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EV market is growing rapidly

Forbes

'Dying' EV Industry Set for

Growth

E John Gartner, Contributor
Reuters posted an interesting “news”

article on February 4™ claiming that
EVs face a dead end. This article was
very selective in its reporting and
missed an obvious fact: sales of plug-
in vehicles in the U.S. more than
tripled in 2012, and continue to
outpace the growth of the supposedly
more mainstream hybrids.

Despite the “public’s lack of appetite for battery-powered cars,” as Reuters pul
it, 54,000 plug-in hybrid and battery electric cars (known collectively as plug;
in electric vehicles, or PEVs) were sold in 2012, up from more than 17,000 in
2011. Asthe chart below shows, PEV sales in their two full years on the
market are well ahead of where hybrids were at this point in their lifecycle,
and we forecast that they'll stay ahead of hybrids in the vears to come.

GREEN TRANSPORTATION

E.V. market passed 100,000 sales mark in 2012

Green Tranzportation

Global electric vehicle passenger car market grew more than twofold between 2011 and 2012, surpassing the

100,000 sales mark last vear

found the first Global E.V. Outlook report.

Eeleased by the Electric Vehicles
introduction and adoption of electi
over 180,000 vehicles.

Forbes

Worldwide Electric Vehicle Sales
to Reach(3.8 Million Annually by
2020

Since the launch of the Nissan Leaf
and Chevrolet Volt, in late 2010,
plug-in electric vehicles (PEVs) have
become more widely available.
Hybrid electric vehicles (HEVs),
which first appeared a decade earlier,
are now selling steadily. According to
a new report from Pike Research,
annual worldwide sales of these
vehicles, collectively referred to as 2
electric vehicles (EVs), will reach 3.8 million by 2020.
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Impacts on the Grid

* Branch and transformer congestion
— accelerates degradation of power apparatus
— leads to overheating (risk of explosion)
— may trigger the protection system
* Voltage swings at distant buses
— affects the grid reliability

Lopes, J.A.P.; Soares, F.J.; Almeida, P.M.R., "Integration of Electric Vehicles in the
Electric Power System," Proceedings of the IEEE , vol.99, no.1, pp.168,183, Jan. 2011 5
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State of the Art Approach: Scheduling

e Scheduling solutions typically solve a power flow
problem

* They rely on
— an accurate model of the distribution network
— prediction of the home loads
— prediction of arrivals and departures of EVs



Our Approach is...

To adapt the charging rate of EV chargers to the available
capacity of the distribution network in real-time using the
same tricks as TCP congestion control

Real-time control is feasible in the smart grid



Smart Grid Enables Real-time Control
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* Pervasive measurement
e Broadband communication
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We are inspired by the success ot TCP
congestion control
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Optimal Control

A single snapshot optimization problem:

max Z log(rate,)

rate SES utility of s

subject to

0 < rate; < maxrate; Vs €S
EV load; + home load; < setpoint, Vie L

Similar to [Low99], [Kelly98]
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Optimal Control

Consider a series of snapshots

line/transformer loading

sum of controlled and uncontrolled loads (measured by an MCC node)
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Distributed Control vs. Centralized Control

Pros:
* No single point of failure
* Scalability

e Charging rates do not change drastically
— the stepsize bounds the change

Cons:
* Convergence time
e Communication overhead



Dual Decomposition & Control Rules

Lagrangian multipliers

Master Problem /

] (solved at MCC nodes) ]
prices prices
Subproblem 1 Subproblem n

(solved at EV charger 1) (solved at EV charger n)

 Two phases are repeated in every iteration of the algorithm



Dual Decomposition & Control Rules
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Dual Decomposition & Control Rules

Lagrangian multipliers

Master Problem /

] (solved at MCC nodes) ]
prices prices
Subproblem 1 Subproblem n

(solved at EV charger 1) (solved at EV charger n)

1. MCC nodes update congestion prices and send them to downstream EV chargers

price; « max{price; >< (setpoint; — load;), 0}



Dual Decomposition & Control Rules

Master Problem
(solved at MCC nodes)

Subproblem n
(solved at EV charger n)

Subproblem
(solved at EV charger 1)

rate, [ rate,

2. New rates are obtained from solving subproblems using new congestion prices

1
rate.< min bmaxrates}
path priceg
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Measurement/Control Timescale

sum of controlled and uncontrollc-?d loads
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Measurement/Control Timescale

sum of controlled and uncontrolled loads
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Measurement/Control Timescale

sum of controlled and uncontrolled loads
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Stability

* Control is stable for stepsize < stepsize™, T, = delay
* The rate of convergence depends on both stepsize, T,
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Simulation
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Operation Modes of the Algorithm

* Normal operation mode
* Emergency response mode
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Conclusions

e Controlling the EV charging load reduces the
need for over-provisioning

e Pervasive measurement and broadband
communication in a distribution network
motivate real-time control of elastic loads

* Using explicit congestion notification, the EV
charging load can be controlled in real-time



Guidelines for Setting Control Parameters

* T. must be as small as possible
— But in practice T, > delay

* stepsize must be as large as possible
— stepsize = stepsize”

* setpoint can be chosen such that overshoots do
not cause line or transformer overloading



