
Parallel State Space Search on the GPU

Stefan Edelkamp
Am Fallturm 1

University of Bremen

Damian Sulewski
Otto-Hahn-Str. 14

Dortmund University of Technology

Abstract

This paper exploits parallel computing power of the graph-
ics card for the enhanced enumeration of state spaces. We
illustrate that modern graphics processing units (GPUs) have
the potential to speed up state space search significantly. For
an bitvector representation of the search frontier, GPU algo-
rithms with one and two bits per state are presented. For en-
hanced compression efficient perfect hash functions and their
inverse are studied. We establish maximal speed-ups of up to
factor 30 and more wrt. single core computation.

Introduction
Since each modern processor contains at least two cores and
graphics cards with hundreds of fragment processors are a
commercial standard, one can expect an enormous impact
on the programs that we will use. This “parallelism for the
masses” offers great opportunities for state space search.

In particular, in the last few years there has been a re-
markable increase in the performance and capabilities of the
graphics processing unit (GPU). Modern GPUs are power-
ful, parallel programmable processors featuring high arith-
metic capabilities and memory bandwidths. Deployed on
current graphic cards, GPUs have outpaced CPUs in numer-
ical algorithms like matrix operations and Fourier transfor-
mations (Owens et al. 2008).

The GPU’s rapid increase in both programmability and
capability has inspired researchers to map computationally
demanding, complex problems to it. With interfaces like
NVIDIA’s general purpose programming language CUDA,
GPU computing is an apparent candidate to speed up state
space search.

To tackle the intrinsic hardness of large search problems,
sparse-memory and disk-based algorithms are in joint use.
I/O-efficient BFS (for undirected search spaces) has been
suggested for explicit search spaces stored on disk by Mu-
nagala & Ranade (1999) and implemented for AI domains
by Korf (2003).

Frontier search applies duplicate detection schemes, be-
ing either delayed (Korf 2003) or structured (Zhou &
Hansen 2004). Especially on multiple disks, instead of
I/O waiting time due to disk latencies, the computational

Copyright c© 2009, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

bottleneck for these external-memory algorithms is inter-
nal time, so that a rising number of parallel search vari-
ants have been studied for clusters (Edelkamp & Jabbar
2006) and/or multi-core processors (Korf & Schultze 2005;
Zhou & Hansen 2007).

External two-bit breadth-first search by Korf (2008) inte-
grates a tight compression method into an I/O efficient al-
gorithm. The approach for solving large-scale problems re-
lies on an inversible and perfect hash function. It applies
a space-efficient representation in breadth-first search with
two frontier bits per state (Kunkle & Cooperman 2007), an
idea that goes back to Cooperman & Finkelstein (1992).

Edelkamp & Sulewski (2008) investigated the exploita-
tion of the GPU for accelerated delayed duplicate detection.
Since moving vectors within the GPU’s global memory is
slow, the authors illustrate that existing GPU-sorting algo-
rithms designed for floating point data often fail on sorting
state vectors. As a bypass, they propose a refined bucket-
sort algorithm on the GPU, that performs a hybrid of hash-
and sorting-based duplicate detection.

In this paper we propose a smooth interplay of a bitvector
state space representation and parallel computation on the
GPU. Our examples are permutation games. We show how
to efficiently rank and unrank permutation on the GPU and
to how to compute the parity on-the-fly. To map the search
space to a bit-vector, we study GPU-based two-bit BFS, and,
for limited space, one-bit variants.

The structure of the paper is as follows. First, we recall
GPU essentials to introduce the underlying computational
model. Then, perfect hashing and devise rank and unrank
functions for a selection of permutation puzzles. We reflect
properties required for searching with a state space bitvector.
For minimum perfect hashing, we have a closer look on the
change of parity in theses games, and turn to integrating its
computation for lexicographic and alternative orderings. We
then turn to space-efficient state space search on a bitvector,
including known variants like two-bit BFS and new variants
that require only one bit per state. We then port the algo-
rithms to the GPU and show its effectiveness in a range of
experiments.

GPU Essentials
GPUs have multiple cores, but the programming and com-
putational model are different from ones on the CPU. GPU

Texture Processor Cluster 1 T
exture

P
rocessor

C
lusters

2
...10

Global memory

Streaming
Multiprocessor 1

shared
m

em
ory

Streaming
Processors

Streaming
Multiprocessor 2

shared
m

em
ory

Streaming
Processors

Streaming
Multiprocessor 3

shared
m

em
ory

Streaming
Processors

special function unit 2

special function unit 1

special function unit 2

special function unit 1

special function unit 2

special function unit 1

Figure 1: Sample GPU Architecture.

programming requires a special compiler, which compiles
the code to native GPU instructions. The GPU architecture
mimics a vector computer with the same function running
on all processors. The architecture support different layers
for accessing memory. GPUs forbid common writes to a
memory cell but support some limited form of concurrent
read.

