old and new policies within

[1 − ϵt , 1 + ϵt ].
In this study, we use two hidden layers with 100 units each layer,

utilizing the leaky ReLU activation function for both actor and critic

networks. After two hidden layers, the actor network has multiple

branches, one for each actuator type. We set the learning rate to

0.0005 and the discount factor to 0.99.

Branching Dueling Q-Network (BDQN) is a branching vari-
ant of the dueling double deep Q-network [32]. It is an off-policy

algorithm which is shown to outperform various algorithms such

as Deep Deterministic Policy Gradient (DDPG) in high dimensional

action spaces tasks [29]. For comparison with previous work, we

use exactly the same settings that are used in [11]. The Q-value

for each branch d and the maximum accumulated reward can be

written as:

Qd (s,ad ) = V (s) +

(
Ad (s,ad ) −

1

n

∑
a′d ∈Ad

Ad

(
s,a′d

))
Rd = R + γ

1

N

∑
d
Qd

(
s ′, arg max

a′d ⊆Ad
Qd

(
s ′,a′d

))
where Ad is the set of actions that can be taken on branch d , and
Ad represents the advantage function.

4.4 Training RL Agents
We split the task into two seasons: winter and summer. The winter

season model only uses January data to train and test, and the

summer season model only uses July data to train and test. We

assume that each episode is one month long and is comprised of
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2,976 15-minute time steps. We use 400 episodes to train the RL

agents in each season. EnergyPlus is used to simulate the building

environment after each epoch. We use the historical weather data

in Pittsburgh to get the outdoor temperature and solar radiation

for the current time step and future predictions.

5 EVALUATION METRICS AND BASELINES
We evaluate the RL agents in six different control scenarios and com-

pare their performance with four existing baselines. Four metrics

are used for performance evaluation: the total electricity consump-

tion of the month, average thermal comfort over the month, thermal

comfort violation rate of the month, and visual comfort violation

rate of the month. The thermal comfort violation rate is defined as

the percentage of time that the absolute value of PMV averaged

over all occupied zones is greater than 0.5 when the building is

occupied. We define the visual comfort violation rate similarly.

We consider four rule-based baselines that are implemented in

EnergyPlus for each season: (1) HVAC only, (2) HVAC & blinds,

(3) HVAC with auto-dimming, and (4) HVAC & blinds with auto-

dimming. The performance of the RL agents is compared to the

respective rule-based baselines based on the control scenario (see

the last column of Table 2).

HVAC: For all baselines, the supply air temperature is controlled

by EnergyPlus using the SetpointManager:Warmest/Coldest

object that attempts to meet the heating load for multiple zones at

a time. Details of the control strategy can be found in the Energy-

Plus documentation
5
. In short, the setpoint manager calculates the

average SAT that is required to meet the zones’ heating/cooling

loads based on the supply air mass flow rates, and adjusts the SAT

setpoint accordingly.

Blinds: When blind control is included, predefined EnergyPlus

programs that are designed to reduce heating and cooling load are

used. Specifically, the blinds are closed in the heating season if it is

nighttime and the outdoor temperature is below a setpoint. In the

cooling season, the blinds are kept open at night, and closed during

the day only if the solar radiation on the window exceeds a setpoint.

The setpoints were chosen by trying a wide range of values to find

the ones that performed the best in terms of the whole-building

energy use, and thermal and visual comfort.

Daylighting: When lighting control is included, the Daylight-

ing:Controls object is used so that the overhead lights dim contin-

uously as the daylight illuminance increases
6
. The lights are always

turned off during the night with and without auto-dimming.

6 RESULTS
In this section we first evaluate the performance of the four base-

lines and three RL-based control strategies. We present the trade-

offs between whole-building energy consumption, thermal comfort,

and visual comfort, and discuss which agent yields better trade-offs

for each control scenario. We discuss the best trade-off that can

be achieved using each RL algorithm and compare them with rule-

based baselines. Finally, for a fixed set of the reward parameters,

5
Refer to https://bigladdersoftware.com/epx/docs/9-3/input-output-reference/group-

setpoint-managers.html#setpointmanagerwarmest

6
The overhead lights dim linearly when the illuminance increases and stay on with

the minimum input power if illuminance surpasses a certain threshold.

we explain how incorporating zone-level occupancy information

would impact the trade-off curves in both heating and cooling sea-

sons, and compare the control agents in terms of the reward they

eventually achieve, their convergence speed, and stability across

several random runs.

