1.6-Bit Pattern Databases

Teresa M. Breyer and Richard E. Korf
Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90095
{tbreyer,korf} @cs.ucla.edu

Abstract

We present a new technique to compress consistent pat-
tern databases without loss of information by storing the
heuristic estimate modulo three, requiring only two bits
per entry, or in a more compact representation only 1.6
bits. This enables us to store a pattern database with
four or five times as many entries in the same amount
of memory as an uncompressed pattern database. We
compare both methods to the best existing compression
methods for the Top-Spin puzzle, Rubik’s cube, the 4-
peg Towers of Hanoi Problem, and the 24-puzzle. For
the Top-Spin puzzle and Rubik’s cube we also compare
our best implementation to the respective state of the
art solvers. This compression technique is most useful
where methods for lossy compression fail, for example
where patterns mapping to adjacent entries in the pat-
tern database are not reachable from each other by one
move, such as in the Top-Spin puzzle and Rubik’s cube.

Introduction

Heuristic search algorithms, including A* (Hart, Nilsson, &
Raphael 1968), IDA* (Korf 1985), Frontier A* (Korf et al.
2005), and Breadth-First Heuristic Search (BFHS) (Zhou &
Hansen 2006) use a cost function f to prune nodes. f as-
signs to each state n a cost f(n) = g(n) + h(n), where
g(n) is the cost of the shortest path found so far from the
start state to state n, and h(n) is the heuristic estimate of
the lowest cost to get from n to a goal state. If h(n) never
overestimates the lowest cost from n to a goal state, it is
admissible and optimality of the solution is guaranteed. If
h(n) never decreases by more than the cost of the opera-
tor applied, it is consistent. Formally, h(n) is consistent if
h(n) < ¢(n,m) + h(m) for all neighboring states n and
m, where c¢(n,m) is the cost of the operator to get from
n to m. Most naturally occurring heuristics are consis-
tent, but lossy compression, maximizing over several pattern
databases, or using duality generate inconsistent heuristics
(Zahavi et al. 2007, Felner et al. 2007; Holte et al. 2006;
Zahavi et al. 2008).

For many problems, a heuristic evaluation function can
be calculated before the search and stored in a lookup ta-
ble called a pattern database (PDB) (Culberson & Schaef-

Copyright (© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

fer 1998). For example, for the Towers of Hanoi problem we
choose a subset of the discs, the pattern discs, and ignore the
positions of all non-pattern discs. For each possible configu-
ration of the pattern discs we store the minimum number of
moves required to solve this smaller Towers of Hanoi prob-
lem in a lookup table. In general, a pattern is a projection
of a state from the original problem space onto the pattern
space. In our example the pattern would be the state con-
sisting of only the pattern discs. The projection of the goal
state is called the goal pattern. For each pattern the min-
imum number of moves required to reach the goal pattern
in the pattern space is stored in the PDB. PDBs are con-
structed through a backward breadth-first search from the
goal pattern in the pattern space. For each pattern the entry
in the PDB is the depth at which it is first generated. Under
certain conditions it is possible to sum values from several
PDBs without overestimating the solution cost (Korf & Fel-
ner 2002). For the Towers of Hanoi problem we can partition
all discs into disjoint groups and construct a PDB for each
of these groups. Since each operator moves only one disc, it
only affects discs in one PDB. In general, if there is a way
to partition all variables into disjoint sets of pattern variables
so that each operator only changes variables from one set of
pattern variables, we call the resulting PDBs additive, and
such a set of PDBs are called disjoint.

This paper focuses on lossless compression of PDBs. In
general, the more variables used as pattern variables in a
PDB, the more entries the PDB has, and the more accurate
the resulting heuristic estimate will be. If we can losslessly
compress PDBs, we can fit PDBs with more entries in mem-
ory and thus solve problems with fewer node expansions
than when using the same amount of space for an uncom-
pressed PDB. This research applies to all problem spaces
where operators have unit cost and are reversible.

Examples of Pattern Databases
The Top-Spin Puzzle

The (n, k)-Top-Spin puzzle consists of a circular track hold-
ing n tokens, numbered from 1 to n. The goal is to arrange
the tokens in order. The tokens can be slid around the track,
and there is a turnstile that can flip the k& tokens it holds.
In the most commonly used encoding, an operator is a shift
around the track by 0 to n — 1 positions followed by a re-

versal of the k tokens in the turnstile. Using this encoding,
this puzzle can be implemented as a cyclic buffer where each
operator reverses k consecutive tokens (Felner er al. 2007).
In the physical puzzle the tokens have to be rotated into the
turnslide first.