The number of cores one the GPU exceeds the ones on
the CPU, but they are limited to streamed processing. While
cores on a multi-core processor work autonomously, the
operation of cores on the GPU is different. For example,
we observe that many if-then-else branching points or large
branches in the GPU code lead to limited parallelism.

If we consider the G 200 chipset, as found in state-of-
the-art NVIDIA GPUs, and illustrated in Fig. 1, a core is a
simple streaming processor (SP) with 1 floating point and
2 arithmetic logic units. 8 SPs are grouped together with
a cache structure and two special function units (perform-
ing e.g. double precision arithmetic) to a streaming multi-
processor. Each of the 10 texture processor clusters (TSCs)
combines 3 SMs and a second cache, yielding 240 cores on
one chip. Memory is structured hierarchically, starting with
the GPU’s global memory (video RAM, or VRAM). Access
to this memory is slow, but can be accelerated through co-
alescing, where adjacent accesses with less than 64 bits are
combined to one 64-bit access. Each SM includes 16 KB
of shared RAM (SRAM), which is shared between all SPs
and can be accessed at the same speed as registers. Addi-
tional registers are also located in each SM, but they are not
shared between SPs. Data has to be copied to VRAM to be
accessible by the threads.

The GPU programming language links to ordinary C-
sources. The function executed in parallel on the GPU is
called kernel. The kernel is driven by threads, grouped
together in blocks. The TSC distributes the blocks on its
streaming multiprocessors in a way that none of the SMs
runs more than 1,024 threads, and a block is not distributed
among different SMs. This way, taking into account that the
maximal blockSize is 512, at most 2 blocks can be executed
by one SM on 8 SPs. Each TSC schedules 24 threads to be
executed in parallel, providing the code to the SMs. Since all
the SPs get the same chunk of code, SPs in an else-branch
wait for the SPs in the if-branch, being idle. After the 24

threads have executed the chunk the next kernels are exe-
cuted. Note that threads which are waiting for data can be
parked by the TSC, while the SPs work on threads, which
have already received the data.

Perfect Hashing
A minimal perfect hash function is a one-to-one mapping
from the state space S to the set {0, . . . , |S| − 1}. Recent
results (Botelho, Pagh, & Ziviani 2007; Botelho & Ziviani
2007) show that given the state space on disk, minimum
perfect hash functions with a few bits per state can be con-
structed I/O efficiently. For many AI search problem do-
mains, however, perfect hash functions and their inverses are
available prior to the search. Examples are rank and unrank
functions for permutation games, including the ones shown
in Fig. 2. Permutation parity will be a helpful concept.

Definition 1 (Parity) The parity of the permutation π is de-
fined as the parity of the number of π inversions, where in-
versions are all pairs (i, j) with i < j and πi > πj .

In all games we consider the time for generating a succes-
sor is dominated by the time for ranking and unranking.

Rubik’s Cube Rubik’s Cube, invented in the late 1970s
by Erno Rubik, is a known challenge for single-agent
search (Korf 1997). Each face can be rotated by 90, 180, or
270 degrees and the goal is to rearrange a scrambled cube
such that all faces are uniformly colored. Solvability in-
variants are that a single corner and a single edge sub-cube
(cubi) cannot be twisted. Exchanging two cubis also de-
stroys solvability. For the last issue the parity of the permu-
tation is crucial and leads to 8! · 37 · 12! · 211/2 = 43 · 1018

solvable states.

Sliding-Tile Puzzle The (n×m) sliding-tile puzzle (Korf
2003) consists (nm− 1) numbered tiles and one empty po-
sition, called the blank. The task is to re-arrange the tiles
such that a certain goal arrangement is reached. Swap-
ping two tiles toggles the permutation parity and in turn
the solvability status of the game. Thus, only half the
states are reachable. A minimal perfect hash function for
a sliding-tile problem has to map puzzle instances to a value
in {0, . . . , (nm)!/2− 1}.

There is one subtle problem with the blank. Simply taking
a minimum perfect hash the entire board does not suffice, as
swapping a tile with the blank is a move and changes the
priority. A solution is to partition the state space wrt. the po-
sition of the blank, since for exploring the (n×m) puzzle it
is equivalent to enumerate all (nm−1)!/2 orderings together
with the nm positions of the blank. If B0, . . . , Bnm denote
the set of “blank-projected” partitions, then each set Bi con-
tains (nm− 1)!/2 states. Given the index i as the permuta-
tion rank it is simple to reconstruct the puzzle’s state. As a
fortunate side effect, neither move of the blank to the left or
right changes the state vector, such that for these moves we
do not need any ranking or unranking.

a) b)
13

1 2 3 4 5 6

7 8 9 10 11 12
c)

13

6
7

8

14
1516

17

18

19

1

2

3

4

5

10

9

12

11

d)

Figure 2: Permutation Games: a) Rubik’s Cube, b) Sliding Tile Puzzle, d) Top-Spin Puzzle c) Pancake Problem.