6.1 A Closer Look at Baseline Strategies
We analyze the performance of the four baselines presented earlier;

they are rule-based control strategies that incorporate occupancy

information. The black stars in Figure 4 show the performance of

these baselines in respective control scenarios in both heating and

cooling seasons with different occupancy schedules. To save space,

we only discuss the results obtained when zone-level occupancy in-

formation is incorporated. Numerical values are provided in Table 3

in the appendix. In the cooling season, using rule-based controllers

for HVAC and blinds (Baseline 2) or using auto-dimming in addition

to rule-based HVAC control (Baseline 3) reduces the total energy

consumption by 12% and 28% compared to Baseline 1 which con-

trols HVAC only. Controlling HVAC and blinds with auto-dimming

(Baseline 4) yields 32% more savings than controlling HVAC alone

(Baseline 1) and around 5% more savings than controlling HVAC

with auto-dimming (Baseline 3). This is because blinds can reduce

the solar heat gain during the daytime and provide sufficient natural

lighting, thereby lowering the energy use.

Controlling blinds and HVAC with a rule-based strategy (Base-

line 2) in the heating season also helps reduce the total energy

use by 15% over Baseline 1. Yet, unlike the cooling season, adding

auto-dimming to Baseline 1 does not reduce the energy use. This

is likely because lighting gives off excess energy as heat, hence

turning off the lights results in higher heating requirements from

the HVAC system. Controlling HVAC and blinds together with

auto-dimming (Baseline 4) enables the highest energy savings in

the heating season, i.e., 18% reduction in energy use over Baseline 1.

In conclusion, our results show an average energy savings of 26%

across both seasons when all three systems are controlled (Base-

line 4) compared to when only HVAC is controlled (Baseline 1). This

observation motivates the joint control of building systems using

more advanced control strategies. In terms of thermal comfort, all

baselines were able to meet the ASHRAE PMV requirement. How-

ever, their performance is rather poor in terms of visual comfort

because the default blind control strategy only closes the blinds

at night. As a result, illumination is always high in the perimeter

zones.

6.2 Identifying Three-way Trade-offs
As described in Section 4.2.3, we assess the control performance of

RL agents for various combinations of reward parameters ρE , ρT , ρV ∈

{0.1, 0.4, 0.7, 1.0}. Figure 4 shows the trade-offs between energy

use and thermal comfort offered by the three RL agents in six dif-

ferent scenarios with two types of occupancy schedules. The visual

comfort is the third dimension which is not shown in this figure.

Each reward parameter setting yields a specific trade-off between

the competing objectives, which is depicted by a circle in this figure.

The Pareto optimal values are painted in red, and the baseline strat-

egy for each scenario is marked with a black star. Notice that in the

cooling season, the result for PPO spreads widely. Therefore, the

https://bigladdersoftware.com/epx/docs/9-3/input-output-reference/group-setpoint-managers.html#setpointmanagerwarmest
https://bigladdersoftware.com/epx/docs/9-3/input-output-reference/group-setpoint-managers.html#setpointmanagerwarmest


e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy Zhang, et al.

(a) Cooling season with building-level occupancy schedule

(b) Cooling season with zone-level occupancy schedule

(c) Heating season with building-level occupancy schedule

(d) Heating season with zone-level occupancy schedule

Figure 4: The PMV violation rate (y-axis) versus themonthly
electricity consumption in MWh (x-axis) for different re-
ward parameters. Points on the Pareto frontier are colored
red and baselines are marked with black stars. The horizon-
tal line shows ASHRAE’s threshold (10%) for thermal com-
fort violation [24].