We construct PDBs for this problem by only considering a
subset of the tokens, the pattern tokens, and for each pattern
storing the number of flips required to arrange the pattern
tokens in order relative to each other. Unlike in the Towers
of Hanoi problem the non-pattern tokens are present, but in-
distinguishable. Each operator reverses k tokens, and these
tokens could belong to different pattern sets. Hence it is
not trivial to construct additive PDBs. Yang et al. (2008)
first suggested a technique to construct more general addi-
tive PDBs for this problem.

Rubik’s Cube

We construct PDBs for Rubik’s cube by only considering
a subset of the cubies. Korf (1997) first solved random in-
stances of Rubik’s cube using the maximum of three differ-
ent PDBs, one based on the 8 corner cubies, and the other
two based on 6 edge cubies each. As in the Top-Spin puzzle,
for this problem it is not trivial to construct additive PDBs.
For Rubik’s cube Yang et al. (2008) were not able to report
any improvements using their more general additive PDBs.

The Sliding-Tile Puzzles

The 15-puzzle is a 4 x 4 sliding-tile puzzle. The minimum
number of moves needed to get a subset of tiles, the pat-
tern tiles, to their goal positions is a lower bound on the
total number of moves required to solve the puzzle, and thus
an admissible heuristic function. For each possible config-
uration of pattern tiles and the blank, this value is stored in
a PDB. If we only count moves of the pattern tiles when
constructing the PDBs, we can use several disjoint groups
of pattern tiles and sum the values from each of these indi-
vidual PDBs to get an admissible heuristic function (Korf
& Felner 2002). To save memory, instead of storing one
heuristic value for each position of the blank and each con-
figuration of the pattern tiles, it is common practice to only
store the minimum over all positions of the blank for each
configuration of the pattern tiles, i.e., the additive disjoint
PDBs are in practice usually compressed by the position of
the blank, making them inconsistent (Zahavi et al. 2007).

Related Work
Mod Three Breadth-First Search

Cooperman & Finkelstein (1992) introduced this method to
compactly represent problem space graphs. A function, also
called a perfect hash function, is used to map each state to
a unique index in a hashtable. This table stores two bits for
each index. Initially all states have a value of three, label-
ing them as not yet generated, and the root has a value of
zero. A breadth-first search of the graph is performed and
the hashtable is used as the open list during search. While
searching the graph, for each state the depth at which it is
first generated is stored modulo three, thus the values zero
to two label states that have been generated. When the root

is expanded, its children are assigned a value of one. In the
second iteration the whole hashtable is scanned, all states
with a value of one are expanded, and states generated for
the first time are assigned a value of two. In the third itera-
tion the complete hashtable is scanned again, all states with
value two are expanded, and states generated for the first
time are assigned a value of zero (three modulo three). In
the following iteration states with value zero are expanded.
Thus the root will be re-expanded, but no new states will
be generated from it. Basically, each state that has been ex-
panded will be re-expanded once every three iterations, but
previously expanded states will not generate any new states.
When no new states are generated in a complete iteration,
the search ends and all reachable states have been expanded
and assigned their depth modulo three.

Given this hashtable and any state, one can easily deter-
mine the depth at which the state was first expanded as well
as a path back to the root. First the state is expanded, then an
operator that leads to a state at one depth shallower (modulo
three) is chosen and that state is expanded. This process is
repeated until the root is generated. The number of steps it
took to reach the root is the depth of the state, and all states
expanded form a path from the root to the original state.

Compressed Pattern Databases

Felner et al. (2007) performed a comprehensive study of
methods to compress PDBs. They concluded that, given lim-
ited memory, it is better to use this memory for compressed
than for uncompressed PDBs. Most of their methods are
lossy, resulting in inconsistent heuristics. They range from
compressing a PDB of size M by a factor of ¢ by using a
simple function that maps c patterns to one compressed en-
try, to more compex methods leveraging specific properties
of problem spaces. To map c patterns to one entry, one can
use the index into the uncompressed PDB and divide it by
¢, to get the index in the compressed database. Alternatively
one can take the original index modulo M /¢, the size of the
compressed PDB. Each entry stores the minimum over the
heuristic estimates of all ¢ patterns mapped to it.

