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* Buildings are highly instrumented distributed systems
... yet they are largely unaware of and unresponsive to occupants
* Occupancy information enables several smart building applications
* Direct occupancy monitoring is costly and intrusive
* Indirect occupancy inference can be challenging
* binary occupancy detection [easier]

* occupant count determination [harder]



Motivation

e Little work has been done on benchmarking occupant count determination
techniques in multiple buildings



Why fine-grained occupancy information is needed?

* Security
* Workspace utilization
* Smart lighting

e Demand-controlled filtration and ventilation



Data-driven vs. physics-based models



Data-driven vs. physics-based models

 High-dimensional physics-based models for heat transfer
* must be customized per zone

 Challenge: distinguish internal heat gains due to occupancy from other latent
factors

e Data-driven models

e training these models is straightforward, requiring only a few weeks of ground
truth data

e can adapt to the variable occupancy pattern of each room

* Challenge: fuse data from various sensing modalities
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Our approach

* Cast the “occupant count determination” problem as a state
estimation problem in a non-linear dynamical system



Our approach

» Compare the predictive power of two standard state estimation
techniques on two buildings (five rooms) that contain dedicated
sensors and commonly available HVAC sensors



Our approach

» Study the sensitivity of the results to the maximum occupancy
of a room



Data sets

Data Sets Sensors

VOC: Volatile organic compounds concentration

Building1 | 7
1
1] CAL: Calendar with scheduled events
DAY: Flag indicating a weekday or a weekend
CO2: Carbon-dioxide concentration
Building2 |
2]

Damper position: VAV Damper position

[1] F. Fiebig, et al., Detecting Occupancy in Smart Buildings by Data Fusion from Low-cost Sensors: Poster
Description, e-Energy 17

[2] FC Sangogboye, et al., Performance comparison of occupancy count estimation and prediction with

common versus dedicated sensors for building model predictive control, Building Simulation 17
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2. represent the posterior occupancy state of a room by a set of particles
3. sample particles according to the state transition model
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Particle Filtering — Basic idea
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learn the state transition model and the measurement model from ground truth data
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sample particles according to the state transition model

give higher importance to particles that confirm the measurements

resample particles based on their importance factor

Qo to step 3
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Time Series Neural Network — Basic idea

nonlinear autoregressive exogenous model (NARX)

(

S

Multilayer
perceptron
with one

} hidden layer )

N

_{ X ]

Xi=F(Xt.1, ..

A

/

last d values of the same series

Xt—l:t—d

., Xi-d, Zt)

N

current value of the driving
(exogenous) series



Summary of results (RMSE)
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Example results - Building]
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Example results - Room1/Building?2
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NARX results are more stable

11



UNIVERSITY OF

57 ALBERTA
Takeaways

12



UNIVERSITY OF

@ ALBERTA
Takeaways

 Data driven models can substitute complex physics-based models
with an insignificant loss of prediction accuracy

12



UNIVERSITY OF

& ALBERTA
Takeaways

 Sensors that are commonly available in buildings can be leveraged to
estimate the occupancy level

12



UNIVERSITY OF

& ALBERTA
Takeaways

« NARX outperforms PF, estimating the number of occupants with a
root-mean-squared error of 0.3 and 0.8 in the two data sets with a
maximum of 7 and 67 occupants

12



UNIVERSITY OF

7 ALBERTA
Takeaways

 Data driven models can substitute complex physics-based models
with an insignificant loss of prediction accuracy

 Sensors that are commonly available in buildings can be leveraged to
estimate the occupancy level

« NARX outperforms PF, estimating the number of occupants with a
root-mean-squared error of 0.3 and 0.8 in the two data sets with a
maximum of 7 and 67 occupants

Future Work

12



UNIVERSITY OF

7 ALBERTA
Takeaways

 Data driven models can substitute complex physics-based models
with an insignificant loss of prediction accuracy

 Sensors that are commonly available in buildings can be leveraged to
estimate the occupancy level

« NARX outperforms PF, estimating the number of occupants with a
root-mean-squared error of 0.3 and 0.8 in the two data sets with a
maximum of 7 and 67 occupants

Future Work

* how to compensate for the lack of ground truth data?

12



(0] UNIVERSITY OF

@ ALBERTA

Takeaways

* how to compensate for the lack of ground truth data?

2% ardakanian@ualberta.ca

12



