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Abstract

Symmetry is an important feature of many combinatorial
search problems. We propose a new method for dynamically
posting static symmetry breaking constraints during search.
This method is based on the observations that any symme-
try of a set of symmetry breaking constraints can be used to
break symmetry, and different symmetries pick out different
solutions. We choose which symmetry to post as branching
decisions force the choice. Unlike other dynamic methods,
we are not restricted to breaking symmetry with lexicograph-
ical ordering constraints. We prove that our method is correct
and only eliminates symmetric solutions. We also identify
some common conditions under which it eliminates all sym-
metric solutions. This approach inherits good properties of
both dynamic and static symmetry breaking methods: we can
have fast propagation on the posted symmetry breaking con-
straints without conflicting with the branching heuristic. Ex-
perimental results show that the method performs well.

Introduction
Many combinatorial search problems contain symmetry. For
instance, the colours in a graph colouring problem are inter-
changeable. If we have a proper colouring of a graph, we can
permute the colours and still have a proper colouring. As a
second example, the bins in a bin packing problem are inter-
changeable. If we have a packing into bins, we can swap any
two bins and still have a packing. The presence of symme-
try hinders the search effort, as the search procedure might
need to explore exponentially many symmetric parts of the
search space that contain no solutions. Therefore, we need
to factor such symmetry out of the search space to be able to
find solutions efficiently.

In constraint programming, one way to deal with symme-
try is to add constraints statically which eliminate symmetric
solutions (see, for instance, (Puget 1993; Shlyakhter 2001;
Flener et al. 2002; Aloul, Sakallah, and Markov 2003;
Law and Lee 2006; Walsh 2006)). For example, we can
add constraints which limit search to the lexicographically
least solution in each symmetry class (Crawford et al. 1996).
Another way to deal with symmetry (which is not limited
to constraint programming) is to modify the search pro-
cedure so that it dynamically avoids symmetric solutions
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(see, for instance, (Fahle, Schamberger, and Sellmann 2001;
Gent and Smith 2000; Roney-Dougal et al. 2004)). Each
method has advantages and disadvantages. Static meth-
ods are usually simple to implement and are often highly
effective. Even for problems with many symmetries, a
small number of static symmetry breaking constraints can
often eliminate much or all of the symmetry. However,
static methods pick out particular solutions in each symme-
try class, and the branching heuristic may conflict with this
choice. Dynamic methods, on the other hand, do not conflict
with the branching heuristic, but often perform poorly when
there are many symmetries. In addition, dynamic methods
do not prune the search space. With static methods, propa-
gation between problem and symmetry breaking constraints
can eliminate large parts of the search tree.

We propose here a new method for breaking symmetry
that combines together good features of both approaches.
This method can post any type of static symmetry breaking
constraint dynamically during search. The method makes
symmetry breaking insensitive to the branching heuristic,
whilst still pruning the search space by propagation. Whilst
the method has been developed in the context of constraint
programming, it could be easily adapted to work in other
types of combinatorial search.

Background
A constraint satisfaction problem (CSP) is of a set of vari-
ables Xi, each with a domain of values, and a set of con-
straints C specifying allowed combinations of values for
subsets of variables. A solution is an assignment to the vari-
ables satisfying the constraints. We write sol(C) for the set
of all solutions to the constraints C. A common method to
find a solution of a constraint satisfaction problem is back-
tracking search. Constraint solvers typically prune the back-
tracking search space by enforcing a local consistency prop-
erty like domain consistency. A constraint is domain consis-
tent iff for each variable, every value in its domain can be ex-
tended to an assignment satisfying the constraint. We make
a constraint domain consistent by pruning values for vari-
ables which cannot be in any satisfying assignment. During
the search for a solution, a constraint can become entailed.
A constraint is entailed when any assignment of values from
the respective domains satisfies the constraint, For instance,
X1 < Xn is entailed iff the largest value in the domain of



X1 is smaller than the smallest value in the domain ofXn. A
constraint is and dis-entailed when its negation is entailed.
For instance, X < Y is dis-entailed if and only if the small-
est value in the domain of X is larger than or equal to the
largest value in the domain of Y .