Felner et al. (2007) introduced only one method for loss-
less compression. It is based on cligues. In the context of
PDBs a cligue is defined as a set of patterns all of which are
reachable from each other by one move. Given a clique of
size g, one can store the minimum value d and ¢ additional
bits, one bit for each pattern in the clique. This bit is set
to zero if the pattern’s heuristic value is d or to one if the
heuristic value is d + 1. More generally, a set of z nodes,
where any pair of nodes is at most » moves apart, can be
compressed by storing the minimum value d and an addi-
tional [log, (r + 1)] bits per pattern. For each pattern these
bits store a number between zero and r, where zero stands
for heuristic value d, one for d + 1, up to r for d + r. In the
4-peg Towers of Hanoi problem, patterns differing only by
the position of the smallest disc form a clique of size four, all
one move away from each other. Patterns differing only by
the positions of the smallest two discs form a set of 16 nodes
at most three moves apart and can be compressed using one
byte for the minimum value d and two bits for each pattern
storing whether the heuristic value is d, d+ 1, d+2 or d + 3.

In the sliding-tile puzzle graph, the maximum clique size is
only two or one edge. All tiles are fixed except for one tile
which can be in any one of two adjacent positions. These
two states map to adjacent entries in the PDB and thus can
be efficiently compressed. In the Top-Spin puzzle graph, the
only cliques are edges as well, but these edges connect states
that differ by more than one pattern token, since each move
flips k tokens.

Cliques can also be used for lossy compression. For a
clique of size g, instead of storing the minimum value d and
q additional bits indicating whether each pattern’s heuristic
value is d or d + 1, one can just store d. This introduces
an error of at most one move. Similarly a set of z nodes,
where any pair of nodes is at most » moves apart, can be
compressed by storing the minimum value introducing an
error of at most r moves. For example, if we compress a
PDB for the 4-peg Towers of Hanoi by ignoring the position
of the smallest pattern disc, we can compress by a factor of
four and introduce an error of at most one move. If we ignore
the positions of the smallest two discs, we can compress by
a factor of 16 and introduce an error of at most three moves.

Another lossless compression method used in planning
are symbolic PDBs (Edelkamp 2002; Ball & Holte 2008).
Symbolic PDBs use binary decision diagrams (BDDs) or
algebraic decision diagrams (ADDs) to store a PDB and
for some search spaces significantly reduce the memory
needed to store the PDB. Results of compression rates of
over 100 : 1 are reported. But sometimes they can re-
quire even more memory than the original PDB, for exam-
ple for the 15-puzzle. Finally, another lossy compression
method uses artificial neural networks and learning to com-
press PDBs (Samadi et al. 2008). This method is also able to
compress by large factors, but it requires the uncompressed
PDBs to be build and stored in memory, which is a limiting
factor of this technique.

Two-Bit Pattern Databases

Uncompressed PDBs usually assign one byte for each entry,
which is sufficient as long as the maximum heuristic esti-
mate does not exceed 255. This is the case for all of the
problem spaces we consider here. We reduce this without
loss of information to two bits per pattern state, so we are
able to compress by a factor of four, by using Cooperman
& Finkelstein’s (1992) modulo three breadth-first search to
construct and store losslessly compressed consistent PDBs.
In particular, the two-bit PDB holds the heuristic estimates
modulo three. Even if the original heuristic estimate of a
pattern required more than a byte in the uncompressed PDB,
two bits per pattern state would suffice using our compres-
sion. In general, if the uncompressed PDB used NV bits per
state we are able to compress by a factor of N/2. This
method requires no particular properties of the search space,
except for a consistent heuristic estimate and operators that
have unit edge cost and are reversible. We can store a sin-
gle PDB or a set of disjoint PDBs as two-bit PDBs and we
can use these compressed PDBs with any heuristic search
algorithm, including A*, IDA*, Frontier A*, and BFHS.

h (mod3) g

AN

{40

S
h(s)=4

Figure 1: Two-Bit PDB Lookup of Start State

Algorithm

First we construct the two-bit PDB using Cooperman &
Finkelstein’s (1992) modulo three breadth-first search in the
pattern space with the projection of the goal state onto the
pattern space as the root. To avoid re-expansion of nodes
once every three levels, we keep a first-in first-out queue
of open states on disk. This is a standard method used for
constructing PDBs. We use the modulo three hashtable to
check whether a state has been generated, and to store the
depth modulo three at which a state is first generated, which
is the heuristic estimate modulo three of all preimages of
the state in the original problem space. When the search is
completed, this hashtable is our two-bit PDB.

We can use this two-bit PDB to solve any particular prob-
lem instance using any heuristic search algorithm. Figure 1
shows an example. First, we determine the heuristic estimate
of the start state. We start by projecting the start state onto
our pattern space which gives us the start pattern s. Secondly
we expand the start pattern in the pattern space. At least one
operator will lead to a neighbor one level (modulo three)
closer to the goal pattern g. Then any one of these patterns
is chosen for expansion in the pattern space. In our example
the start pattern has heuristic value one (modulo three) and
we chose one of the two children with heuristic zero (mod-
ulo three) for expansion next. We keep track of the number
of steps taken. This process is repeated until the goal pattern
is generated. The number of steps it took to reach the goal
pattern in the pattern space is the heuristic estimate of the
start state in the original problem space. In our example the
start state has heuristic estimate four.