Top-Spin Puzzle The next example is the (n, k)-Top-Spin
Puzzle (Chen & Skiena 1996), which has n tokens in a ring.
In one twist action k consecutive tokens are reversed and
in one slide action pieces are shifted around. There are n!
different possible ways to permute the tokens into the loca-
tions. However, since the puzzle is cyclic only the relative
location of the different tokens matters and thus there are
only (n− 1)! different states in practice. After each of the n
possible actions, we thus normalize the permutation moving
token 0 to the start of the array, and mapping the rest.

Depending on value k, a twist will change the parity. We
observe that for an even value of k (the default), only a twist
on token 0 may change the parity.

Theorem 1 For an even value of k and odd value of n >
k+1, the (normalized) (n, k)Top-Spin Puzzle has (n−1)!/2
reachable states.

Proof. To ease notation, w.l.o.g., the proof is done for k = 4.
Let n = 2m + 1 and (x0, x1, . . . , x2m) be the normalized
state and, due to normalization, x0 = 0. First of all, given
that 0 is not counted, only three elements change their posi-
tion and lead to 3 transposition. For (0, x1, x2, x3, . . . , x2m)
we have four critical successor states:

• (x3, x2, x1, 0, x4....x2m),

• (x2, x1, 0, x2m, x3, ..., x2m−1),

• (x1, 0, x2m−1, x2m, x2, ..., x2m−2), and

• (0, x2m−2, x2m−1, x2m, x1, ..., x2m−3).

In all cases, normalization has to move 3 elements either the
ones with low index to the end of the array to postprocess the
twist, or the ones with large indices to the start of the array to
preprocess the operation. The number of transpositions for
one such move is 2m − 1. In total we have 3(2m − 1) + 3
transpositions. As each transposition changes the parity and
the total of 6m transposition is even, all critical cases have
even priority. �

For even values of n some solutions checks the permuta-
tion parity at the beginning and toggle if it is odd.

Pancake Problem The n-Pankake Problem (Dweighter
1975) is to determine the number of flips of the first k
pancakes (with varying k ∈ {1, . . . , n) necessary to put

them into ascending order). The problem has been ana-
lyzed e.g. by (Gates & Papadimitriou 1979). It is known
that (5n + 5)/3 flips always suffice, and that 15n/14 flips
are necessary. In the burned pankake variant, the pancakes
are burned on one side and the additional requirement is to
bring all burned sides down. It is known that 2n− 2 flips al-
ways suffice and that 3n/2 flips are neceessary. Both prob-
lems have n possible operators, the pancake problem has n!
reachable states, the burned one has n!2n reachable states.
For an even value of d(k − 1)/2e, k > 1 the parity changes
and for an odd value d(k−1)/2e the parity remains the same.

State Space Search on a Bitvector
For search with an implicit search frontier in form of a
bitvector there are some hidden assumptions, so that we for-
malize different characteristics for hash functions.

Definition 2 (Hash Function) A hash function h is a map-
ping of some universe U to an index set [0..m− 1].

The set of reachable states S is a subset of U , i.e., S ⊆ U .
The first aspect are hash functions that are injective.

Definition 3 (Perfect Hash Function) A hash function h :
U → [0..m−1] is perfect, if for all s ∈ S with h(s) = h(s′)
we have s = s′. The space efficiency of h is the proportion
dm/|S|e of available hash values to states.

Given that the every state can viewed as a bitvector and
interpreted as a number, one inefficient design of a perfect
hash functions is immediate. The space requirements of the
corresponding hash table are usually too large. An optimal
space-efficient perfect hash function is bijective.

Definition 4 (Minimal Perfect Hash Function) A perfect
hash function is minimal, if |S| = m.

Efficient and minimal perfect hash functions allow direct-
addressing a bit-state hash table instead of taking an open-
addressed or chained hash table. The index uniquely identi-
fies the state. Note that the approach in (Botelho & Ziviani
2007) is applicable only if the state space has been seen be-
fore and requires some constant number of bits per state for
storing the hash function. A perfect hash function does not
have to be minimal to be efficient. There is recent research
showing that space-efficient hash function can be better than

minimal ones, since the constant number of bits per state for
the hash function becomes smaller than the loss in accuricy.

Whenever the efficiency is smaller than the number of bits
in the state encoding, an implicit representation of the search
space is advantageous, assumming that no other tricks like
frontier search or orthogonal hashing apply. Frontier search
requires the locality of the search space is bounded.

Definition 5 (Locality) The BFS locality is defined as
max{layer(s)− layer(s′) + 1 | s ∈ S; s′ ∈ successors(s)},
where layer(s) denotes the depth d of s in BFS layer Layerd.
For frontier search, the space efficiency of h : U → [0..m−
1] is defined as dm/maxd |Layerd|+ . . .+ |Layerd+l|e.
Definition 6 (Orthogonal Hash Functions) Two hash
functions h1 and h2 are orthogonal, if for all states s, s′
with h1(s) = h1(s′) and h2(s) = h2(s′) we have s = s′.