Constraint satisfaction problems can contain symmetry.
Although detecting symmetry is an active area in research,
we concern ourselves here with exploiting symmetry to im-
prove search. We consider two types of symmetry (see (Co-
hen et al. 2006) for more discussion). A variable symme-
try is a permutation of the variables that preserves solutions.
Formally, a variable symmetry is a bijection σ on the indices
of variables such that ifX1 = d1, . . . , Xn = dn is a solution
then Xσ(1) = d1, . . . , Xσ(n) = dn is also. A value symme-
try, on the other hand, is a permutation of the values that pre-
serves solutions. Formally, a value symmetry is a bijection θ
on the values such that if X1 = d1, . . . , Xn = dn is a solu-
tion then X1 = θ(d1), . . . , Xn = θ(dn) is also. Symmetries
can more generally act on both variables and values. Our
methods also work with such symmetries. As the inverse of
a symmetry and the identity mapping are symmetries, the set
of symmetries of a problem forms a group under the com-
position operator ◦. We will use a simple running example
which has a small number of variable and value symmetries.
This example demonstrates that we can use symmetry itself
to pick out different solutions in each symmetry class. The
computational challenge is to adapt this simple idea to deal
with large number of symmetries.
Running Example. The all interval series problem
(prob007 in CSPLib.org) asks for a permutation of 0 to n−1
so that neighbouring differences form a permutation of 1 to
n−1. We model this as a CSP withXi = j iff the ith number
is j. One solution for n = 11 is:

X1, X2, . . . , X11 = 3, 7, 4, 6, 5, 0, 10, 1, 9, 2, 8 (a)
The differences form a permutation of 1 to 10:

4, 3, 2, 1, 5, 10, 9, 8, 7, 6
This model has a number of different symmetries. First,

there is a variable symmetry σrev that reverses any solution:
X1, X2, . . . , X11 = 8, 2, 9, 1, 10, 0, 5, 6, 4, 7, 3 (b)

Second, there is a value symmetry θinv that inverts values. If
we subtract all values in (a) from 10, we generate a second
(but symmetric) solution:

X1, X2, . . . , X11 = 7, 3, 6, 4, 5, 10, 0, 9, 1, 8, 2 (c)
Third, we can do both. By reversing and inverting (a), we
generate a fourth (but symmetric) solution:

X1, X2, . . . , X11 = 2, 8, 1, 9, 0, 10, 5, 4, 6, 3, 7 (d)
The model thus has four symmetries in total: σid (the iden-
tity mapping), σrev , θinv , and θinv ◦ σrev . ♣

Symmetry breaking
One method to deal with symmetry is to add constraints to
eliminate symmetric solutions (Puget 1993). Two important
properties of symmetry breaking constraints are soundness
and completeness. A set of symmetry breaking constraint
is sound iff it leaves at least one solution in each symmetry
class, and complete iff it leaves exactly one solution.

Running Example. Consider again the all interval series
problem. To eliminate the reversal symmetry σrev , we can
post the constraint:

X1 < X11 (1)

This eliminates solution (b) as it is the reversal of (a). To
eliminate the value symmetry θinv , we can post:

X1 ≤ 5, X1 = 5⇒ X2 < 5 (2)

This eliminates solution (c) as it is the inversion of (a). Fi-
nally, to eliminate the third symmetry θinv ◦ σrev where we
both reverse and invert the solution, we can post:

〈X1, . . . , X6〉 ≤lex 〈10−X11, . . . , 10−X6〉 (3)

This eliminates solution (a) as it is the reversal and inver-
sion of (d). Note that of the four symmetric solutions given
earlier, only (d) with X1 = 2 and X11 = 7 satisfies all these
symmetry breaking constraints. The other three solutions
are eliminated. ♣

Our symmetry breaking method is based on the observa-
tions that any symmetry of the original problem, when act-
ing on a set of symmetry breaking constraints, produces an-
other set of symmetry breaking constraints. Moreover, each
symmetry of a set of symmetry breaking constraints picks
out a different solution in each equivalence class. We let
branching choose which symmetry to post during search.
This requires us to consider the action of a symmetry on
a symmetry breaking constraint. We have defined the sym-
metry of an assignment as the result of a symmetry acting
on an assignment. We can lift this definition to symmetries
acting on symmetry breaking constraints, producing sym-
metries of symmetry breaking constraints. The action of
a variable symmetry on a constraint changes the variables
on which the constraint acts. More precisely, a variable
symmetry σ applied to the constraint C(Xj , . . . , Xk) gives
C(Xσ(j), . . . , Xσ(k)). The action of a value symmetry is
also easy to compute. A value symmetry θ applied to the
constraint C(Xj , . . . , Xk) gives C(θ(Xj), . . . , θ(Xk)).
Running Example. To illustrate how we can break symme-
try in the all interval series problem with the symmetry of
a set of symmetry breaking constraints, we consider sym-
metries of (1), (2) and (3). These break the reflection and
inversion symmetries of the all interval series problem.