We store the heuristic estimate of the start pattern together
with the start state in the open list or on the stack, depend-
ing on the search algorithm used. When we generate a new
state, and it is not in our open or closed list in case of A*,
Frontier-A* or BFHS, we have to calculate the heuristic esti-
mate of the child. Figure 2 demonstrates how a two-bit PDB
lookup is done. We take the heuristic estimate of the par-
ent pattern p modulo three, or alternatively we look up the
entry of the parent pattern in the PDB, and we look up the
entry of the child pattern c in the PDB. Comparing these two
modulo three values will tell us whether the child pattern is

@) h(c)=16

© © h(c)=15
h(p)=15 2 h(c)=14

@) h(c)=16
@ @ h(c)=15
h(p)=15 © h(c)=14

©) h(c)=16
®<:@ h(e)=15
h(p)=15 (D h(c)=14

Figure 2: Two-Bit PDB Lookup during Search

a level closer to the goal, further away or at the same level as
the parent. Figure 2 shows all possible lookups in a two-bit
PDB for a parent pattern with heuristic estimate 15. We get
the child’s heuristic estimate by adding one to the parent’s
heuristic estimate, subtracting one from the parent’s heuris-
tic estimate, or assigning the child pattern the same heuristic
estimate as the parent. Finally, we store the child state with
the child’s heuristic estimate in the open list or on the stack
if it does not exceed the upper bound.

In case of multiple PDBs, we construct each PDB using
Cooperman & Finkelstein’s (1992) modulo three breadth-
first search. To solve a problem instance, we determine the
heuristic estimates of the start state for each PDB by back-
tracking from the start pattern to the goal pattern in the pat-
tern space. We store the start state’s heuristic estimates to-
gether with the state in the open list or on the stack. During
search we incrementally calculate each heuristic estimate of
a newly generated state from its parent the same way we did
for a single PDB. In case of additive PDBs, we only need to
calculate the additive heuristic estimate that has the modified
variables as pattern variables. The other heuristic estimates
carry over unchanged from the parent state.

Using Less Than Two Bits

For a consistent PDB, only three values are required to store
the depth modulo three for each pattern. Using two bits per
state allocates four distinct values per pattern, but the fourth
value was only used while constructing the PDB and thus
is not required to store or use the PDB. Instead of two con-
tiguous bits per state, we can compress the PDB using base
three numbers. Two mod three value can be encoded as one
of 9 different values, three mod three values as one of 27 dif-
ferent values, etc. While constructing the PDB we can use
a separate table, which tells us whether a pattern state has
been generated or not. A perfect hash function assigns each
pattern one bit in this table, its used bit. Initially all used bits
are set to zero. When a state is generated its used bit is set to
one. After constructing the PDB we can discard this table of
used bits. The resulting PDB requires log, 3 ~ 1.58 bits per
state and is the most efficient method for lossless compres-
sion of these particular values. Cooperman & Finkelstein
(1992) also mention this improvement.

Comp. h(s) Generated Time Size
None 10.53 43,607,741 12.04 495
Two Bit 10.53 43,607,741 12.83 123
Mod4 9.84 86,184,716 24.75 123
1.6 Bit 10.53 43,607,741 13.57 99
Mod 5 9.63 95,952,807 27.57 99

DB W —| 3

Table 1: Solving the (17,4) Top-Spin Puzzle using a 9-Token
PDB

Theoretically we would need a total of n - log, 3 bits to
store a PDB with n entries or [n - log, 3/8] bytes. But ac-
cessing the correct values per pattern gets computationally
expensive, because it involves integer division and modulo
operators on very large numbers. In particular a PDB would
be represented as a single multi-word number. In our ex-
periments later in this paper we use PDBs that take one gi-
gabyte of memory or more, thus when using 1.58 bits per
pattern we would have to work with one number taking ap-
proximately one gigabyte and extract our heuristic estimates
(modulo three) from that number. Alternatively, we decided
to fit as many patterns as possible in each byte. Each byte
represents 28 = 256 different values, the largest power of
three number that can be stored in one byte is 3° = 243,
thus we can fit five mod three values in one byte. Compared
to using one byte per pattern this allows us to compress by a
factor of five and uses 8/5 = 1.6 bits per pattern, which is
very close to the optimal 1.58 bits per state determined be-
fore. Even with maximal compression only 20 entries could
be encoded in one four-byte word, or 40 entries in one eight-
byte word, thus encoding five entries per byte is just as effi-
cient. Accessing an entry in the 1.6 bit PDB is still slightly
more expensive than accessing an entry in a two-bit PDB,
because it involves integer division by 5 and a modulo oper-
ator to determine the correct byte and the index into the byte.
Then for each possible value of a byte and for each index
into the byte we can store the actual modulo three heuristic
estimate in a lookup table. This table has exactly 243 - 5 en-
tries. In contrast to 1.6-bit PDBs, when using two-bit PDBs
simple shift and bitwise and operators suffice.

