Quantifying the Benefits of Extending Electric Vehicle Charging Deadlines with Solar Generation

Omid Ardakanian, Catherine Rosenberg, S. Keshav University of Waterloo

SmartGridComm 2014

EV charging infrastructure is expanding rapidly

System Model

conventional power the carbon footprint of conventional power is assumed to be a C(t)convex function of C(t) G(t)b) on-site solar generation $C_{\mathsf{max}'}$ but no storage c) feeder constraints L_{max} d) EVs - energy demand - initial state of charge

- deadline (set by owners)

Our Goal

Takeaways

- A performance-guaranteed carbon-minimizing charging scheme is required and can be designed
- There is a three-way tradeoff between the charging deadlines, the average utility of EV owners, and the carbon footprint
- Extending charging deadlines might increase the utility of EV owners, reduce the carbon emissions, or have no impact

Utility of EV Owners

 The utility of an EV owner is the ratio of the energy supplied before the deadline to the initial energy demand

- For example: an EV with a 24kWh battery
 - energy demand: 50% of the battery size
 - energy supplied before the deadline: 8kWh
 - utility: 8kWh/12kWh=0.67

Effects of charging deadlines

- Extending the charging deadlines might
 - increase the utility of EV owners
 - reduce the use of conventional power and carbon emissions

Objectives

Simultaneously satisfy the following requirements (in this order)

- PVs should not negatively affect the utility of users
- carbon emissions must be minimized
- power allocation must be fair to users

This is a multi-objective optimization problem!

Offline Scheduling Algorithm

- Has three steps:
 - Compute the worst-case utility, assuming no solar (satisfying the first requirement)
 - Compute the carbon-minimizing power allocation to meet the worst-case utility, given the amount of solar power available (satisfying the second requirement)
 - Allocate the available power fairly among the users (satisfying the third requirement)

Step 1: Compute the Worst-Case Utility

Input: EV arrival times, initial demands, and deadlines

Output: energy supplied to every EV, i.e., the worst-case utility of every EV

Step 2: Find the Carbon-Minimizing Dispatch

Input: worst-case utilities, incoming solar radiation

Output: optimal use of grid power - C*(t)

Proportional Fairness

A proportionally fair allocation is the one that maximizes the sum of the log utility function of EV owners:

$$\sum_{i:EVs} log \frac{energy_provided_i}{energy_demand_i}$$

Intuition: the charging time must be inversely proportional to the normalize energy demand

Step 3: Compute the Fair Allocation of Available Power

Convex optimization

Input: worst-case utilities, total available power

Output: fair energy allocation to EVs, never less than before

Results – A Homogeneous Population of EVs

Optimization problems are solved using Minos

Parameters:

- Arrivals: Poisson (25 arrivals in an hour) after 7am
- Chargers: Level 1 (a maximum load of 1.8kW)
- Energy demand of every EV upon connection: 12kWh
- Rated capacity of the main feeder (L_{max}) : 90kW
- Charging deadline: 4 to 11 hours after arrival
- Solar irradiation data from US Virgin Islands measurement station

Case Studies

- Plenty of Solar Power
- Limited Solar Power
- Plenty of Conventional Power

Simulation Results Case 3: Plenty of Conventional Power

Three Regimes

Conclusions

- There is a three-way tradeoff between the charging deadlines, the average utility, and the carbon footprint
- EV owners should be careful when setting strict deadlines
- Charging service providers may design mechanisms to encourage EV owners to extend their deadlines to benefit from the second regime

Future Work

 Design an online-algorithm for grid-tied solar EV charging stations

- Introduce flexibility into the algorithm
 - users might be willing to trade off a slight reduction in their average utility for the reduction in carbon emissions

Backup Slides

Simulation Results Case 1: Plenty of Solar Power

Simulation Results Case 1: Plenty of Solar Power (cont'd)

Simulation Results Case 2: Limited Solar Power