If we apply σrev to (1), we get an ordering constraint that
again breaks the reversal symmetry:

Xσrev(1) < Xσrev(11)

This simplifies to:

X11 < X1

If we apply σrev to (2), we get constraints that again break
the inversion symmetry:

X11 ≤ 5, X11 = 5⇒ X10 < 5

Finally, if we apply σrev to (3), we get a constraint that again
breaks the combined reversal and inversion symmetry:

〈X11, . . . , X6〉 ≤lex 〈10−X1, . . . , 10−X6〉



Note that of the four symmetric solutions given earlier, only
(c) satisfies σrev of (1), (2) and (3).

We can also break symmetry with any other symmetry of
the symmetry breaking constraints. For instance, if we apply
θinv ◦ σrev to (1), we get a constraint that again breaks the
reversal symmetry:

10−X11 < 10−X1

This simplifies to:

X1 < X11

If we apply θinv ◦ σrev to (2), we get constraints that again
breaks the inversion symmetry:

10−X11 ≤ 5, 10−X11 = 5⇒ 10−X10 < 5

This simplifies to:

X11 ≥ 5, X11 = 5⇒ X10 > 5

Finally, if we apply θinv◦σrev to (3), we get a constraint that
again breaks the combined reversal and inversion symmetry:

〈10−X11, . . . , 10−X6〉 ≤lex 〈X1, . . . , X6〉

Note that of the four symmetric solutions given earlier, only
(a) satisfies θinv ◦ σrev of (1), (2) and (3). ♣

The running example illustrates that we can break sym-
metry with a symmetry of a set of symmetry breaking con-
straints. We now prove that this holds in general:

Any symmetry of a set of symmetry breaking constraints
itself breaks symmetry.

More precisely, if a set of symmetry breaking constraints
is sound, then any symmetry of these constraints is also
sound. Similarly, if a set of symmetry breaking constraints
is complete, then any symmetry of these constraints is also
complete. In addition, different symmetries of the symme-
try breaking constraints pick out different solutions in each
symmetry class.

Theorem 1. Given a set of symmetries Σ of C, if S is a
sound (complete) set of symmetry breaking constraints for
Σ then σ(S) for any σ ∈ Σ is also a sound (complete) set of
symmetry breaking constraints for Σ.

Proof: (Soundness) Consider s ∈ sol(C ∪ S). Then
s ∈ sol(C) and s ∈ sol(S). We exploit the fact that
σ−1, the inverse of σ is itself a symmetry of C. Hence
σ−1(s) ∈ sol(C). Since s ∈ sol(S), it follows that
σ−1(s) ∈ sol(σ(S)). Thus, σ−1(s) ∈ sol(C ∪ σ(S)).
Hence, there is at least one solution, σ−1(s) in every sym-
metry class of C ∪ σ(S). That is, σ(S) is a sound set of
symmetry breaking constraints for Σ.

(Completeness) Consider s ∈ sol(C∪σ(S)). By a similar
argument to soundness, σ−1(s) ∈ sol(C ∪ S). Hence, there
is at most one solution in every symmetry class of C∪σ(S).
That is, σ(S) is a complete set of symmetry breaking con-
straints for Σ. 2

Posting constraints dynamically
We use these observations to post symmetry breaking con-
straints dynamically during search that do not conflict with
the branching decisions. We will post the symmetry of the
symmetry breaking constraints which is consistent with the
branching decisions made so far. Thus, if the branching
heuristic is smart or lucky enough to branch immediately
to a solution, symmetry breaking will not interfere with this.
Running Example. Consider again the all interval series
problem. Suppose we begin by tryingX1 = 10. Since theXi

are all different, X11 ∈ [0, 9]. Hence, the symmetry break-
ing constraint X11 < X1 is entailed. This is σrev of (1). It
is also θinv of (1). We do not yet need to commit to which of
these two symmetries of the symmetry breaking constraints
we will post. We are sure, however, that we are not post-
ing σid or θinv ◦ σrev of the constraints (1) to (3). These
two symmetries would require X1 > X11, and this is dis-
entailed. We therefore post X11 < X1 and continue search.
This constraint now becomes part of the model and is never
retracted. ♣