(a) Energy Consumption (MWh)

(b) Thermal Comfort ( |PMV |)

(c) Thermal Comfort Violation (%)

(d) Visual Comfort Violation (%)

Figure 5: Comparison of different RL agents in different con-
trol scenarios using a zone-level occupancy schedule. The
results are obtained using the best set of reward parameters
for each RL agent. The x-axis is exaggerated.
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axis limits for PPO are different from SAC and BDQN. Hatch-filled

orange rectangles indicate the axis limits of SAC and BDQN plots

on PPO plots. Among the three RL algorithms we considered, PPO

seems to be the most sensitive to reward parameters. Nevertheless,

we observe that for all three agents it is possible to navigate the

three-way trade-offs by tweaking the reward parameters.

Best trade-offs. To determine the reward parameter setting that

yields the ‘best’ trade-off, we first filter out the parameter settings

that result in a PMV violation rate higher than 10% (ASHRAE’s

threshold [24]). We then choose the parameter setting that mini-

mizes the whole-building energy use among the remaining choices.

If the PMV violation rate exceeds 10% for all parameter settings,

we choose the parameter setting that minimizes the product of the

whole-building energy use and excess discomfort (i.e., the PMV

violation rate minus 10%). The trade-off that corresponds to this

parameter setting is called the best trade-off. For simplicity, the il-

lumination violation rate is not considered in the process of finding

the best trade-off as it is typically in the acceptable range.

Figure 5 provides a comparison between the best trade-offs

achieved by each RL agent in different scenarios. Numerical values

are provided in Tables 3 and 5 in the appendix. Compared to the

baselines, the RL agents can save a significant amount of energy

while meeting both thermal and visual comfort requirements in

most cases. In scenarios where the blind setpoint is controlled, all

agents achieve a significant improvement in visual comfort com-

pared to the baselines in both seasons. This implies that the RL

agents are able to learn how to use blinds to limit the amount of

glare from sunlight. SAC has the lowest visual comfort violation rate

in all scenarios. It is worth mentioning that in the scenario where

the SAT setpoint and multiple blind setpoints are controlled with

auto-dimming, the best RL agent can reduce the whole-building

energy use by 11% in heating season and 31.8% in the cooling season

over Baseline 4.

6.3 Incorporating Occupancy Information
We evaluate the control performance using both building-level

and zone-level occupancy information. Figures 4a and 4c show the

whole-building energy use in cooling and heating seasons along

with the thermal comfort violation rate when the RL agents incorpo-

rate building-level occupancy information. Figures 4b and 4d show

the same result this time assuming that the agents incorporate the

zone-level occupancy information. It can be readily seen that better

trade-offs can be achieved in the heating season when the control

agents incorporate zone-level occupancy information. Specifically,

BDQN, SAC, and PPO agents can save respectively 3.3%, 18%, and

14%more energy when they take into account zone-level occupancy

information rather than building-level occupancy information. The

zone-level occupancy information allows the control agents to meet

thermal and visual comfort requirements by conditioning only a

subset of zones that are occupied. This reduces the energy consump-

tion in HVAC and lighting systems. Interestingly, incorporating

zone-level occupancy information does not appear to offer much

in terms of energy savings in the cooling season. We attribute this

to the fact that in Pittsburgh less energy is consumed to keep the

room temperature within the comfort range in the cooling season

than in the heating season. Hence, a smaller amount of energy can

be saved by not conditioning the unoccupied zones.

Figure 6: Performance comparison of three RL algorithms
on the building control domain. The mean and 95% confi-
dence interval of the episode reward are computed based on
10 independent runs in the cooling season.

Another important observation is that the RL agents cannot al-

ways beat the rule-based baselines when they rely on building-level

occupancy information. For this reason, we only present the results

when a zone-level occupancy schedule is used in the remainder of

this section. The performance results for both cases can be found

in the appendix (Tables 3-6).

6.4 Performance, Convergence Rate & Stability
Figure 6 illustrates the total reward accumulated in each episode

when RL agents control the SAT setpoint and 4 blind setpoints, and

lights are auto-dimmed. The episode reward is averaged across 10

runs with different random seeds. The shaded region around the

average episode reward depicts the 95% confidence interval. The

three RL agents are trained for 400 months and then tested over a

period of 200 months in our simulated building. As it can be seen

the agents have stable performance in the testing period.