Experimental Results
The Top-Spin Puzzle

As mentioned earlier, in the Top-Spin puzzle problem space
graph the largest cliques are of size two, but these cliques do
not correspond to compression of single tokens, since each
move flips k tokens. But mapping patterns to the same com-
pressed entry by applying integer division or modulo to their
index can always be used for compressing. Felner et al.
(2007) compared these two hash functions and established
that using the modulo function performed best for Top-Spin.
Their explanation for this counterintuitive result was that the
distance between two states that are similar, such as two
states differing only by the locations of two tokens, is greater
than the distance between two random states, since each op-
erator flips several tokens at the same time. We compare
Felner et al.’s modulo hash function to our methods. Both
compression methods use the modulo operator, ours stores

the heuristic values modulo three, theirs applies the modulo
operator to the hash function. To avoid confusion, we will
call our methods two-bit, and 1.6-bit PDBs, and their com-
pression method modulo compression.

Table 1 has experimental results on the (17,4) Top-Spin
problem, which has 17 tokens and a turnstile that flips four
tokens. We used IDA* with a PDB consisting of tokens
1 through 9. Our experiments are averaged over 1,000
random initial states, generated by a random walk of 150
moves, because not all permutations of the (17,4) puzzle
are solvable (Chen & Skiena 1996). The average solution
depth of these random initial states is 14.90. The first col-
umn gives the type of compression used. The second column
gives the average heuristic value of the initial state. The third
column gives the average number of nodes generated. The
fourth column gives the average time in seconds required to
solve a problem, and the last column gives the size of the
PDB in megabytes. The rows are ordered by the size of the
PDB starting with the largest one. The first row gives re-
sults using the uncompressed PDB, which uses one byte per
entry. The second row uses the same PDB stored modulo
three using two bits per entry. The third row uses modulo
compression by a factor of four using the same amount of
memory as our two-bit PDB. The fourth row uses even less
memory storing five entries per byte using our 1.6-bit PDB.
The next row uses the same amount of memory using mod-
ulo compression by a factor of five.

One can see that our lossless methods perform almost as
well as the uncompressed PDB, but use only a quarter or a
fifth of memory to store the PDB. Obviously the same num-
ber of nodes are generated. The two-bit PDB also performs
almost equally well time wise. It does not add a significant
time overhead for the slightly more complex PDB lookup.
For the 1.6-bit PDB, there is a slightly larger time overhead
for the more expensive PDB lookup. In comparison, the
modulo compression by a factor of four generates and ex-
pands about twice as many nodes and takes twice as much
time as the uncompressed PDB, because basically random
states are mapped to the same entry in the hashtable and only
the minimum of their heuristic values can be stored. Modulo
compression by a factor of five performs even worse.

Table 2 has similar results on the same data set with a
PDB consisting of the tokens 1 through 10. We could not run
experiments with the uncompressed PDB, because it would
require approximately 4 gigabytes of RAM.

Finally, in Table 3 we use the property that a PDB for to-
kens O to 10 is also a PDB for tokens 1 to 11, 2 to 12, etc.
Thus from one PDB we can actually get up to 17 different
PDB lookups for the (17,4) Top-Spin problem. In Table 3
we compare our best implementation, which uses the maxi-
mum over 8 regular lookups in our 10-token PDB, to Felner
et al.’s (2005) best implementation, which uses the maxi-
mum over 4 regular and 4 dual lookups in an uncompressed
9-token PDB as well as bpmx cutoffs. For an explanation
of this algorithm we refer the reader to Felner ef al.’s paper.
Both implementations use IDA* on the same 1, 000 random
instances. The first column gives the type of compression
used. The second column gives the number of regular (’r’)
and dual (’d’) lookups and the presence of bpmx cutoff (’c’).