The example demonstrates that we post constraints that
are a symmetry of a symmetry breaking constraint once they
are entailed. When there are only a few symmetries, we can
easily implement this with non-backtrackable variables and
reification. Suppose we reify the two ordering constraints:

B1 ⇔ (X1 < X11), B2 ⇔ (X11 < X1)

We then make the Boolean variables, B1 and B2 non-
backtrackable so that, once they are instantiated, their value
remains on backtracking. We assume that our solver posts
the conclusion of an implication when its hypothesis is en-
tailed. Suppose X1 < X11 is entailed. Then B1 will be
set true. As B1 is non-backtrackable, X1 < X11 will
be posted. Unfortunately, posting symmetry breaking con-
straints immediately when they are entailed can sometimes
be too eager.
Running Example. Consider again the all interval series
problem. As before, suppose backtracking has set X1 = 10,
and we have posted the entailed symmetry breaking con-
straint X11 < X1. Now X1 ≥ 5 is also entailed. This is
θinv of the first inequality in (2). If we post this, we com-
mit to breaking symmetry with θinv of (1) to (3). However,
this would rule out breaking symmetry with σrev of (1) to (3)
which are also still consistent with the branching decisions
so far.

Suppose we next try X11 = 5. The assignments to X1

and X11 are only consistent with θinv of (2) and of (3). In
fact, both of these constraints are now entailed. However,
X1 = 10 and X11 = 5 are not consistent with posting σrev
of (3). This would require that:

〈X11, . . . , X6〉 ≤lex 〈10−X1, . . . , 10−X6〉
This is dis-entailed. Hence, our branching decisions have
committed us to break symmetry with θinv of (1) to (3). We
therefore post these constraints. If search continues, we
will discover the unique solution consistent with symmetry
breaking and the initial branching decisions:

X1, X2, . . . , X11 = 10, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5



♣
Note that in a given node of the search tree, it may be the

case that no new constraints are entailed. In this case, the
branching heuristic has not committed to a particular sym-
metry and therefore we do not add any constraints to the
model.

Least commitment rule
We can formalize the symmetry breaking described in the
running example with a simple rule to decide when to post
dynamically a static symmetry breaking constraint. The pro-
posed rule is least committing as it only posts symmetry
breaking constraints once the branching heuristic has forced
their choice. Suppose S is a set of symmetry breaking con-
straints for Σ, and we have posted T , a symmetry of a sub-
set of S. A symmetry σ ∈ Σ is consistent with T iff T is
entailed by σ(S) and inconsistent otherwise. A symmetry
σ ∈ Σ is eliminated by posting some symmetry breaking
constraint c iff σ is consistent with T but inconsistent with
T ∪ {c}. We consider the following least commitment rule
for incrementally posting symmetry breaking constraints:

Given a set of symmetry breaking constraints, if dur-
ing backtracking search a symmetry of one of these
constraints is entailed, this symmetry is consistent with
previously posted symmetry breaking constraints, and
all symmetries eliminated by this entailed constraint
are inconsistent with the current state then we post the
entailed constraint.

We first show that this rule is sound.
Theorem 2. Given a set of symmetries Σ of C, if S is a
sound set of symmetry breaking constraints for Σ then the
least commitment rule using S is a sound symmetry breaking
method.

Proof: The rule only permits constraints of a particular sym-
metry to be posted. By Theorem 1, this is sound. 2

In general, this rule may not be complete even when given
a complete set of symmetry breaking constraints. However,
it is easy to modify the rule so that it is complete. Whenever
we reach a solution, we simply pick a consistent symmetry
and post all the symmetry breaking constraints associated
with this symmetry. We can also define a common prop-
erty of many symmetry breaking constraints for which the
unmodified rule is complete. A set of symmetry breaking
constraints S for the symmetries Σ of C is proper iff S is
sound and complete for Σ and every non-identity symmetry
in Σ maps any solution of S ∪ C onto a different solution.
With a proper set of symmetry breaking constraints, each
solution within a symmetry class is associated with a dif-
ferent symmetry. For instance, constraints (1) to (3) form
a proper set of symmetry breaking constraints. Static sym-
metry breaking constraints for frequently occuring symme-
tries like value interchangeability (Walsh 2006) and partial
variable and value interchangeability (Law et al. 2007) are
proper. This is, however, not the case for complete variable
interchangeability.