From this figure it is evident that BDQN converges to the high-

est reward, followed by SAC. Looking at the convergence speed,

PPO, SAC, and BDQN agents converge at around 30, 100, and 200

episodes, respectively. SAC and BDQN agents show more stable

performance (narrower confidence interval) compared to the PPO

agent. They have better sample complexity and can effectively use

experiences from previous episodes to update the policy. Unfortu-

nately this means that their running time is higher than PPO and

they use more memory. In particular, SAC and BDQN agents finish

a run in 38 and 31 hours respectively on a server with Intel Xeon

E5-2650 v4 (2.2GHz CPU) and NVIDIA Tesla P100 GPUs, and need

around 8GB of memory. For PPO, on the other hand, it takes only

7 hours to run on the same server using 4GB of memory.

While Figure 6 only shows the average reward per episode in

the cooling season with zone-level occupancy information and

a specific reward parameter setting (ρE = 1, ρT = 1 and ρV =
0.4), we witnessed similar convergence behavior for other reward

parameter settings, months, and occupancy schedules.

7 DISCUSSION
We now return to the four research questions raised in the intro-

duction, followed by a discussion of the key differences between

the three model-free control strategies. Many of our findings are

novel to this work and provide valuable insight for future research.
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How does the joint control of building systems affect the
whole-building energy use? Before our contribution, the paper
that came closest to addressing this question is [11], where the

BDQN agent achieved savings compared to rule-based methods,

showing the potential of applying model-free RL to the joint control

of building systems. However, their baselines included only rule-

based HVAC control, even though rule-based blind and lighting

strategies have been proven to offer significant savings. For example,

in our building the rule-based control of all systems (Baseline 4)

reduced the whole-building energy use by 26% on average across

both seasons compared to the control of HVAC only (Baseline 1).

Our work shows for the first time that RL-based control saves

even more energy than rule-based HVAC and blind control, and

that incorporating autodimming increases savings even further.

Furthermore, we show that this is true even when generalized to

the multi-zone scenario.

We provide numerical evidence in Table 3 that motivates the

installation of dimmable lights and motorized blinds. Dimmable

light can always lower the total energy consumption, especially

during the summer, and blinds can slightly reduce the energy use as

well. Figure 4 shows a minor improvement in controlling the blinds

with a single setpoint over separate setpoints. This can be used to

reduce the action space dimension, simplifying the problem.

What are the best trade-offs between energy use, thermal
comfort, and visual comfort? The tradeoffs between energy use

and thermal comfort are plotted directly in Figure 4. With regards

to tuning these two objectives, BDQN and SAC are less sensitive

to the reward parameters, whereas PPO is highly sensitive to the

reward parameters. Interestingly, Figure 5 shows that all of the RL

agents (including PPO) easily improved visual comfort over the

rule-based baselines. One way to interpret this is that there is a

lot of room for improvement in rule-based blind control strategies,

with respect to visual comfort. Overall, visual comfort is relatively

easy to optimize without much tuning, but the trade-off between

energy use and thermal comfort is more complicated to navigate.

Will incorporating zone-level occupancy information no-
ticeably change the performance of a control policy?As high-
lighted in Section 6.3, the inclusion of zone-level occupancy offered

noticeable energy savings over building-level occupancy in all cases

except for SAC in the cooling season. Figure 4 shows that when

blinds are included in the heating season, zone-level occupancy is

actually required to achieve lower energy use than the rule-based

baseline which takes occupancy into account. Based on this re-

sult (and the simplicity in aggregating zone-level data up to the

building-level) we argue that incorporating zone-level occupancy

information to train RL agents is a viable energy reduction strategy.

Our back-of-the-envelope calculation shows that we can save

approximately 1.04 MWh in two months (January and July) by

incorporating zone-level rather than building-level occupancy in-

formation. With extrapolation, the annual energy and cost savings

will be respectively 6.24 MWh and $437, assuming a flat rate of

7¢/kWh. This can offset the cost of buying and installing occupancy

sensors in the 5 zones.