Comp. h(s)
Two Bit 11.43

Generated Time Size
5,786,954 1.89 990

B W =

Mod4 10.76 10,969,452 3.59 990
1.6Bit 11.43 5,786,954 199 792
Mod5 10.58 11,945920 391 792

Table 2: Solving the (17,4) Top-Spin Puzzle using a 10-
Token PDB

Comp. Heur. h(s)

Generated Time Size

1 TwoBit 8r+0d 12.37 11,103 0.016 990
76,932 0.080 495

2 None 4r+4d+c 11.53

Table 3: Solving the (17,4) Top-Spin Puzzle using a 10-
Token PDB using Dual Search

The third column gives the average heuristic value of the ini-
tial state. The fourth column gives the average number of
nodes generated. The second to last column gives the av-
erage time in seconds required to solve a problem, and the
last column gives the size of the PDB in megabytes. One can
see that our algorithm is approximately four times faster than
Felner et al.’s (2005) dual search for this particular problem
size but using twice the memory.

Overall for different problem sizes and different amounts
of memory either dual search or two-bit PDBs might per-
form better. Our experiments strongly suggest that two-bit
or 1.6-bit PDBs outperform dual search when compression
enables us to store a PDB using more pattern variables in
memory than when using an uncompressed PDB with dual
search. We showed this to hold for the (17,4) puzzle and
two gigabytes of memory.

Rubik’s Cube

Felner et al. (2007) did not include any experiments on
Rubik’s cube. Thus we compare their general compression
methods applying division and modulo to the index, which
we will call division and modulo compression, to our two-bit
and 1.6-bit PDBs.

For our first set of experiments we used the maximum
over three PDBs, one based on the 8 corner cubies, and the
others based on 7 edge cubies each. These PDBs have such
low values, that four bits per state suffice to begin with. Thus
with our method we can only compress by a factor of two
and 2.5 respectively. Table 4 has experimental results av-
eraged over the ten random initial states published by Korf
(1997). Their average solution depth is 17.50. The columns
are the same as in Table 1. The first row gives results us-
ing the uncompressed PDBs, which use four bits per entry.
The second row uses the same PDBs stored modulo three
using two bits per entry. The third row uses even less mem-
ory storing five entries per byte using our 1.6-bit PDBs. We
delayed comparing to modulo and division compression un-
til our second set of experiments with larger PDBs, because
with these weaker PDBs solving all ten instances took too
long. One can see that our two-bit PDBs expand the same
number of nodes and add little time overhead compared to
the uncompressed PDBs. The last three rows of Table 4 be-

Comp. h(s) Generated Time Size
1 None 9.1 102,891,122,415 32,457 529
2 Two-Bit 9.1 102,891,122,415 32,113 265
3 1.6-Bit 9.1 102,891,122,415 35,190 212
4 8850-810 9.1 105,720,641,791 36,385 529
5 Dual 9.1 65932,517,927 27,150 529
6 Two-Bit 9.1 64,713,886,881 27,960 529
(8-7-7-7-T)

Table 4: Solving Korf’s ten random initial states of Rubik’s
Cube using a 8 corner cubie and 2 7 edge cubie PDBs

Comp. h(s) Generated Time Size
1 Two-Bit 9.5 26370,698,776 11,290 1,239
2 Div 2 9.3 56,173,197,862 25917 1,239
3 Mod 2 9.3 58,777,491,012 27,577 1,239
4 1.6-Bit 9.5 26370,698,776 12,309 991
5 Div2s5s 9.1 68,635,164,093 33,838 991
6 Mod 2.5 9.0 77,981,222,043 35976 991
7 Dual 9.1 65,932,517,927 27,150 529
8 Two-Bit 9.7 14,095,769,007 8,667 1,239
(8-8-8-8-8)

Table 5: Solving Korf’s ten random initial states of Rubik’s
Cube using a 8 corner cubie and 2 8 edge cubie PDB

low the line have slightly different experimental results. The
first row below the line uses the same amount of memory
as the uncompressed PDBs, but instead of using two PDBs
based on 7 edge cubies each, it uses two PDBs based on
8 edge cubies each compressed to the size of a PDB based
on 7 edge cubies using division compression by a factor of
10. The second row uses the original uncompressed PDBs,
but it uses the regular and dual lookup for both 7-edge-cubie
PDBs (Zahavi et al. 2008), thus the maximum of a total of
five lookups. We believe that this is currently the best solver
for Rubik’s cube in the heuristic search community. The last
row also used five lookups, but instead of using two dual
and two regular lookups it uses four regular lookups in the
7 edge cubies PDBs using geometric symmetries. One can
see that five regular lookups perform just as well as a com-
bination of regular and dual lookups. Also, for Rubik’s cube
there seems to be no advantage from compressing a larger
PDB to the size of a smaller PDB.