We now prove that with a proper set of symmetry break-
ing constraints, the least commitment rule is a sound and

complete symmetry breaking method. That is, it will find
exactly one solution in each symmetry class.

Theorem 3. Given a set of symmetries Σ of C, if S is a
proper set of symmetry breaking constraints for Σ then the
least commitment rule is both sound and complete.

Proof: (Soundness) Immediate as a proper set is sound.
(Completeness) Consider the first solution visited. As the

set of symmetry breaking constraints is proper, only one
symmetry of these constraints will be entailed. All other
symmetries are inconsistent with the current state and are
eliminated. The least commitment rule therefore post this
symmetry of the symmetry breaking constraints. By Theo-
rem 1, as the symmetry breaking constraints are complete,
this eliminates all other solutions in the same symmetry
class. 2

Finally, we observe that with certain symmetry breaking
constraints, the least commitment rule is equivalent to post-
ing symmetry breaking constraints as soon as they are en-
tailed. For symmetry breaking constraints like X1 < X11,
as soon as the constraint or its negation is entailed, all vari-
able symmetries are either consistent or they are eliminated.

Comparison with SBDS
Perhaps closest in spirit to our method is SBDS. This also
posts static symmetry breaking constraints dynamically dur-
ing search according to the choices made by the branching
heuristic (Backofen and Will 1999; Gent and Smith 2000;
Backofen and Will 2002). SBDS can work with any type
of branching decision but for simplicity we assume that
branching decisions are of the form V ar = val. All cur-
rent implementations of SBDS make this assumption. If we
have a symmetry σ, the partial assignment A and have ex-
plored and rejected V ar = val then on backtracking, SBDS
posts:

σ(A)→ σ(V ar 6= val)

This ensures that we never explore the symmetric state to the
one that has just been excluded. Our method also posts static
symmetry breaking dynamically during search. However,
the two methods differ along three important dimensions:

When symmetry breaking constraints are posted:
SBDS posts symmetry breaking constraints when back-
tracking and exploring the second branch of the search
tree; here, on the other hand, we can post symmetry
breaking constraints down either branch;

What symmetry breaking constraints are posted: SBDS
posts symmetries of the current nogood; here, on the
other hand, we can post any type of symmetry breaking
constraint. For instance, as we see in the next section,
we can dynamically post complex symmetry breaking
constraints;

Whether symmetry breaking ever conflicts with branching:
If the branching heuristic goes directly to a solution,
both SBDS and our method permit this. SBDS has
the additional property that it never conflicts with the
branching heuristic at any point in search. Our method
may conflict with the branching heuristic later on in



search as constraint propagation on the posted symmetry
breaking prunes values that branching might have taken.
In fact, our method can be viewed as a generalization of

SBDS to work with symmetry breaking constraints other
than symmetric nogoods. We can identify pathological ex-
amples where the methods perform differently. For exam-
ple, on a simple model of the pigeonhole problem given in
(Walsh 2007), SBDS takes an exponential amount of time
to solve the problem irrespective of the branching heuristic
whilst our method using the symmetry breaking constraints
described in the next section will take just polynomial time.

Comparison with other methods
Jefferson et al, have proposed GAPLex, a hybrid method
that also combines together static and dynamic based sym-
metry breaking (Jefferson et al. 2006). However, unlike our
method, GAPLex is limited to dynamically posting lex or-
dering constraints, and to searching with a fixed variable or-
dering. As a consequence, GAPLex performs poorly when
there are large numbers of symmetries. In addition, GAPLex
is unable to profit from effective dynamic variable ordering
heuristics.