Theorem 2 (Orthogonal Hashing imply Perfect One)
If the two hash functions h1 : U → [0..m1 − 1] and
h2 : U → [0..m2 − 1] are orthogonal, their concatenation
(h1, h2) is perfect.

Proof. We start with two hash hash functions h1 and h2. Let
s be any state in U . Given (h1(s), h2(s)) = (h′1(s), h

′
2(s))

we have h1(s) = h1(s′) and h2(s) = h2(s′). Since h1 and
h2 are orthogonal, this implies s1 = s2. �

In case of orthogonal hash functions, with small m1 the
value of h1 can be encoded in the file name, leading to a
partitioned layout of the search frontier, and a smaller hash
value h2 to be stored explicitly. Both orthogonality and fron-
tier search mainly improve hardly cooperate with bitvector
representation of the search space.

The other important property of a perfect hash function
for an implicit state space search is that the state vector can
be reconstructed given the hash value.

Definition 7 (Inversible Hash Function) A perfect hash
function h is inversible, if given h(s), s ∈ S can be recon-
structed. The inverse h−1 of h is a mapping from [0..m− 1]
to S.

For an implicit encoding of the search space (Cooperman
& Finkelstein 1992), in which array indices serve as state
descriptors, inversible hash functions are required.

For permutation games, linear time and space algorithms
compute the index (rank) and its inverse (unrank). For the
design of a minimum perfect hash function for the sliding-
tile puzzle, we observe that in a lexicographic ordering every
two adjacent permutations π2i and π2i+1 have a different
solvability status.

Definition 8 (Lexicographic Rank, Inverted Index) The
lexicographic rank of permutation π (of size N) is defined
as

∑N−1
i=0 di · (N − 1 − i)! where the vector coefficients di

are called the inverted index.

The coefficients di are uniquely determined. The parity
of a permutation is known to match (

∑N−1
i=0 di) mod 2.

In order to hash a sliding-tile puzzle state to
{0, . . . , (nm)!/2 − 1}, we can compute the lexico-
graphic rank and divide it by 2. Unranking is slightly
more involved, as we have to determine, which of the

two permutations π2i and π2i+1 of puzzle with index i is
reachable.

Korf & Schultze (2005) use two lookup tables with a
space requirement of O(2N logN) bits to compute lexico-
graphic ranks. Bonet (2008) discusses time-space trade-offs
and provides a uniform algorithm that takes O(N logN)
time and O(N) space.

Definition 9 (Parity Preserving) A permutation problem is
parity-preserving, if all moves preserve the parity of the per-
mutation.

Parity-preservation allows to separate solvable from in-
solvable states in several permutation games. Examples are
the sliding-tile puzzles, the Rubik’s cube, the Top-Spin puz-
zle (with even k and odd n), and the Pancake problem (with
k always being even). If the parity is preserved, the state
space can be compressed.

Definition 10 (Move Alternation Property) A property p
is move-alternating, if the parity of p(s) for all actions from
s to s′ toggles, i.e., p(s′) mod 2 = (p(s) + 1) mod 2.

As a result, p(s) is the same for all states s in one BFS
layer. In a mixed representation of two subsequent layers,
states s′ in the next BFS layer can be separated by know-
ing p(s′) = x 6= y = p(s). Two examples for a move-
alternation property are the heuristic value or the index of
the blank in the sliding tile puzzle. Moreover, many pattern
database heuristic often have the property either to increase
or to decrease by one with each move in original space.

Efficient Ranking and Unranking with Parity
While experimenting with the GPU, we observed that exist-
ing ranking and unranking algorithms wrt. the lexicographic
ordering are rather slow. Hence, we study the more efficient
Myrvold Ruskey ordering in more detail, and show that the
parity of a permuation can be derived on-the-fly.1 For GPU
execution, we additionally avoid recursion (see Alg. 1).

Algorithm 1 unrank(r)
1: π := id
2: parity := false
3: while N > 0 do
4: i := N − 1
5: j := r mod N
6: if i 6= j then
7: parity := ¬parity
8: swap(πi, πj)
9: r := r div N

10: N := N − 1
11: return (parity, π)

Theorem 3 The parity of a permutation for an rank r in the
Myrvold & Ruskey’s ordering can be computed on-the fly in
the unrank function depicted in Alg. 1.

1In our results, we always refer to Myrvold and Ruskey’s rank1
and unrank1 functions.

Proof. In the unrank function we always haveN−1 element
exchanges. For swapping two elements u and v at position
i and j, resp., with i 6= j we count 2(j − i − 1) + 1 trans-
positions (u and v are the elements to be swapped, x is a
wild card for any intermediate elements): uxx . . . xxv →
xux . . . xxv → . . . → xx . . . xxuv → xx . . . xxvu →
. . . → vxx . . . xxu. As 2(j − i − 1) + 1 mod 2 = 1, each
transposition either increases or decreases the parity of the
number of inversions, so that the parity toggles for each it-
eration. The only exception is if i = j, where no change
occurs. Hence, the parity of the permutation can be deter-
mined on-the-fly in Myrvold & Ruskey’s algorithm.