For our second set of experiments we used the maximum
over three PDBs, one based on 8 corner cubies, and two
based on 8 edge cubies. Due to geometrical symmetries we
only need to store one of these 8-edge-cubie PDBs. The
uncompressed PDB based on 8 edge cubies does not fit in
two gigabytes of memory, so we can only compare the com-
pressed PDBs here. Similar to Table 4, Table 5 has experi-
mental results averaged over Korf’s (1997) ten random ini-
tial states. The first row uses our two-bit PDBs. The sec-
ond and third rows use modulo and division compression by
a factor of two using four bits per entry and so using the
same amount of memory as our two-bit PDBs. The fourth
row uses 1.6-bit PDBs and the fifth and sixth row use the
same amount of memory using division and modulo com-

pression by a factor of 2.5. One can see that modulo and
division compression by a factor of two expand twice as
many nodes and take twice as much time as using the un-
compressed PDBs, while our two-bit PDBs expand the same
number of nodes and add little time overhead. Unlike in
the Top-Spin puzzle, for Rubik’s cube modulo and division
compression perform equally poorly. In the first row below
the line in Table 5 we also give experimental results for the
best existing solver using dual lookups. But since it uses un-
compressed PDBs, we can only give results using the PDBs
using only 7 edge cubies. Again we compared against five
regular lookups in the second row, four of which are in the
two-bit 8 edge cubie PDB. Here one can see that with two
gigabytes of memory our best implementation beats the best
existing implementation by a factor of four but using more
than twice as much memory. We also tried using more than
four regular lookups in the 8 edge cubie PDB, but there is
only a reduction in number of nodes expanded, time-wise
we could not achieve any further speed-up.

Summarizing, for Rubik’s Cube our two-bit and 1.6-bit
PDBs are the best compressed PDBs. Unlike in other prob-
lem spaces, we showed that given limited memory it is
not necessarily better to use this memory for compressed
than for uncompressed PDBs, in particular when using lossy
compression. Also, with our implementation we beat the
fastest solver currently available which uses regular and dual
lookups by a factor of four.

The 4-peg Towers of Hanoi Problem

Lossy compression methods using cliques and their gener-
alization have proved very effective for the 4-peg Towers of
Hanoi (Felner et al. 2007). Compressing by several orders
of magnitude still preserves most information. Even with
additive PDBs it is most efficient to construct a PDB with as
many discs as possible and compress it to fit in memory and
to use the remaining discs in a small uncompressed PDB.
The state of the art for this problem (Korf & Felner 2007)
used a 22 disc PDB compressed to the size of a 15 disc PDB
by ignoring the positions of the 7 smallest discs. This intro-
duces an error of at most 25 moves, the number of moves
required to solve a problem consisting of 7 discs. We limit
our experiments to PDBs for which the hashtable of used
bits and the compressed PDB fit in two gigabytes of mem-
ory. Implementing a more involved search algorithm using
magnetic disk exceeds the scope of this paper. The used bit
table for the 16 disc Towers of Hanoi problem requires 46
bits or 512 megabytes and is the largest one that will fit in
our memory. The maximum heuristic value for this PDB is
161, thus the uncompressed PDB uses one byte per entry.
Using Felner et al.’s method, ignoring the positions of the
smallest discs, we can compress by any multiple of four. For
the Towers of Hanoi problem an exponential memory algo-
rithm that detects all duplicates is the algorithm of choice.
We use breadth-first heuristic search (BFHS) in our exper-
iments. BFHS searches the problem space in breadth-first
order but uses f-costs to prune states that exceed a certain
threshold. Usually an iterative deepening approach is ap-
plied and one starts with the heuristic estimate of the start
state as the threshold and increases it by one in every iter-

Comp. h(s) Generated Time Size
1 Two-Bit 162 18,006,252 5.75 1,024
2 164 161 19,472,851 6.18 1,024
3 1.6-Bit 162 18,006,252 6.11 820
4 164 159 21,819,725 6.65 256
5 163 157 25,579,490 8.13 64

Table 6: Solving the 17 Discs Towers of Hanoi Problem us-
ing a 16 Disc PDB

Comp. h(s) Generated Time Size

I Two-Bit 164 355,856,206 333 1,024
2 164 163 373,045,641 355 1,024
3 1.6-Bit 164 355,856,206 336 820
4 164 161 400,505,833 387 256
5 163 159 443,154,284 443 64

Table 7: Solving the 18 Discs Towers of Hanoi Problem us-
ing a 16 Disc PDB

ation. Here we only need to perform one iteration with the
optimal solution cost as an upper bound, because the pre-
sumed cost of an optimal solution is known (Frame 1941;
Stewart 1941).