How does performance vary across seasons? A trend in RL

papers for building control is to present results for two seasons

and conclude that the agent can find an optimal control policy for

both. Our results show that the reality is more complicated. Not

only do the energy savings vary across the seasons, but so does the

contribution of the building systems to the savings, the potential

benefit from fine-grained occupancy data, and the relative perfor-

mance of different model-free approaches. This is a conundrum

for the practitioner who aims to implement RL in real buildings: if

the performance varies drastically between seasons, how can one

select a generalizable approach? This question warrants attention

in future work.

Which RL algorithmworks best?We designed a custom con-

trol system for multiple building systems using three popular deep

reinforcement learning algorithms that can tackle problems with

large state and action spaces. BDQN was adopted from previous

work [11], where it was shown to have outstanding performance

controlling multiple building systems of a single-zone building.

To our knowledge, SAC and PPO were not previously applied to

control multiple building systems.

We show here that SAC outperforms BDQN in the heating sea-

son (in all scenarios except one) with regard to energy savings.

Considering thermal comfort, PPO is not able to satisfy the thermal

comfort in the cooling season for most cases with average thermal

comfort violation rate of 10.8%; SAC exceeds the threshold once and

BDQN can always maintain the thermal violation rate under the

threshold. Turning our attention to the effort needed to tune reward

parameters, PPO is highly sensitive to these parameters, whereas

BDQN and SAC are less sensitive to the reward parameters. Also,

PPO converges remarkably faster than SAC, and SAC is slightly

faster than BDQN. As the requirements might differ from case to

case, there is no clear winner among these three RL agents. SAC

and BDQN seem to offer more promising results if one can afford

the one-time computation cost of training the agents.

8 CONCLUSION
This paper benchmarked multiple model-free reinforcement learn-

ing agents and baseline control strategies in a simulated multi-zone

building with both zone and building-level occupancy schedules in

winter and summer months. We evaluated the effect of controlling

different building systems on whole-building energy consumption

using different reward parameters, and provided useful insight

for practitioners regarding how to make trade-offs within Pareto-

efficient choices. Specifically, we showed better trade-offs can be

achieved when RL agents rely on zone-level occupancy information

rather than building-level occupancy information. We made two im-

portant observations when zone-level occupancy information was

used by the agents. First, we found that 11.0% and 31.8% more en-

ergy can be saved respectively in heating and cooling seasons over

existing rule-based baselines that control the same building systems.

Second, we found that when lights are dimmed automatically and

the RL agent jointly controls HVAC and blinds, the whole-building

energy use can be reduced by up to 5.9% and 38.7% respectively in

heating and cooling seasons over the case that the RL agent only

controls the HVAC system.

In future work, we plan to explore the performance of RL agents

when they control more components of building systems, such

as the damper position, reheat coil, etc. We will explore the per-

formance of agents in a more complex building with many more

zones and investigate whether the agents need to be retrained after

several months.
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[23] Ivars Namatēvs. 2018. Deep reinforcement learning onHVAC control. Information
Technology and Management Science 21 (2018), 29–36.

[24] American Society of Heating, Refrigerating, Air-Conditioning Engineers, and

American National Standards Institute. 2004. Thermal environmental conditions
for human occupancy. Vol. 55. American Society of Heating, Refrigerating and

Air-Conditioning Engineers.

[25] Samuel Privara et al. 2011. Model predictive control of a building heating system:

The first experience. Energy and Buildings 43, 2 (2011), 564–572.
[26] Zahra Rahimpour et al. 2020. Actor-critic learning for optimal building energy

management with phase change materials. Electric Power Systems Research 188

(2020), 106543.

[27] John Schulman et al. 2017. Proximal policy optimization algorithms. (2017).

arXiv:arXiv:1707.06347

[28] Eric Shen et al. 2014. Energy and visual comfort analysis of lighting and daylight

control strategies. Building and Environment 78 (2014), 155–170.
[29] Arash Tavakoli et al. 2018. Action Branching Architectures for Deep Reinforce-

ment Learning. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/

17222

[30] Christina Turley et al. 2020. Development and evaluation of occupancy-aware

HVAC control for residential building energy efficiency and occupant comfort.

