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Your Smart Meter is Watching!

From: http://www.thestar.com/opinion/2009/11/17/your_smart_meter_is_watching.html




Smart Meters are Ubiquitous
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Motivation for Smart Metering




Electricity Consumption Profiles

Hourly energy consumption (kWh)
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The Need for Electricity Consumption Profiles




Prior Work on Electricity Consumption
Profile Generation

Rely on data that is not easily available
Use a black box method which is not interpretable
Are not robust to noise

Do not remove the effect of temperature and activity
— cannot be extended to other regions and activity patterns



Takeaways

e Electricity consumption profile generation has
several applications

* A profiling framework must be simple,
interpretable, yet practical

 Time series analytics can be used to generate
such consumption profiles



Key Observations



(D) einjesedwa |

Jun12 Aug 12 Oct 1220

1

~ Apr 12

1 1
Feb 12

Date

Dec 11

Oct 11

~ Aug 11

1
Jun 11

Apr 11

~ - e

Residential Load Varies with Temperature
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Residential Load Varies with Activity




Residential Load Varies with Activity

Activity level must be
inferred from data

Power (W)
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Our Methodology

Hourly consumption \

Hourly temperature

Remove
outliers and
temperature-
dependent
consumption
component

Average consumption
for each hour of day (weekdays)

Average consumption
for each hour of day (weekends)
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PARX Model

recent history

temperature-sensitive load
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PARX Model — cont’d

T — 20
Cooling XT1 = { 0

Heating XT2 = { 16 —T

Overheating X 'T'3 — { (5)_ T

if T > 20
otherwise

if ' < 16
otherwise

it T <5
otherwise
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Computing Consumption Profiles

* Parameter Estimation
— Number of seasons
— Coefficients

e Subtracting the effect of exogenous variables
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Weekday and Weekend Profiles
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Comparison — Predictive Power

e Data set

— Residential hourly electricity consumption data of 1000
homes from March 2011 to October 2012

— Hourly air temperature data of that region

e Prior work
— 3-Line Method
» Fits a tree-piece linear regression after removing outliers
— Hourly Mean

— Convergent Vector

* The same as ours but does not remove the effect of exogenous
variables
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Conclusions

* Electrical consumption profile generation is
important and has many applications

— water and gas consumption

* Time series auto-regression framework enables

us to remove the effects of temperature and
activity

* We demonstrated a simple, interpretable, and
practical profiling model with high predictive
power
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