Puget has also proposed “Dynamic Lex”, a hybrid method
that dynamically posts static symmetry breaking constraints
during search (Puget 2003). Puget’s method adds lex or-
dering symmetry breaking constraints dynamically during
search that are compatible with the current partial assign-
ment. There are several differences with the hybrid method
proposed here. The first is that Puget’s method needs to
compute the stabilizers of the current partial assignment.
This requires a potentially expensive graph isomorphism
problem to be solved at each node of the search tree. By
comparison, our method requires simple entailment tests.
The second difference is that Puget’s method needs to limit
the symmetry breaking constraints posted in some way as all
symmetries are compatible with the root node of the search
tree. A third difference is that Puget’s method is limited to
posting lex ordering constraints.

Interchangeable variables and values
To illustrate how our method can post any type of symmetry
breaking constraint, we consider a common type of symme-
try where variables and values partition into interchangeable
sets (Sellmann and Hentenryck 2005; Flener et al. 2006).
Suppose that the n variables partition into a disjoint sets
and variables within each set are interchangeable. Similarly,
suppose that the m values partition into b disjoint sets and
values within each set are interchangeable. We will order
variable indices so thatXp(i) toXp(i+1)−1 is the ith partition
of variables for 1 ≤ i ≤ a, and value indices so that dq(j) to
dq(j+1)−1 is the jth partition of values for 1 ≤ j ≤ b.

Flener et al. (Flener et al. 2006) proved that we can elim-
inate the exponential number of symmetries due to such in-
terchangeability with the following constraints:

Xp(i) ≤ . . . ≤ Xp(i+1)−1

GCC([Xp(i), . . . , Xp(i+1)−1], [d1, . . . , dm], [Oi1, . . . , O
i
m])

(O1
q(j), . . . , O

a
q(j)) ≥lex . . . ≥lex (O1

q(j+1)−1, . . . , O
a
q(j+1)−1)

Where i ∈ [1, a] and j ∈ [1, b], and GCC counts the num-
ber of occurrences of the values in each equivalence class
of variables. That is, Oij = |{k|Xk = dj , p(i) ≤ k <

p(i+1)}|. The signature of dk is (O1
k, . . . , O

a
k), the number

of occurrences of dk in each variable partition. The signa-
ture is invariant to the permutation of variables within each
equivalence class. By ordering variables within each equiva-
lence class, we prevent permutation of interchangeable vari-
ables. Similarly, by ordering the signatures, we prevent per-
mutation of interchangeable values.

We will dynamically post a symmetry of these symme-
try breaking constraints during search. We consider symme-
tries that act along two degrees of freedom: the order of in-
terchangeable variables within a variable partition, and the
order of the signatures of interchangeable values within a
value partition. Let σ be some permutation of the indices of
interchangeable variables. Then we can break the symmetry
of variable interchangeability with the following symmetry
of the variable ordering constraints:

Xσ(p(i)) ≤ . . . ≤ Xσ(p(i+1)−1)

We shall choose σ dynamically during search according to
the choices of the branching heuristic. Based on the least
commitment rule, we post Xj ≤ Xk whenever Xj and Xk

are interchangeable and Xj < Xk is entailed. Similarly
let θ be some permutation of the indices of interchangeable
values. Then we can break the symmetry of value inter-
changeability with this symmetry of the signature ordering
constraints:

(O1
θ(q(j)), . . . , O

a
θ(q(j))) ≥lex . . . ≥lex (O1

θ(q(j+1)−1), . . .)

We shall choose θ dynamically during search according to
the choices of the branching heuristic. Again, we will post
such lex ordering constraints based on the least commitment
rule.

Special case: only interchangeable variables. Suppose
variables partition into interchangeable sets but the values do
not. Then this method simplifies to the symmetry breaking
rule:

If Xi < Xj is entailed, and Xi and Xj are inter-
changeable then post Xi ≤ Xj .
That is, we break symmetry by ordering interchangeable

variables whenever branching strictly orders them.

Special case: only interchangeable values. Suppose the
values partition into interchangeable sets but the variables
do not. Then this method simplifies to a dynamic form of
value precedence (Law and Lee 2004) in which we order the
first occurrence of interchangeable values. It corresponds to
the symmetry breaking rule:

If dj first occurs before dk, and the two values are in-
terchangeable then post constraints to ensure that dj
always first occurs before dk.