Energies 13, 20 (2020), 5396.
[31] Arun Vishwanath et al. 2019. Experimental Evaluation of a Data Driven Cool-

ing Optimization Framework for HVAC Control in Commercial Buildings. In

Proceedings of the 10th ACM International Conference on Future Energy Systems
(e-Energy ’19). ACM, 78–88.

[32] Ziyu Wang et al. 2016. Dueling Network Architectures for Deep Reinforcement

Learning. In Proceedings of the 33rd International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 48), Maria Florina Balcan and

Kilian Q. Weinberger (Eds.). PMLR, 1995–2003.

[33] Zhe Wang and Tianzhen Hong. 2020. Reinforcement learning for building con-

trols: The opportunities and challenges. Applied Energy 269 (2020), 115036.

[34] D.A. Winkler et al. 2020. OFFICE: Optimization Framework For Improved Com-

fort Efficiency. In 2020 19th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN). 265–276.

[35] David Wölfle et al. 2020. A Guide for the Design of Benchmark Environments

for Building Energy Optimization (BuildSys ’20). ACM, 220–229.

[36] Chi Zhang et al. 2019. Building HVAC Scheduling Using Reinforcement Learning

via Neural Network Based Model Approximation. In Proceedings of the 6th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation (BuildSys ’19). ACM, 287–296.

[37] Tianyu Zhang et al. 2019. ODToolkit: A Toolkit for Building Occupancy Detection.

In Proceedings of the Tenth ACM International Conference on Future Energy Systems
(e-Energy ’19). ACM, 35–46.

[38] Tianyu Zhang and Omid Ardakanian. 2020. COBS: COmprehensive Building

Simulator. In Proceedings of the 7th ACM International Conference on Systems
for Energy-Efficient Buildings, Cities, and Transportation (BuildSys ’20). ACM,

314–315.

[39] Zimu Zheng et al. 2018. Data Driven Chiller Sequencing for Reducing HVAC

Electricity Consumption in Commercial Buildings. In Proceedings of the 9th
International Conference on Future Energy Systems (e-Energy ’18). ACM, 236–248.

[40] D.P. Zhou et al. 2017. Quantitative comparison of data-driven and physics-based

models for commercial building HVAC systems. In American Control Conference
(ACC). IEEE, 2900–2906.

https://arxiv.org/abs/arXiv:1901.04693
https://arxiv.org/abs/arXiv:1707.06347
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17222
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17222


e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy Zhang, et al.

A PERFORMANCE OF RL CONTROL AGENTS
A.1 With the zone-level occupancy schedule

Table 3: RL Agent performance results for different control scenarios using zone-level occupancy schedule.
Blinds always open Single blind setpoint Multiple blind setpoints

No dimming With Dimming No dimming With Dimming No dimming With Dimming

Jan. Jul. Jan. Jul. Jan. Jul. Jan. Jul. Jan. Jul. Jan. Jul.

Energy

(MWh)

Baseline 8.34 4.44 8.4 3.2 7.07 3.92 6.81 3.02 7.07 3.92 6.81 3.02

BDQN 6.48 3.36 6.16 2.11 6.51 3.12 6.34 2.16 6.55 3.17 6.35 2.2

SAC 6.44 3.58 6.11 2.27 6.23 3.21 6.1 2.36 6.18 3.33 6.06 2.43

PPO 6.46 3.33 6.14 2.04 6.39 3.05 6.19 2.05 6.53 2.93 6.36 2.06

Thermal

Comfort

( |PMV |)

Baseline 0.25 0.22 0.28 0.28 0.28 0.27 0.32 0.32 0.28 0.27 0.32 0.32

BDQN 0.31 0.28 0.37 0.31 0.28 0.31 0.3 0.3 0.28 0.27 0.3 0.3
SAC 0.33 0.29 0.38 0.45 0.28 0.42 0.3 0.3 0.29 0.4 0.31 0.39

PPO 0.32 0.32 0.38 0.39 0.28 0.49 0.3 0.34 0.28 0.31 0.31 0.59

Thermal

Comfort

Violation (%)

