Computing Electricity Consumption Profiles from Household Smart Meter Data O. Ardakanian, N. Koochakzadeh, R. P. Singh, L. Golab, S. Keshav University of Waterloo 3rd Workshop on Energy Data Management March 2014 # Your Smart Meter is Watching! From: http://www.thestar.com/opinion/2009/11/17/your_smart_meter_is_watching.html ## Smart Meters are Ubiquitous **Projects** #### **Motivation for Smart Metering** #### **Electricity Consumption Profiles** #### The Need for Electricity Consumption Profiles # Prior Work on Electricity Consumption Profile Generation - Rely on data that is not easily available - Use a black box method which is not interpretable - Are not robust to noise - Do not remove the effect of temperature and activity - cannot be extended to other regions and activity patterns ## Takeaways Electricity consumption profile generation has several applications A profiling framework must be simple, interpretable, yet practical Time series analytics can be used to generate such consumption profiles # **Key Observations** #### Residential Load Varies with Temperature #### Residential Load Varies with Activity #### Residential Load Varies with Activity # Our Methodology #### PARX Model recent history temperature-sensitive load $$Y_{t} = \sum_{i=1}^{p} \phi_{is} Y_{t-i} + \psi_{1s} XT1_{t} + \psi_{2s} XT2_{t} + \psi_{3s} XT3_{t} + \psi_{4s} XO1_{t} + \psi_{5s} XO2_{t} + C_{s} + \epsilon_{t}, \quad \text{for } t \in s$$ outliers intercept and noise terms season index #### PARX Model - cont'd Cooling $$XT1=\left\{ egin{array}{ll} T-20 & \mbox{if } T>20 \\ 0 & \mbox{otherwise} \end{array} ight.$$ Heating $XT2=\left\{ egin{array}{ll} 16-T & \mbox{if } T<16 \\ 0 & \mbox{otherwise} \end{array} ight.$ Overheating $XT3 = \left\{ \begin{array}{ll} 5-T & \text{if } T < 5 \\ 0 & \text{otherwise} \end{array} \right.$ # Handling *Outliers* # **Computing Consumption Profiles** - Parameter Estimation - Number of seasons - Coefficients Subtracting the effect of exogenous variables $$Y_{t}^{*} = Y_{t} - \psi_{1_{s}}XT1_{t} - \psi_{2_{s}}XT2_{t} - \psi_{3_{s}}XT3_{t} - \psi_{4_{s}}XO1_{t} - \psi_{5_{s}}XO2_{t} \quad \text{for } t \in s$$ # Weekday and Weekend Profiles #### Comparison – Predictive Power #### Data set - Residential hourly electricity consumption data of 1000 homes from March 2011 to October 2012 - Hourly air temperature data of that region #### Prior work - 3-Line Method - Fits a tree-piece linear regression after removing outliers - Hourly Mean - Convergent Vector - The same as ours but does not remove the effect of exogenous variables ## Results #### Conclusions - Electrical consumption profile generation is important and has many applications - water and gas consumption - Time series auto-regression framework enables us to remove the effects of temperature and activity - We demonstrated a simple, interpretable, and practical profiling model with high predictive power