�

Theorem 4 Let π(r) denote the value returned by Myr-
vold & Ruskey’s unrank function given index r. Then π(r)
matches π(r +N !/2) except of swapping π0 with π1.

Proof. The last call to swap(πN−1, πr mod N) in Myrvold
and Ruskey’s unrank function is swap(π0, πr mod 1), which
resolves to either swap(π1, π1) or swap(π1, π0). Only the
latter one induces a change.

If r1, . . . , rN−1 denote the indices of r mod N in the iter-
ations 1, . . . , N − 1 of Myrvold and Ruskey’s unrank func-
tion, then rN−1 = b. . . br/(N − 1)c . . . /2c, which resolves
to 1 for r ≥ N !/2 and 0 for r < N !/2. �

Two-Bit Breadth-First Search
In the domain of Caley graphs, Cooperman & Finkelstein
(1992) show that, given a perfect and inversible hash func-
tion two bits per state are sufficient to conduct a complete
breadth-first exploration of the search space. The running
time of their approach (shown in Alg. 2) is determined by
the size of the search space times the maximum breadth-first
layer times the efforts to generate the children. Each node is
expanded at most once. The algorithm uses two bits encod-
ing numbers from 0 to 3, with 3 denoting an unvisited state,
and 0,1,2 denoting the current depth value modulo 3. The
main effect is that this allows to distinguish newly generated
states and visited states from the current layer.

For non-minmimal perfect hash functions, determining all
reachable states is important to distinguish to good for the
bad ones. This includes filtering of terminal states in two
player games like tic-tac-toe. For tic-tac-toe 5,478 states are
reachable. A simple hash function maps tic-tac-toe posi-
tions to |{O,X,−}|9 = 19, 683. In this case, the efficiency
is d19, 683/5, 478e = 4 so that an implicit representation
is fortunate. Once generated, retrograde analysis can be ap-
plied, calling for another few bits per state.

A complete BFS traversal of the search space is
very important for the construction of pattern databases.
Korf (2008) has applied the algorithm to generate the state
spaces for hard instances of the Pancake problem I/O effi-
ciently.

One-Bit Reachability
The simplification in Algorithm 3 allows to generate the en-
tire state space using one bit. If the successor’s position is

Algorithm 2 Two-Bit-Breadth-First-Search (init)
1: for all i := 0, . . . , N !− 1 do
2: Open[i] := 3
3: Open[rank(init)] := level := 0
4: while Open has changed do
5: level := level + 1
6: for all i := 0, . . . , N !− 1 do
7: if Open[i] = (level− 1) mod 3 then
8: succs := expand(unrank(i))
9: for all s ∈ succs do

10: if Open[rank(s)] = 3 then
11: Open[rank(s)] := level mod 3

smaller than the actual one, it will be expanded in the next
run, otherwise in the same run.

Algorithm 3 One-Bit-Reachability (init)
1: for all i := 0, . . . , N !− 1 do
2: Open[i] := false
3: Open[rank(init)] = true
4: while Open has changed do
5: i := 0, . . . , N !− 1
6: if Open[i] = true then
7: succs := expand(unrank(i))
8: for all s ∈ succs do
9: Open[rank(i)mod (N !/2)] := true

As we do not distinguish between open and closed nodes,
the algorithm may expand a node multiple times.

Theorem 5 The number of scans in the algorithm One-Bit-
Reachability is bounded by the maximum BFS layer.

Proof. Let Lb(i) be the BFS-layer and Lo(i) be the layer
in the algorithm One-Bit-Reachability. Inductively, we have
Lo(i) ≤ Lb(i). Evidently, Lo(init) = Lb(init) = 0. For any
path (s0, . . . , sd) to the state with index i generated by BFS,
we have Lo(sd−1) ≤ Lb(sd−1) by induction hypothesis. All
successors of sd are generated in the same iteration (if their
index value is larger) or in the next iteration (if their index
value is smaller) such that Lo(sd) ≤ Lb(sd) �

One-Bit Breadth-First Search
In the advent of a move-alternation property (Def. 10), we
can perform BFS using only one bit per state. We exemplify
the considerations in the sliding-tile puzzles. We select the
permutation ordering of Myworld and Ruskey.

The partitionB0, . . . , Bnm into buckets has the additional
advantage that we can determine, which bucket a successor
belongs to (Zhou & Hansen 2004). Moreover, we observe
that the blank position in puzzles with an odd number of
columns at an even breadth-first level is even and for each
odd breadth-first level it is odd.

For such a factored representation of the sliding-tile puz-
zles, a refined exploration in Alg. 4 retains the breadth-first
order, by means that a bit for a node is set for the first time
in its BFS layer. The bitvector Open is partioned into nm

parts, which are expanded depending on the breadth-first
level (line 7. The directions in which the blank can move
(R-right, L-left, D-down,U-up, see line 9), are expanded in
parallel using different threads.