Baseline 4.06 0.78 3.98 0.86 4.92 0.86 5.47 1.02 4.92 0.86 5.47 1.02
BDQN 5.62 8.78 9.04 7.35 3.21 7.14 4.44 8.39 3.38 5.32 4.38 7.41

SAC 8.22 3.39 10.86* 4.55 2.77 1.94 4.93 3.29 3.8 14.61* 4.55 4.55

PPO 5.98 10.64* 10.86* 15.46* 3.37 8.93 5.32 10.61* 3.66 10.8* 4.73 8.04

Visual

Comfort

Violation (%)

Baseline 70.16 96.33 70.16 96.33 70.16 37.11 70.16 37.11 70.16 37.11 70.16 37.11

BDQN 70.16 96.33 70.16 96.33 11.28 2.11 13.26 3.4 12.07 1.39 15.62 2.57

SAC 70.16 96.33 70.16 96.33 9.19 0.17 8.45 0.26 8.77 0.17 9.38 0.83
PPO 70.16 96.33 70.16 96.33 9.38 5.51 10.59 7.77 20.5 4.32 11.03 2.67

*
The value exceeds the 10% threshold for thermal comfort violation, which is suggested by ASHRAE.

Table 4: Total facility energy use for the best trade-off offered by each RL algorithm using zone-level occupancy information.

Control Scenario
Baseline
Number Month

Baseline
(MWh)

BDQN
(MWh)

SAC
(MWh)

PPO
(MWh)

Best Agent
(improvement over baseline)

SAT setpoint

Blinds always open

(1)

January 8.34 6.48 (22.3%) 6.44 (22.78%) 6.46 (22.54%) SAC (22.78%)

July 4.44 3.36 (24.32%) 3.58 (19.37%) — BDQN (24.32%)

SAT setpoint

Blinds always open

Auto dimming

(3)

January 8.4 6.16 (26.67%) — — BDQN (26.67%)

July 3.2 2.11 (34.06%) 2.27 (29.06%) — BDQN (34.06%)

SAT setpoint

Single blind setpoint

(2)

January 7.07 6.51 (7.92%) 6.23 (11.88%) 6.39 (9.62%) SAC (11.88%)

July 3.92 3.12 (20.41%) 3.21 (18.11%) 3.05 (22.19%) PPO (22.19%)

SAT setpoint

Single blind setpoint

Auto-dimming

(4)

January 6.81 6.34 (6.9%) 6.1 (10.43%) 6.19 (9.1%) SAC (10.43%)

July 3.02 2.16 (28.48%) 2.36 (21.85%) — BDQN (28.48%)

SAT setpoint

Multiple blind setpoints

(2)

January 7.07 6.55 (7.36%) 6.18 (12.59%) 6.53 (7.64%) SAC (12.59%)

July 3.92 3.17 (19.13%) — — BDQN (19.13%)

SAT setpoint

Multiple blind setpoints

Auto-dimming

(4)

January 6.81 6.35 (6.75%) 6.06 (11.01%) 6.36 (6.61%) SAC (11.01%)

July 3.02 2.2 (27.15%) 2.43 (19.54%) 2.06 (31.79%) PPO (31.79%)

—
The agent’s thermal comfort violation rate exceeds the 10% threshold. Thus, the realized reduction in energy use is not reported.
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A.2 With the building-level occupancy schedule

Table 5: RL Agent performance results for different control scenarios using building-level occupancy schedule.
Blinds always open Single blind setpoint Multiple blind setpoints

No dimming With Dimming No dimming With Dimming No dimming With Dimming

Jan. Jul. Jan. Jul. Jan. Jul. Jan. Jul. Jan. Jul. Jan. Jul.

