

Data Driven Models for Building Occupancy Estimation

Omid Ardakanian

University of Alberta

joint work with Shadan Golestan and Sepehr Kazemian

ACM e-Energy 2018

• Buildings are highly instrumented distributed systems

• Buildings are highly instrumented distributed systems

... yet they are largely unaware of and unresponsive to occupants

- Buildings are highly instrumented distributed systems
 - ... yet they are largely unaware of and unresponsive to occupants
- Occupancy information enables several smart building applications

- Buildings are highly instrumented distributed systems
 - ... yet they are largely unaware of and unresponsive to occupants
- Occupancy information enables several smart building applications
- Direct occupancy monitoring is costly and intrusive

- Buildings are highly instrumented distributed systems
 - ... yet they are largely unaware of and unresponsive to occupants
- Occupancy information enables several smart building applications
- Direct occupancy monitoring is costly and intrusive
- Indirect occupancy inference can be challenging

- Buildings are highly instrumented distributed systems
 - ... yet they are largely unaware of and unresponsive to occupants
- Occupancy information enables several smart building applications
- Direct occupancy monitoring is costly and intrusive
- Indirect occupancy inference can be challenging
 - binary occupancy detection [easier]

- Buildings are highly instrumented distributed systems
 - ... yet they are largely unaware of and unresponsive to occupants
- Occupancy information enables several smart building applications
- Direct occupancy monitoring is costly and intrusive
- Indirect occupancy inference can be challenging
 - binary occupancy detection [easier]
 - occupant count determination [harder]

- Buildings are highly instrumented distributed systems
 - ... yet they are largely unaware of and unresponsive to occupants
- Occupancy information enables several smart building applications
- Direct occupancy monitoring is costly and intrusive
- Indirect occupancy inference can be challenging
 - binary occupancy detection [easier]
 - occupant count determination [harder]
- Little work has been done on benchmarking occupant count determination techniques in multiple buildings

Why fine-grained occupancy information is needed?

- Security
- Workspace utilization
- Smart lighting
- Demand-controlled filtration and ventilation

Data-driven vs. physics-based models

Data-driven vs. physics-based models

- High-dimensional physics-based models for heat transfer
 - must be customized per zone
 - **Challenge:** distinguish internal heat gains due to occupancy from other latent factors
- Data-driven models
 - training these models is straightforward, requiring only a few weeks of ground truth data
 - can adapt to the variable occupancy pattern of each room
 - Challenge: fuse data from various sensing modalities

• Cast the "occupant count determination" problem as a state estimation problem in a non-linear dynamical system

- Cast the "occupant count determination" problem as a state estimation problem in a non-linear dynamical system
- Compare the predictive power of two standard state estimation techniques on two buildings (five rooms) that contain dedicated sensors and commonly available HVAC sensors

- Cast the "occupant count determination" problem as a state estimation problem in a non-linear dynamical system
- Compare the predictive power of two standard state estimation techniques on two buildings (five rooms) that contain dedicated sensors and commonly available HVAC sensors
- Study the sensitivity of the results to the maximum occupancy of a room

Data sets

Data Sets	Sensors			
Building 1 [1]	VOC: Volatile organic compounds concentration			
	BLE: #BLE beacons in the range of the receiver			
	CAL: Calendar with scheduled events			
	DAY: Flag indicating a weekday or a weekend			
Building 2 [2]	CO2: Carbon-dioxide concentration			
	Damper position: VAV Damper position			

[1] F. Fiebig, et al., Detecting Occupancy in Smart Buildings by Data Fusion from Low-cost Sensors: Poster Description, e-Energy 17

[2] FC Sangogboye, et al., Performance comparison of occupancy count estimation and prediction with common versus dedicated sensors for building model predictive control, Building Simulation 17

$$\begin{split} p(X_{0:t}|Z_{1:t}) = & p(X_t|Z_t) p(X_t|X_{t-1}) p(X_{0:t-1}|Z_{1:t-1}), \\ & \stackrel{Bayes}{=} \eta \ p(Z_t|X_t) p(X_t|X_{t-1}) p(X_{0:t-1}|Z_{1:t-1}), \end{split}$$