As mentioned above, the rank of a permutation does not
change by a horizontal move of the blank. This is exploited
in line 11 to write the ranks directy to the destination bucket
using a bitwise-or on the bitvector from layer level − 2 and
level. The vertical moves are unranked, moved and ranked
from line 13 onwards. When a bucket is done, the next one
is skipped and the next but one is expanded The algorithm
terminates, when no new successor is generated.

Algorithm 4 One-Bit-Breath-First-Search (init)
1: for blank = 0, . . . , nm do
2: for i = 0, . . . , (nm− 1)!/2− 1 do
3: Open[blank][i] := false
4: Open[blank(init)][rank(init) mod (nm−1)!/2] := true
5: level := 0
6: while Open has changed do
7: blank := level mod 2
8: while blank ≤ nm do
9: for all d ∈ {R,L,D,U} do

10: dst := newblank(blank, d)
11: if d ∈ {L,R} then
12: Open[dst] := Open[dst] or Open[blank]
13: else
14: for all i with Open[blank][i] = true do
15: (valid, π) := unrank(i)
16: if ¬valid then
17: swap(π0, π1)
18: succ := expand(π, d)
19: r := rank(succ) mod (N − 1)!/2
20: Open[dst][r] := true
21: blank = blank + 2
22: level = level + 1

Even though some states are expanded several times the
following result is immediate.
Theorem 6 Let the population count pcl of level l be the
number of bits set after the l-th scan. Then the number of
states in BFS-level l is |Layerl| = pcl − pcl−1.

Port on the GPU
Let us consider porting the above algorithms on the GPU.
After some initial experiments, we chose the design to keep
the entire or partitioned state space bitvector in RAM and
to move the array indices (ranks) to the GPU. For smaller
BFS layers this means that a smaller amount of states are
expanded. As the number of successors is known in advance
with each rank value we reserve space for its successors.

In larger instances that exceed main memory capacities,
we additionally maintain write buffers in RAM to avoid ran-
dom access on disk. Once the buffer is full, it is flushed
to disk. Then, in one streamed access, all corresponding
bits are set. We first thought that sorting the ranks on the
GPU with GPU sorting was faster, but then resort to flusing
bitvector partitions.

010010101 010010101 010010101 010010101

0010

FLUSH

EXPAND(GPU)

(GPU)
RANK UNRANK

(GPU) (GPU)
RANK

(GPU) (GPU)
SORTSORT

FLUSH

B0 B1 B2 Bnm

rank(π3)
rank(π0) rank(π2)
rank(π1)

Figure 3: GPU Exploration of a Sliding-Tile Puzzle State
Space Search stored as a Bitvector in RAM. (GPU sorting
the indices to flush is optional and was not used in the ex-
periments).

The setting is exemplified for the sliding-tile puzzle do-
main in Fig. 3. We see the “blank-partitioned” breadth-first
state space residing on disk that is read into RAM and moved
to the GPU to be unranked, expanded and ranked again.

We have used pthreads as an additional multi-threading
support. The partitioned state space was divided on multiple
hard disks to increase the reading and writing bandwith and
to enable threads to use its own hard disk.

To sample a move-alternation property different to the
blank’s position, in the sliding-tile puzzles the Manhattan
distance heuristic value has be computed on the GPU by
processing the unranked permutation. Even though the es-
timate can be computed incrementally in constant time, for
the sake of generality we prefer computing it from scratch
by cumulating absolute distances for all tiles.

Breadth-First Heuristic Search
The option of computing the heuristic value efficiently on
the GPU suggests to also accelerate heuristic search. By
the large reduction in state space due to the directedness of
the search and by the lack of a perfect hash for the set of
reachable state space in heuristic search, at least for simpler
instances bitvector compression for entire search space is of-
ten not the most space-efficient option. However, as bitvec-
tor manipulation is fast, for hard instances we have obtained
runtime advances wrt. single core experiments.

A disk-based variant of A* with delayed duplicate detec-
tionis due to Edelkamp, Jabbar, & Schrödl (2004). Alter-
natives are frontier A* by Korf 2004, and external-memory
breadth-first heuristic search by Zhou & Hansen 2005.

For our case study, we have ported breadth-first heuristic
search (BFHS) to the GPU. For a given upper bound U on
the optimal solution length and current BFS-level g the GPU
receives the value U − g as the maximal possible h-value,
and marks states with larger h-value as invalid.

Experiments
We conducted the experiments on an AMD Athlon(tm) 64
X2 Dual Core Processor 3800+ sytem with 4 GB RAM and
840 GB storing space, divided on 4 hard disks. The GPU

used was a NVIDIA N280GTX MSI with 1GB VRAM and
240 cores.

Rubik’s Cube
Unfortunately, we have not been able to conduct an experi-
ment in Rubik’s cube. Assuming one bit per state, an im-
practical amount of 4.68 exabytes storage for performing
full reachability. For generating upper bounds, however,
bitvector representations of subspaces have been shown to
be efficient (Kunkle & Cooperman 2007).