Experiments
We dynamically and statically posted the symmetry break-
ing constraints of Flener et al. (Flener et al. 2006) in Gecode



Instance Static symmetry breaking Our dynamic method SBDS
Lex Antilex Lex/Antilex Lex/Antilex

o t b o t b o t b o t b

1 9 0.02 13 9 316.81 5973 K 9 0.13 105 9 305.25 5973 K
2 17 26.02 99 K 17 0.01 * 0 * 17 0.08 43 17 0 * 0 *
3 14 11.2 46 K 14 0 * 0 * 14 6.94 17 K 14 0 * 0 *
4 11 388.77 1838 K 11 0.01 * 0 * 11 17.82 43 K 11 0 * 0 *
5 - - - 12 69.63 * 2555 K * 12 4.37 8197 12 69.49 * 2555 K *
6 15 37.41 113 K 15 0 * 0 * 15 70.13 148 K 15 0 * 0 *
7 20 72.46 275 K 20 0 * 0 * 20 163.3 392 K 20 0 * 0 *
8 10 41.91 223 K 10 0 * 0 * 10 0.06 17 10 0 * 0 *
9 13 1.32 7012 13 0 * 0 * 13 2.76 7039 13 0 * 0 *
10 - - - 14 0 * 0 * 14 1.02 2117 14 0 * 0 *
11 15 36.84 56 K 15 0 * 0 * 15 0.05 9 15 0 * 0 *
12 10 27.59 160 K 10 0.01 * 0 * 10 62.75 159 K 10 0 * 0 *
13 13 287.15 1293 K 13 0 * 0 * 13 0.05 * 0 * 13 0 * 0 *
14 7 0.01 11 7 5.86 108 K 7 0.13 89 7 5.5 108 K
15 7 52.79 427 K 7 0 * 0 * 7 122.79 428 K 7 0 * 0 *

Table 1: Static versus dynamic symmetry breaking constraints in graph coloring using smallest domain variable ordering and
lexicographic or inverse lexicographic value ordering. The table gives the value of the optimal solution found, as well as the
time and the branches needed to find it and prove optimality. “-” indicates that no solution was found within the timeout. “*”
indicates that optimality was not proven and the result is for just finding the optimal solution.

Instance Static symmetry breaking Our dynamic method SBDS
Lex Antilex Lex/Antilex Lex/Antilex

o t b o t b o t b o t b

1 2894 2.1 2128 1765 553.72 * 828 K * 2894 2.54 2184 1765 532.58 * 828 K *
2 2245 1.87 1836 2194 428.51 * 849 K * 2245 3.38 3585 2194 409.25 * 849 K *
3 2639 19.75 15 K 1685 175.07 * 239 K * 2639 24.2 16 K 1685 159.91 * 239 K *
4 2962 2.69 2008 2610 102.83 * 149 K * 2962 3.34 2136 2610 101.99 * 149 K *
5 3634 3.67 3797 3286 107.2 * 233 K * 3634 4.69 3930 3286 102.32 * 233 K *
6 3358 2.22 2094 3322 82.7 * 126 K * 3358 2.71 2196 3322 75.04 * 126 K *
7 3262 1.39 1102 3186 30.53 * 66 K * 3262 2.47 2315 3224 562.71 * 1078 K *
8 3288 3.61 2606 1658 492.53 * 734 K * 3288 4.33 2808 1658 450.71 * 734 K *
9 3434 16.35 14 K 2335 102.6 * 174 K * 3434 20.22 14 K 2335 102.35 * 174 K *
10 2847 4.44 4888 2649 151.09 * 329 K * 2847 5.75 5030 2649 152.73 * 329 K *

Table 2: Static versus dynamic symmetry breaking in the concert hall scheduling problem using smallest domain variable
ordering and lexicographic or inverse lexicographic value ordering within each value partition. Same abbreviations are used as
in Table 1.

2.2.0 and evaluated them on the same two benchmark do-
mains used in a previous study of symmetry breaking for
interchangeable variables and values (Law et al. 2007). Ex-
periments were run on an 2-way Intel Xeon with 6MB of
cache and 4 cores in each processor running at 2GHz. All in-
stances were terminated after 10 minutes. We used smallest
domain as a variable ordering heuristic in each experiment.
As a value ordering heuristic, we used a lexicographical and
anti-lexicographical order of values.