1. learn the state transition model and the measurement model from ground truth data

7

- 1. learn the state transition model and the measurement model from ground truth data
- 2. represent the posterior occupancy state of a room by a set of particles

- 1. learn the state transition model and the measurement model from ground truth data
- 2. represent the posterior occupancy state of a room by a set of particles
- 3. sample particles according to the state transition model

- 1. learn the state transition model and the measurement model from ground truth data
- 2. represent the posterior occupancy state of a room by a set of particles
- 3. sample particles according to the state transition model
- 4. give higher importance to particles that confirm the measurements

- 1. learn the state transition model and the measurement model from ground truth data
- 2. represent the posterior occupancy state of a room by a set of particles
- 3. sample particles according to the state transition model
- 4. give higher importance to particles that confirm the measurements
- 5. resample particles based on their importance factor

- 1. learn the state transition model and the measurement model from ground truth data
- 2. represent the posterior occupancy state of a room by a set of particles
- 3. sample particles according to the state transition model
- 4. give higher importance to particles that confirm the measurements
- 5. resample particles based on their importance factor
- 6. *go to step* 3

Time Series Neural Network — Basic idea

Time Series Neural Network — Basic idea

nonlinear autoregressive exogenous model (NARX)

Time Series Neural Network — Basic idea

nonlinear autoregressive exogenous model (NARX)

Summary of results (RMSE)

	Building 1	Building 2			
		Room1	Room2	Room3	Room4
PF	0.4	1.5	0.8	1.4	2.9
NARX	0.3	0.4	0.4	0.5	0.8
max no. occupants	7	29	35	39	67
avg no. occupants	0.4	2.7	2.5	3.6	7.4
peak-to-avg occupancy ratio	0.06	0.09	0.07	0.09	0.11

Example results - Building1 - - Ground Truth Occupancy NARX Estimated Occupancy 6 5 No. Occupants 2 1 0 08/24 08/25 08/22 08/23 08/26 08/27 Date 7 Ground Truth Occupancy 11 PF Estimated Occupancy 6 5 No. Occupants 2 1 0 08/22 08/23 08/24 08/25 08/26 08/27 Date

Example results - Room1/Building2

NARX results are more stable

• Data driven models can substitute complex physics-based models with an insignificant loss of prediction accuracy

- Data driven models can substitute complex physics-based models with an insignificant loss of prediction accuracy
- Sensors that are commonly available in buildings can be leveraged to estimate the occupancy level

- Data driven models can substitute complex physics-based models with an insignificant loss of prediction accuracy
- Sensors that are commonly available in buildings can be leveraged to estimate the occupancy level
- NARX outperforms PF, estimating the number of occupants with a root-mean-squared error of 0.3 and 0.8 in the two data sets with a maximum of 7 and 67 occupants

- Data driven models can substitute complex physics-based models with an insignificant loss of prediction accuracy
- Sensors that are commonly available in buildings can be leveraged to estimate the occupancy level
- NARX outperforms PF, estimating the number of occupants with a root-mean-squared error of 0.3 and 0.8 in the two data sets with a maximum of 7 and 67 occupants

Future Work

- Data driven models can substitute complex physics-based models with an insignificant loss of prediction accuracy
- Sensors that are commonly available in buildings can be leveraged to estimate the occupancy level
- NARX outperforms PF, estimating the number of occupants with a root-mean-squared error of 0.3 and 0.8 in the two data sets with a maximum of 7 and 67 occupants

Future Work

• how to compensate for the lack of ground truth data?

- Data driven models can substitute complex physics-based models with an insignificant loss of prediction accuracy
- Sensors that are commonly available in buildings can be leveraged to estimate the occupancy level
- NARX outperforms PF, estimating the number of occupants with a root-mean-squared error of 0.3 and 0.8 in the two data sets with a maximum of 7 and 67 occupants

Future Work

• how to compensate for the lack of ground truth data?