Sliding-Tile Puzzle
The first set of experiments in Table 1 shows the gain of
integrating bitvector state space compression with in BFS in
different instances of the Sliding-Tile puzzle.

We run the one- and two-bit breadth-first search algorithm
on various instances of the sliding-tile-puzzle with RAM re-
quirements from 57 MB up to 4 GB. The 3 × 3 versio was
simply too small to show significant advances, while even in
partitioned form a complete exploration on a bit vector rep-
resentation of the 15-Puzzle requires more RAM than avail-
able. Moreover, the predicted amount of 1.2 TB hard disk
space is only slightly smaller than the 1.4 TB of frontier BFS
search reported by (Korf & Schultze 2005).

For measuring the speed-up on a matching implementa-
tion we compare the GPU performance with a CPU emula-
tion on a single core2.

We first validated that all states were generated and
equally distributed among the possible blank positions.
Moreover, the maximum BFS layer for symmetric puzzles
matched (53 for 3× 4 and 4× 3 as well as 63 for 2× 6 and
6× 2).

For the 2-Bit BFS implementation we observe a moderate
speed-up by a factor between 2 and 3, which is due to the fact
that the BFS layers of the instances are too small. For such
small BFS layers, side processing like copying the indices
to the VRAM is expensive compared to the gain achieved
by parallel computation on the GPU. Unfortunately, the next
larger instance (7×2) was too large for the amount of RAM
in the machine (it needs 3 × 750 MB = 2250 MB for Open
and 2 GB for reading and writing indices to the VRAM).

For the 1-Bit BFS implementation the speed-up increases
to a factor between 7 and 10 in the small instances. Many
states are re-expanded in this approach, inducing more work
for the GPU and exploits its potential of parallel computa-
tion. Partitions being too large for the VRAM are split and
processed in chunks of about 250 millions indices (for the
7×2 instance). A quick calculation shows that the savings of
GPU computation are large. We noticed, that the GPU has
the capability to generate 83 million states per second (in-
cluding unranking, generating the successors and computing
their rank) compared to about 5 million states per second of
the CPU. As a result, for the CPU experiment that ran out

2This way the same code and work was executed on the CPU
and the GPU. The emulation was run with one thread to minimize
the work for thread communication on the CPU. In future releases
of its compiler NVIDIA will support a multi-core emulation mode,
so far we are deemed to use the single core one.

2-Bit 1-Bit
Problem Time GPU Time CPU Time GPU Time CPU
(2× 6) 70s 176s 163s 1517s
(3× 4) 55s 142s 98s 823s
(4× 3) 64s 142s 104s 773s
(6× 2) 86s 160s 149s 1110s
(7× 2) o.o.m. o.o.m. 13590s o.o.t.

Table 1: Comparing CPU with GPU Performances in 1 and
2-Bit BFS in the Sliding-Tile Puzzle Domain.

Problem Index Blank Time GPU Time CPU
(2× 6) 18295101 5 33s 118s
(3× 4) 5840451 9 41s 220s
(4× 3) 1560225 3 43s 257s
(6× 2) 799911 1 32s 117s
(2× 7) 2921466653 6s 119s 2711s

Table 2: Comparing CPU with GPU Performances in 1-Bit
BFHS in the Sliding-Tile Puzzle Domain.

of time (o.o.t), which we stopped after one day of execution,
we predict a speed-up factor of at least 16.

For BFHS, we measure the effect of computing the esti-
mate together with the expansion on the GPU (see Table 2).
For the puzzles we choose hardest instances located in the
deepest BFS layer from a previous BFS run as the initial
state (its rank is provided in Table 2). The speed-up ranges
in between 3 and 6 for small puzzle sizes and scales to 22 for
large puzzles. This can be attributed to the fact that for small
problems the number of states copied to the GPU is limited.
There, the effect of parallel computation is clearly visible
and we also notice that the additional burden of computing
the Manhattan distance heuristic from scratch is neglectible.

Top-Spin Problems
The results for the (n, k)-Top-Spin problems for a fixed
value of k = 4 are shown in Table 3. We see that the ex-
periments validate the theoretical statement of Theorem 1
that the state spaces are of size (n − 1)!/2 for an odd value
of n3. For an even value we have (n − 1)! as expected. For
large values of n, we obtain a significant speed-up of GPU
computation of more than factor 30.

Pancake Problems
The GPU and CPU running time results for the n-Pancake
problems are shown in Table 4. Similar to the Top-Spin puz-
zle for a large value of n, we obtain a speed-up factor of
more than 30 wrt. running the same algorithm on the CPU.

