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Motivation
• Buildings are highly instrumented distributed systems

… yet they are largely unaware of and unresponsive to occupants

• Occupancy information enables several smart building applications

• Direct occupancy monitoring is costly and intrusive

• Indirect occupancy inference can be challenging

• binary occupancy detection [easier]

• occupant count determination [harder]

• Little work has been done on benchmarking occupant count determination 
techniques in multiple buildings 
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Why fine-grained occupancy information is needed?
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• Security

• Workspace utilization

• Smart lighting

• Demand-controlled filtration and ventilation



Data-driven vs. physics-based models
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Data-driven vs. physics-based models

• High-dimensional physics-based models for heat transfer

• must be customized per zone

• Challenge: distinguish internal heat gains due to occupancy from other latent 
factors

• Data-driven models

• training these models is straightforward, requiring only a few weeks of ground 
truth data

• can adapt to the variable occupancy pattern of each room

• Challenge: fuse data from various sensing modalities
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Our approach
• Cast the “occupant count determination” problem as a state 

estimation problem in a non-linear dynamical system

• Compare the predictive power of two standard state estimation 
techniques on two buildings (five rooms) that contain dedicated 
sensors and commonly available HVAC sensors

• Study the sensitivity of the results to the maximum occupancy 
of a room
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Data sets
Data Sets Sensors

Building 1
[1]

VOC: Volatile organic compounds concentration

BLE: #BLE beacons in the range of the receiver

CAL: Calendar with scheduled events

DAY: Flag indicating a weekday or a weekend

Building 2
[2]

CO2: Carbon-dioxide concentration

Damper position: VAV Damper position
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m-dimensional random variable  
modelling measurement of m sensors at t

categorical random variable  
modelling the number of occupants at t
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1. learn the state transition model and the measurement model from ground truth data
2. represent the posterior occupancy state of a room by a set of particles
3. sample particles according to the state transition model
4. give higher importance to particles that confirm the measurements
5. resample particles based on their importance factor
6. go to step 3

Particle Filtering — Basic idea
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Time Series Neural Network — Basic idea
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Xt=F(Xt-1, …, Xt-d, Zt)

last d values of the same series current value of the driving 
(exogenous) series

nonlinear autoregressive exogenous model (NARX)



Summary of results (RMSE)

Building 1
Building 2

Room1 Room2 Room3 Room4

PF 0.4 1.5 0.8 1.4 2.9

NARX 0.3 0.4 0.4 0.5 0.8

max no. 
occupants 7 29 35 39 67

avg no.
occupants 0.4 2.7 2.5 3.6 7.4

peak-to-avg 
occupancy ratio 0.06 0.09 0.07 0.09 0.11
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Example results - Building1
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Example results - Room1/Building2

 11
NARX results are more stable
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