Energy

(MWh)

Baseline 8.34 4.44 8.4 3.2 7.07 3.92 6.81 3.02 7.07 3.92 6.81 3.02

BDQN 7.59 3.47 7.5 2.22 7.78 3.32 7.89 2.35 7.85 3.31 8.08 2.35
SAC 7.17 3.49 6.84 2.26 7.85 3.12 7.83 2.37 7.72 3.21 7.69 2.42

PPO 7.57 3.87 7.18 2.18 7.16 3.33 7.15 2.38 7.22 3.21 8.07 2.47

Thermal

Comfort

( |PMV |)

Baseline 0.25 0.22 0.28 0.28 0.28 0.27 0.32 0.32 0.28 0.27 0.32 0.32

BDQN 0.29 0.28 0.31 0.34 0.23 0.3 0.25 0.3 0.23 0.27 0.24 0.3
SAC 0.3 0.42 0.34 0.33 0.22 0.46 0.23 0.24 0.22 0.42 0.23 0.46

PPO 0.29 0.56 0.33 0.38 0.26 0.8 0.27 0.97 0.26 0.29 0.26 0.56

Thermal

Comfort

Violation (%)

Baseline 4.06 0.78 3.98 0.86 4.92 0.86 5.47 1.02 4.92 0.86 5.47 1.02
BDQN 7.19 8.59 6.72 7.19 3.75 8.83 4.14 9.38 3.67 7.27 3.28 9.45

SAC 6.8 2.5 10.08* 3.59 2.97 3.2 2.58 3.44 3.36 3.36 3.2 3.28

PPO 6.25 30.86* 8.75 15.47 5.55 8.98 4.53 8.67 5.62 9.45 4.45 30.16*

Visual

Comfort

Violation (%)

Baseline 70.16 96.33 70.16 96.33 70.16 37.11 70.16 37.11 70.16 37.11 70.16 37.11

BDQN 70.16 96.33 70.16 96.33 12.5 3.52 11.8 4.45 10.86 4.14 10.78 5.31

SAC 70.16 96.33 70.16 96.33 8.05 0.0 8.05 0.23 8.28 0.08 8.05 1.64
PPO 70.16 96.33 70.16 96.33 12.19 5.16 9.22 5.47 15.62 11.95 12.11 7.19

*
The value exceeds the 10% threshold for thermal comfort violation, which is suggested by ASHRAE.

Table 6: Total facility energy use for the best trade-off offered by each RL algorithm using zone-level occupancy information.

Control Scenario
Baseline
Number Month

Baseline
(MWh)

BDQN
(MWh)

SAC
(MWh)

PPO
(MWh)

Best Agent
(improvement over baseline)

SAT setpoint

Blinds always open

(1)

January 8.34 7.59 (8.99%) 7.17 (14.03%) 7.57 (9.23%) SAC (14.03%)

July 4.44 3.47 (21.85%) 3.49 (21.4%) — BDQN (21.85%)

SAT setpoint

Blinds always open

Auto dimming

(3)

January 8.4 7.5 (10.71%) — 7.18 (14.52%) PPO (14.52%)

July 3.2 2.22 (30.63%) 2.26 (29.38%) 2.18 (31.88%) PPO (31.88%)

SAT setpoint

Single blind setpoint

(2)

January 7.07 7.78 (-10.04%) 7.85 (-11.03%) 7.16 (-1.27%) PPO (-1.27%)

July 3.92 3.32 (15.31%) 3.12 (20.41%) 3.33 (15.05%) SAC (20.41%)

SAT setpoint

Single blind setpoint

Auto-dimming

(4)

January 6.81 7.89 (-15.86%) 7.83 (-14.98%) 7.15 (-4.99%) PPO (-4.99%)

July 3.02 2.35 (22.19%) 2.37 (21.52%) 2.38 (21.19%) BDQN (22.19%)

SAT setpoint

Multiple blind setpoints

(2)

January 7.07 7.85 (-11.03%) 7.72 (-9.19%) 7.22 (-2.12%) PPO (-2.12%)

July 3.92 3.31 (15.56%) 3.21 (18.11%) 3.21 (18.11%) SAC (18.11%)

SAT setpoint

Multiple blind setpoints

Auto-dimming

(4)

January 6.81 8.08 (-18.65%) 7.69 (-12.92%) 8.07 (-18.5%) SAC (-12.92%)

July 3.02 2.35 (22.19%) 2.42 (19.87%) — BDQN (22.19%)

—
The agent’s thermal comfort violation rate exceeds the 10% threshold. Thus, the realized reduction in energy use is not reported.
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