Conclusion
In this paper we studied the application of GPU computation
in some AI search domains. We show how to apply GPU-

3At least the Top-Spin implementation of Rob Holte and likely
the one of Ariel Felner/Uri Zahavi do not consider parity com-
pressed state spaces.

n States Time GPU Time CPU
6 120 0s 0s
7 360 0s 0s
8 5040 0s 0s
9 20160 0s 0s
10 362880 0s 6s
11 1814400 1s 35s
12 39916800 27s 920s

Table 3: Comparing CPU with GPU Performances in 2-Bit
BFS in the Top-Spin Domain.

n States Time GPU Time CPU
9 362880 0s 4s

10 3628800 2s 48s
11 39916800 21s 641s
12 479001600 290s 9187s

Table 4: Comparing CPU with GPU Performances in 2-Bit
BFS in Pankake Problems.

based BFS, enjoy an implicitly encoded search frontier, and
obtain significant speed-ups.

Two-bit BFS is applicable if inversible and perfect hash
functions are available. One-bit reachability shows an inter-
esting time-space trade-off, and one-bit BFS is applicable if
we can find an efficient move-alternation property.

The speed-ups of up to factor 30 and more compare well
with speeding-up external-memory with parallel search on
multiple cores and/or clusters (Korf & Schultze 2005; Zhou
& Hansen 2007; Edelkamp & Jabbar 2006).

To compute inversible minimal perfect hash functions for
the permutation games, we studied two different orders and
took and extended the more efficient one by Myrvold and
Ruskey. For parallel expansion on the GPU, due to the little
amount of available shared RAM of 16K, we preferred the
space requirements for ranking and unranking to be small.

The one- and two-bit breadth-first search results indicate
the use of bit-state tables to compress pattern databases in
regular domains. Using two bits per state and by storing the
mod-3 value of the BFS-level, we can determine its absolute
value by backward construction of its generating path. One
shortest path predecessor with mod-3 value of BFS-level k
appears in level k − 1 mod 3. Having the BFS-level as the
lookup value of the initial state, the pattern database lookup-
values can then be determined incrementally.

References
Bonet, B. 2008. Efficient algorithms to rank and unrank
permutations in lexicographic order. In AAAI-Workshop on
Search in AI and Robotics.
Botelho, F. C., and Ziviani, N. 2007. External perfect
hashing for very large key sets. In CIKM, 653–662.
Botelho, F. C.; Pagh, R.; and Ziviani, N. 2007. Simple and
space-efficient minimal perfect hash functions. In WADS,
139–150.

Chen, T., and Skiena, S. 1996. Sorting with fixed-length
reversals. Discrete Applied Mathematics 71(1–3):269–295.
Cooperman, G., and Finkelstein, L. 1992. New methods for
using Cayley graphs in interconnection networks. Discrete
Applied Mathematics 37/38:95–118.
Dweighter, M. 1975. Problem e2569. American Mathe-
matical Monthly (82):1010.
Edelkamp, S., and Jabbar, S. 2006. Large-scale directed
model checking LTL. In Model Checking Software (SPIN),
1–18.
Edelkamp, S., and Sulewski, D. 2008. Model checking via
delayed duplicate detection on the GPU. Technical Report
821, University of Dortmund.
Edelkamp, S.; Jabbar, S.; and Schrödl, S. 2004. External
A*. In German Conference on Artificial Intelligence (KI),
233–250.
Gates, W. H., and Papadimitriou, C. H. 1979. Bounds for
sorting by prefix reversal. Discrete Math. 27:47–57.
Korf, R. E., and Schultze, T. 2005. Large-scale parallel
breadth-first search. In National Conference on Artificial
Intelligence (AAAI), 1380–1385.
Korf, R. E. 1997. Finding optimal solutions to Rubik’s
Cube using pattern databases. In National Conference on
Artificial Intelligence (AAAI), 700–705.
Korf, R. E. 2003. Breadth-first frontier search with delayed
duplicate detection. In Model Checking and Artificial In-
telligence (MOCHART), 87–92.
Korf, R. E. 2004. Best-first frontier search with delayed
duplicate detection. In National Conference on Artificial
Intelligence (AAAI), 650–657.
Korf, R. E. 2008. Minimizing disk I/O in two-bit-breath-
first search. In National Conference on Artificial Intelli-
gence (AAAI), 317–324.
Kunkle, D., and Cooperman, G. 2007. Twenty-six moves
suffice for Rubik’s cube. In International Symposium on
Symbolic and Algebraic Computation (ISSAC), 235 – 242.
Munagala, K., and Ranade, A. 1999. I/O-complexity of
graph algorithms. In Symposium on Discrete Algorithms
(SODA), 687–694.
Owens, J. D.; Houston, M.; Luebke, D.; Green, S.; Stone,
J. E.; and Phillips, J. C. 2008. GPU computing. Proceed-
ings of the IEEE 96(5):879–899.
Zhou, R., and Hansen, E. A. 2004. Structured duplicate
detection in external-memory graph search. In National
Conference on Artificial Intelligence (AAAI), 683–689.
Zhou, R., and Hansen, E. A. 2005. External-memory pat-
tern databases using structured duplicate detection. In Na-
tional Conference on Artificial Intelligence (AAAI), 1398 –
1405.
Zhou, R., and Hansen, E. A. 2007. Parallel structured
duplicate detection. In National Conference on Artificial
Intelligence (AAAI), 1217–1222.

