ODToolkit: A Toolkit for Building Occupancy Detection

Tianyu Zhang, Abdullah Al Zishan, and Omid Ardakanian
University of Alberta

ACM e-Energy
June 2019
Phoenix, United States

UNIVERSITY OF

P ALBERTA

Data-driven occupancy modelling

e Building occupancy detection is a well studied topic
o using different sensing modalities
o in office buildings, homes, schools, etc.

o with various objectives and evaluation criteria

e Fine-grained occupancy information is essential for
o Energy-efficient control of HVAC and lighting systems (e.g., demand-driven air circulation)
o Safety and security
o Space utilization

o Automatic fault detection

Factors hindering development of new algorithms

lack of open source implementation of existing algorithms

no standard data format

o different modalities, time/space granularities, naming conventions, units, etc.
lack of consensus on evaluation metrics

o especially when it comes to comparing occupancy counting algorithms (+k people)

this increases the effort to prepare data, evaluate models, and make sense of the

performance results

Recent efforts to build an open collaboration platform

E] EBC-Annex-79|/ Data-Driven-Occupant-Modeling ®OWatch~v 3 | Kstar 3 YFork 3

this is led by Mikkel Baun Kjaergaard,

Blng Dong, and Salvatore Carlucci <> Code Issues 0 Pull requests 0 Projects 0 Wiki Security Insights

Repository for sharing datasets and scripts for data-driven occupant modeling

D 28 commits 1 branch © 0 releases 42 2 contributors
. Create new file = Upload files = Find File
currently includes 10 open data sets
Latest commit c@87df3 on Mar 14
B data/sdu-2018-1building-3datatypes correction 8 months ago
m externaldata added ibp data 3 months ago
E) README.md Update README.md 10 months ago

README.md

Data-Driven Occupant Modeling

Data-Driven Occupant Modeling is an open-source, BSD-licensed development effort within the EBC Annex 79 - Subtask
2. The goal is to foster an open collaboration platform for data and software tools.

Within the repository the folders contains:

data : 1) examples of datasets for occupant presence and actions including associated scripts; 2) pointers to archived
datasets available on relevant platforms for archival storage.

src : 1) scripts for cleaning, processing and visualising occupant presence and action data; 2) scripts for construction of
data-driven occupant models

The need for a toolkit

e Developed an open source toolkit for occupancy detection

e Similar to NILMTK for non-intrusive load monitoring [Batra’14]

e ODToolkit enables the comparison of data-driven occupancy detection
algorithms in a reproducible manner across multiple buildings (possibly

equipped with different sensors)

GitHu Documentation available on: https://odtoolkit.github.io/
Code available on: https://github.com/sustainable-computing/ODToolkit

https://odtoolkit.github.io/
https://github.com/sustainable-computing/ODToolkit

Outline

« ODToolkit pipeline
o Components of this toolkit
o Case studies

o Does this toolkit facilitate the development of new algorithms for

occupancy detection?

. Takeaways and future work

Pipeline

models metrics

Preprocessing l l

Data B Data ﬂResampIing- Ontology ﬂOccupancyﬂ Evaluation == Plotting

. Cleansing Imputation Mapping Estimation
ODTK-Dataset '
Data .
. Table 2: Features available in each data set
Transformation . A[B[C[DE
— currently provides 5 ready-to-use data sets presented in previous work Temperature . .
I " Humidity . .
" - data sets are converted into a common format and stored in a folder Lt . .
Raw sensor data HumidityRatio |
DamperPosition .
A [7Y Table 1: Summary of 5 publicly available data sets imported and analyzed by ODToolkit LoadPower e
. Occupancy Collection Dropout No. No. No. Pct. time . _AirYEIOCitY e
’ m b e label method rate features rooms time slots occupied DifEaa g Radigat _If’mper“‘t“re :
. w A [18] 1 min Binary Camera 0% 6 3 20560 2310% ~14.25 days Quidiodlempentire :
- OutdoorHumidity °
‘ B [4] 1 min Count Camera 0% 3 4 97440 45.89% ~17 days OutdoorAiVelocity .
° —F/_VVVL C[11] 1 min Binary App. (GPS) 0.14% 2 3 30240 72.28% ~7 days VOC o
] J\\\ D [35] 15 min Binary Manual 93.43% 10 24 35041 22.82% ~1 years Network .
E [29] 10 sec Count Manual 0% 5 1 377549 23.99% ~43.66 days Bluetooth .

12am 3am 6am 9am 12pm 3pm 6pm 9pm 12am

Preprocessing

e Mark data points outside 1.5 x IQR (interquartile range) as outliers

e Remove outliers

e Replace all NaN values (e.g., forward-filling algorithm, etc.)

e Change the sampling frequency (e.g., upsampling and downsampling)

e Convert the label of points to a standard name from the glossary (e.qg.,
Temp. and RoomTemp will be replaced by IndoorTemperature)

o Jaro distance is used to determine the similarity between names

Occupancy Estimation & Evaluation

. Implemented several baseline data-driven models

o 7 supervised learning models are currently included
o HMM, PF, SVM, RF, SNMF, ANN, LSTM

o FEvaluation

o 16 standard metrics available in the toolkit
o 11 F-score metrics, RMSE, nRMSE, MAE, MAPE, MASE

o there is a built-in function to run all selected models on all selected data
sets, evaluate them considering the selected metrics, plot the results

Case studies — extending the toolkit

o« ODToolkit allows the user to add new , and to extend

the toolkit with new and

« To evaluate this toolkit, we implemented a new class of
occupancy detection models (i.e., domain-adaptive models)

and evaluated their performance with respect to the baseline

models

Domain adaptation - basic idea

transform a pre-trained model from a source domain to a related
target domain after performing some modifications on it

