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Challenge

• Learn to play the game of Hearts well:

• Multi-Player Game

• Imperfect Information

• Learning
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Hearts
• Trick-based card game

• Want to minimize your points

• One point for every heart (♥)

• 13 points for Q♠

• If one player takes all 26 points

(shoots the moon) others get 26 each
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Multi-Player Games

• A lot of work in two-player games:

• Checkers, chess, backgammon, scrabble, 
othello, go…

• Much less in multi-player games
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Multi-Player Games

• Differences:

• Maxn algorithm; generalization of minimax

• Less efficient search/pruning

• Weaker theoretical properties
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Imperfect Information
• In practice we can’t see opponents cards

• Monte-Carlo Sampling

• Generate perfect-information sample 
hands for opponents

• Analyze samples

• Combine results
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Learning

• Learning algorithms not yet “plug and play”

• Significant tuning often needed to learn
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Previous Work

• Search-based Hearts program

• Hand-tuned evaluation function

• Monte-Carlo search

• Plays as well (better than) best computers?
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Average Scores

Per Game Per Hand

Expert 
Program 56.1 5.16

Opponent Avg. 76.3 6.97

Played 90 games, each to 100 points.



Learning In Hearts Nathan Sturtevant

Learning in Hearts
• University of Mass. Course Project

(Perkins, 1998)

• Operational Advice

(Fürnkranz, et. al., 2000)

• State sampling with imperfect-information

(Fujita and Ishii, 2005)
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General Approach

• Define perfect information features

• Linearly weighted

• Monte-Carlo sampling

• Maxn search in perfect-information game

• Use TD(λ) with linear regression to train
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Hearts

• Promising domain for learning:

• Game fixed length (13 moves)

• Cards dealt randomly

• Occasionally get good cards
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Hearts Difficulty

• Cards have relative value

• 5♣ is good when 2-4♣ already played

• 5♣ is bad when 6-A♣ already played
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Features

• What features to use for each player?

• 52 cards they could have in their hand

• 52 cards they could have taken

• 104 features per player

• 416 total features
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Valuable Feature
• Interesting feature: P1 has the lowest ♥

• [P1 has 2♥] or

• [P1 has 3♥] and

[[P1 has taken 2♥] or [P2 has taken 2♥] 
[[P3 has taken 2♥] or [P4 has taken 2♥]]

• …

16



Learning In Hearts Nathan Sturtevant

Feature Abstraction

• We defined basic ‘atomic’ features

• Sample Features

• Which suits do we hold low/high cards

• Which suits are we ‘short’

• Which suits does the ‘leader’ have
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Even More Features

• These features still inadequate

• Combinations of features more 
interesting than ‘atomic’ features

• Combine features using AND operator
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Learning Part I

• Learn to avoid the Q♠

• 60 ‘atomic features’

• Predict expected points in game

• Train against previous program
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QoS Features
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Analysis

• What is the network learning

• Easily understand by examining weights 
assigned to feature sets
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Features - Avoid Q♠
Rank Weight We have We have We have Opponent

1 -0.103 1 low ♠ Lead Q♠ no ♠

2 -0.097 1 low ♠ No ♥ Lead Q♠ no ♠

3 -0.096 2 low ♠ K♠ Q♠ two ♠

4 -0.093 1 low ♠ No ♣ Lead Q♠ no ♠

5 -0.090 1 low ♠ No ♦ Lead Q♠ no ♠

148 -0.040 1 low ♠ Q♠ Lead no ♠
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Features - Take Q♠
Rank Weight We Have We have We have We have

1 0.125 Q♠ 1 low ♠ Lead

2 0.123 Q♠ 1 low ♠

3 0.117 Q♠ No ♣ No ♥ Lead

4 0.116 A/K/Q♠ Lead

5 0.112 Q♠ No ♣ No ♥ No ♦ 
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Learning Part II

• Learn to avoid taking ♥

• Removed 14 Q♠-specific features

• 42 new point (♥) related features (0-13)

• Same learning parameters
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Hearts Features
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Learning Part III

• Learn to play the perfect-information game

• No ‘shooting the moon’

• Take best 10,000 features from the Q♠

• Take best 1,000 features from ♥ points

• Train against expert and by self-play
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Steady-State Evaluation

• Test the learned networks

• Play trained network against expert

• Play 100 hands 

• 4 players, 2 player types

• Repeat each hand 24 - 2 times
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Arrangement
Player 1 Player 2 Player 3 Player 4

Expert Trained Trained Trained

Trained Expert Trained Trained

Expert Expert Trained Trained

Trained Trained Expert Trained

Expert Trained Expert Trained

Trained Expert Expert Trained

Expert Expert Expert Trained
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Games Against Expert
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Games Against Expert
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Trained Play
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Imperfect Info. Play

• Played against expert program

• Single hands

• 56.9% of hands, 6.35 v. 7.30 average score

• Games to 100 points

• 63.8% of hands, 69.8 v. 81.1 average score
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Summary

• Learned to beat ‘expert’ by a large margin

• Program plays well, but sometimes lacks 
deep analysis of game

• Not a trivial result
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Future Work

• Different algorithms than maxn

• Other ways of combining/building features

• Better handling of shooting the moon

• Play against other opponents
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Thank You
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