On the Use of Teletraffic Theory in Power Distribution Systems

Omid Ardakanian, S. Keshav, Catherine Rosenberg

e-Energy’12, May 10
Suppose n independent ON-OFF traffic sources share a link.

The probability that a source is in state ON is p.

The traffic bit rate in state ON is r.

What is the probability that the bit rate of the aggregate traffic is greater than kr?

$$\sum_{i=k+1}^{n} \binom{n}{i} p^i (1 - p)^{n-i}$$
Teletraffic theory – a simple example

• Suppose \(n \) independent ON-OFF traffic sources share a link
• The probability that a source is in state ON is \(p \)
• The traffic bit rate in state ON is \(r \)

What is the probability that the bit rate of the aggregate traffic is greater than \(kr \)?

What is the minimum value of \(k \) for which this probability is less than \(\varepsilon \)?

How can we approximate this probability for large values of \(n \) and \(k \)?
Teletraffic theory – another example

- Suppose we have n independent ON-OFF traffic sources
- The probability of being in state ON is p
- The traffic bit rate in state ON is r
- A router serves the aggregate traffic at rate C
- This router has a buffer with capacity B

What is the probability that an arriving bit/packet finds the buffer full?
Suppose we have n independent ON-OFF traffic sources.

- The probability of being in state ON is p.
- The traffic bit rate in state ON is r.
- A router serves the aggregate traffic at rate C.
- This router has a buffer with capacity B.

What (C,B) pairs can be chosen such that this probability is less than ε?
Teletraffic theory allows us to dimension a telecommunication network with:

- Heterogeneous traffic sources
- Shared transmission facilities
- Specific quality of service requirements
A power distribution network consists of:

- Stochastic electricity demand
- Shared lines, transformers, and storage

A certain level of “reliability” is guaranteed
Reliability of the grid

- Loss of load probability is one measure of reliability
- Loss of load *may* happen when a transformer is *overloaded*
Goal:

To size transformers, storage, and renewable energy generators in power distribution networks using teletraffic theory originally developed to size links, routers, and buffers in telecommunication networks
Sizing for the peak – the current practice

• Demand uncertainty is low
• The peak demand can be forecasted with high accuracy
• Optimal transformer sizing can be found using the load profile of the peak days of year
A new sizing approach is needed

- The demand uncertainty will increase
- Storage will be installed in the distribution network to smooth out variations in demand
- Transformers can be sized closer to the average demand
Contributions

• Modelling the distribution network as a fluid queueing system
• Applying teletraffic theory to size distribution transformers
• Validation of the proposed sizing approach using actual and synthetic load traces
Queueing Models & teletraffic-based sizing

The buffer/bandwidth trade-off
Observations:

- Storage is a buffer

- A transformer charges storage as traffic sources fill the buffer

- Loads discharge storage as a router empties the buffer

- The loss of load probability is similar to the packet loss probability
A fluid queueing model can be associated to a radial power distribution network

- A fluid queue with constant arrival rate and arbitrary service rate

- We want to quantify the buffer (storage) underflow probability in this model

- Unfortunately teletraffic analysis does not deal with this question
A dual queueing model

\(\varepsilon: \text{storage underflow probability} \)

The Equivalence Theorem

buffer overflow probability \(\equiv \varepsilon \)
Transformer Sizing

A Case Study
Resource allocation and effective bandwidth

• It is shown that the overflow probability is defined in terms of the aggregate *effective bandwidth* of homes supplied by a transformer

• Effective bandwidth of a stochastic source represents the amount of resource that should be reserved for it

• Computing effective bandwidth requires modelling the electricity demand of each home
Load Modelling

- A neighbourhood of 20 homes
- Classified into 4 classes
- Busy hour electricity demands of homes in each class are used to construct the Markov model of this class
- The aggregate effective bandwidth of the neighbourhood is the sum of effective bandwidths of all homes
Teletraffic-based Sizing of Power Distribution Networks

Measurement
Modelling
Analysis
Results of the Teletraffic-based Sizing Approach

• The transformer capacity computed for a neighbourhood given the industry standard loss of load probability is 107 kVA

• The utility guideline based on decades of field experience recommends a 100 kVA transformer for the same neighbourhood
Validation

Measurement

Modelling

Analysis

Validation
Comparison of the teletraffic-based sizing with the sizing guideline of a utility
Conclusions

- A distribution network can be modelled as a fluid queueing system

- Teletraffic theory can be applied to size
 - Transformers
 - Transformers and storage jointly