Our experiments are designed to test two hypotheses. The
first hypothesis is that our method of dynamically post-
ing static symmetry breaking constraints is less sensitive
to the branching heuristic than purely static methods. Our
choice of value ordering heuristics demonstrate the impact
on search of inverting the value ordering. Due to the in-
terchangeability of values, other value ordering heuristics
will exhibit similar behaviour. The second hypothesis is that
our method of dynamically posting static symmetry break-
ing constraints explores a smaller search tree than dynamic

methods like SBDS due to propagation of the posted sym-
metry breaking constraints.

We limit our comparison of dynamic methods to compar-
ison against SBDS. Whilst there is a specialized dynamic
symmetry breaking method for interchangeable variables
and values, experiments in (Heller et al. 2008) show that
this is several orders of magnitude slower than static meth-
ods. In addition, dominance detection methods like SBDD
are shown to be three orders of magnitude slower than static
methods in (Heller et al. 2008). Finally, we used SBDS to
break just generators of the symmetry group as breaking the
full symmetry group quickly ran out of memory.

The first set of experiments uses random graph coloring
problems generated in the same way as the previous ex-
perimental study in (Law et al. 2007). There is a vari-
able for each vertex and not-equals constraints between vari-
ables corresponding to connected vertices. All values in this
model are interchangeable. In addition, we introduce vari-
able symmetry by partitioning variables into interchange-



able sets of size at most 8. We randomly connect the ver-
tices within each partition with either a complete graph or
an empty graph, and choose each option with equal proba-
bility. Similarly, between any two partitions there is equal
probability that the partitions are completely connected or
independent. Results for graphs with 40 vertices are shown
in Table 1.

The second set of experiments uses a more structured
benchmark which is again taken from a previous experimen-
tal study (Law et al. 2007). In the concert hall scheduling
problem, we have n applications to use one of m identi-
cal concert halls. Each application has a start and end time
as well as an offer for the hall. We accept applications so
that their intervals do not overlap and the profit (the sum of
the offers of accepted applications) is maximized. We ran-
domly generate instances so that applications are split into
partitions of size at most 8 and within each partition all ap-
plications have the same start and end time and offer. Our
model assigns Xi = j if the ith application is accepted and
placed in hall j, and Xi = m + 1 if it is rejected. Variables
corresponding to applications in the same partition are in-
terchangeable. Values divide into two partitions: the values
1 to m are interchangeable, while the value m + 1 is in a
separate partition. Results for instances with 40 applications
and 10 halls are shown in Table 2.

The results support both our hypotheses. Our dynamic
method is less sensitive to the branching heuristic than the
static method. Using our method, the difference in times
between the two value ordering heuristics was less than the
timing error. Note this also holds for SBDS. In contrast, the
static method can exhibit very poor performance when used
in conjunction with the anti-lexicographical value ordering,
because the branching heuristic guides the search towards
the lexicographically greatest solution, but the static symme-
try breaking constraints eliminate all but the lexicographi-
cally least solution from each equivalence class. Our second
hypothesis, that our method explores a smaller search tree
than SBDS is also confirmed. SBDS was unable to prove
optimality in all but one instance. In addition, on many of
the harder graph coloring instances, our method significantly
outperforms the static method with either ordering. It can
usually quickly find the optimal solution and then use the
set of symmetry breaking constraints induced by this solu-
tion to prove optimality much faster. On the concert hall
scheduling problem, our method is slightly slower than the
best static method, mostly due to the time that it takes to se-
lect a symmetry of the symmetry breaking constraints, but it
is much better than SBDS which takes much longer to find
lower quality solutions.

Conclusions
It is important to factor symmetry out of combinatorial
search. We have described a hybrid method for posting con-
straints during search which eliminate symmetric solutions.
The method is based on the observations that any symme-
try of a set of symmetry breaking constraints itself breaks
symmetry, and that each symmetry picks out a different so-
lution in each symmetry class. We post symmetry breaking
constraints during search as branching decisions force the

choice of a particular symmetry of the symmetry breaking
constraints. We proved that the method is correct in gen-
eral. That is, it will only eliminate symmetric solutions. We
also identified common conditions under which it eliminates
all symmetric solutions. We illustrated the method with a
common type of symmetry where variables and values are
interchangeable. Our approach inherits good properties of
both dynamic and static symmetry breaking methods: we
have fast and efficient propagation on the posted constraints,
yet we do not conflict with the branching heuristic. Whilst
the method has been proposed in the context of backtracking
search in constraint programming, many of the ideas would
appear to apply to combinatorial search in general.
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