(adaptation process)

Source data + labels Target data + labels
Source Model Target Model
Source Domain Target Domain
Estimation Model Estimation Model

10

Domain adaptation - basic idea

transform a pre-trained model from a source domain to a related
target domain after performing some modifications on it

(adaptation process)

Source data + labels Target data + labels
Transfer
Source Model Target Model
Knowledge
Source Domain Target Domain
Estimation Model Estimation Model

10

Domain adaptation - basic idea

transform a pre-trained model from a source domain to a related
target domain after performing some modifications on it

(adaptation process)

possibly sparse
{ or nonexistent

Source data + labels
Target data + labels

Transfer
Source Model Target Model
Knowledge
Source Domain Target Domain
Estimation Model Estimation Model

10

Case studies - extending the toolkit

« DA-LSTM and DA-PF are implemented by re-using the LSTM

and PF models that were already included in the toolkit

Parameter

. Sourqe Re- we|ght|ng Adapted Ul Prediction
omain Model Domain ‘ ' Results
Model Model

Analyze

Domain R

Differences

e~ T " Train Data Test Data
-_— ——
-_— Ep 7
o = X

Source Domain Target Domain

Case studies - extending the toolkit

« DA-LSTM and DA-PF are implemented by re-using the LSTM

and PF models that were already included in the toolkit

Parameter

_.> Sourqe Re- we|ght|ng Adapted Ul Prediction
omain - Model Domain —‘—b Results
Model Model

Analyze

Domain R

Differences

e~ T " Train Data Test Data
-_— ——
-_— Ep 7
o = X

Source Domain Target Domain

Case studies - performance evaluation

1o E LSTM
mw DA-LSTM

L1 mm PF

' mmm DA-PF

10- 0.98 0.97 0.960-98 0.97 0.970.98 0.97

F1l Score

10 20 30
Percentage of Labelled Data in Target Domain (%)

Case studies - comparing different
supervised learning models

e Task 1: Find the best binary occupancy detection model on one data set

and across all data sets
e Task 2. Compare the results of binary occupancy detection and
occupancy count determination models

e Task 3: Evaluate the robustness of the model

Criteria for choosing the best binary occupancy detection model:

o Highest overall score, better estimation of occupancy start/end times

13

Case studies - comparing different
supervised learning models

1.0

0.9 1

0.8 1

Data set
A B C D E
Accuracy 0.9959 0.6416 0.7624 0.8234 0.9088
F1 Score 0.9854 0.6608 0.8364 0.6151 0.7399
Accuracy 0.9981 0.6172 0.8884 0.8000 0.9662
F1 Score 0.9932 0.7141 0.9279 0.1957 0.8945
Accuracy 0.9981 0.6719 0.8472 0.8068 0.9412
F1 Score 0.9932 0.7478 0.8816 0.1436 0.8947

PF

NN

LSTM

P Precision
@ Accuracy

SVM SNMF

Case studies - comparing different
supervised learning models

W Occupancy start times & Occupancy end times

NN

LSTM

HMM | o

PF

e e

RF

SVM

SNMF

Ground
Truth

.

l12am 3am 6am 9am 12pm 3pm 6pm 9pm 12am

15

Takeaways

e We present the design and implementation of ODToolkit, and discuss
how it can be extended to incorporate new , , and

e We extend the toolkit with three new domain-adaptive occupancy
detection algorithms and evaluate their performance

e We investigate how using the toolkit reduces the time and effort required
to build new models

16

Directions for future work

e Collect more available data sets and models

e Separate huge data set into small chunks so that they could fit in the RAM

We encourage the community to use, improve and extend this toolkit by

adding their occupancy estimation models and/or data sets

GitHu Documentation available on: https://odtoolkit.github.io/
Code available on: https://github.com/sustainable-computing/ODToolkit

17

https://odtoolkit.github.io/
https://github.com/sustainable-computing/ODToolkit

Case studies — extending the toolkit

W 00 N O VA W N =

e o T e T O = VO Sy S ST
0NV A WN RO

import odtk

Load two sample data sets from the package
dataset = odtk.data.load sample(["umons-all"”, "sdu-all"])

Use two models to perform occupancy estimation

Use all binary evaluation metrics to evaluate the model

result = odtk.evaluation.Result()

result.set result(odtk.easy set experiment(dataset,
models=["RandomForest"”, "NN"],
evaluation metrics="all",
thread num=1)[0])

Plot the scores in a bar chart
odtk.plot.plot result(result,
metric="F1Score",
threshold="<= 1",
file name="one dataset one model all metrics")

14

Case studies — extending the toolkit

e.g.

self.learning rate =

self.step size

0.9

0.

1

W 00 N OV A W N =

R R B R
w W N RO

16
17
18
19
20
21
22
23
24
25
26
27

#!/usr/bin/env python3

-*- coding: utf-8 -*-

If you want to put your model into the ODToolkit folder, use this
from .superclass import *

If you want to put your model into your own folder, use this

from odtk.model.superclass import *
e.qg.
Sample for supervised-learning model
class YourModelName (NormalModel): result = \
def _init_ (self,
name_for_train_dataset,
name_for test dataset):

self.name for test dataset.data.sum(
predict_occupancy = result.reshape((-1, 1))

1)

all changeable parameters
self.name _for train dataset = name_ for train_dataset
self.name for_ test dataset = name for test dataset

... Any other parameters defines here

the model must have a method called run, and
def run(self):

Your model goes here

Use odtk.data.dataset.D

urn the predicted result

et() as data type

Result must be a numpy.ndarray with shape of (num of rows, 1)
return predict occupancy

21