Experimental results using this PDB on the 17 disc prob-
lem with different levels of compression are shown in Ta-
ble 6. The columns are the same as in Table 1. The uncom-
pressed PDB would have required four gigabytes of mem-
ory, and so is not feasible. The first row has results using
our two-bit PDB, the second row uses the same amount of
memory compressing the same PDB by a factor of four by
ignoring the smallest disc. The third row uses our 1.6-bit
PDB. The fourth row ignores the two smallest discs and the
last row ignores the three smallest discs. Table 7 has similar
results for the 18 disc problem. In both tables one can see
that very little information is lost using lossy compression
and there is no real gain from storing the complete 16 disc
PDB without loss of information in memory.

In short, because of cliques and generalized cliques lossy
compression is so powerful that we can only achieve a slight
improvement with lossless compression. Also, lossy com-
pression allows compressing by any multiple of four, while
we can only compress by a factor of at most five.

The Sliding-Tile Puzzles

For the 24 puzzle, the state of the art is Dual IDA* (Zahavi
et al. 2008) with a 6-6-6-6 partitioning and its reflection as
the heuristic function. This 6-6-6-6 partitioning is consid-
ered the best 4-way partitioning for this puzzle and no major
improvements using compression were reported by Felner et
al. (2007). To use this partitioning with dual search a total
of eight 6-tile PDBs need to be stored, while regular IDA*
only requires two 6-tile PDBs.

For permutation problems there are two ways to map pat-
terns to indices in the PDB. In sparse mapping each pattern
variable is used as a separate index into the PDB. This ob-
viously wastes some memory, because entries with two or
more equal indices do not correspond to actual states, since

Comp. Generated Time Size
Two-Bit 48,398,394,783 203 1,155
1.6-Bit 48,398,394,783 208 924
sparse 114,988,269,664 202 466
compact 114,988,269,664 395 243

B W =

Table 8: Solving the 24 Puzzle using a 6-6-6-6 Tile PDB

no two tiles can occupy the same location. The advantage is
that these indices can be calculated very efficiently. In con-
trast to sparse mapping there is compact mapping, in which
there is a one-to-one mapping between entries and patterns.
This method does not waste any memory, but computing the
index becomes more expensive. For IDA* the above 6-6-6-6
partitioning uses two 6-tile PDBs requiring 243 megabytes
memory when using compact mapping and 466 megabytes
when using sparse mapping. Even though it uses more mem-
ory, sparse mapping is faster than compact mapping, even
when using Korf & Schultze’s (2005) mapping algorithm,
which is linear in the number of pattern tiles.

As mentioned earlier, the additive disjoint PDBs for the
sliding-tile puzzles are usually compressed by the position
of the blank. Unfortunately, this makes them inconsistent,
so we cannot apply our method directly. The uncompressed
6-6-6-6 partitioning which has one entry for each configu-
ration of the pattern tiles and the blank requires over four
gigabytes of memory, but using our two-bit PDBs or 1.6-
bit PDBs and compact mapping it fits in 1155 megabytes or
925 megabytes respectively. Sparse mapping would require
almost three gigabytes of memory and hence is infeasible.

Table 8 has experimental results. For simplicity, we only
used one 6-6-6-6 partitioning and IDA* to see if our tech-
nique shows any promise on this problem space. Results
are averaged over the easiest ten instances from Korf & Fel-
ner’s (2002) 50 random instances. The columns have the
same meaning as in Table 1, only time is in minutes. The
first row has results using two bits per state for the losslessly
compressed 6-tile PDB, and the second row uses our 1.6-bit
PDB, both with compact mapping. Both of these compres-
sions take into account the position of the blank. The third
row gives results using the classic 6-6-6-6 partitioning and
sparse mapping. The last row uses the same PDB with com-
pact mapping. The latter two both compress by the position
of the blank. One can see that lossless compression expands
about 57% fewer nodes but time wise sparse mapping is still
slightly faster and uses less memory. Thus we did not even
implement using the maximum over one 6-6-6-6 partition-
ing and its reflection and we did not run experiments on the
more difficult benchmark problems.

Conclusions and Future Work

We have introduced a lossless compression method for
PDBs which can store a consistent heuristic in just 1.6 or al-
ternatively two bits per state. We have applied this compres-
sion method to four different problems, the Top-Spin puz-
zle, Rubik’s cube, the sliding-tile puzzle and the Towers of
Hanoi problem, combined with IDA* as well as with BFHS.
For the Top-Spin puzzle, 1.6 and two-bit PDBs perform sig-

nificantly better than general compression methods applying
division and modulo to the index. Depending on the memory
available our method even outperforms dual search. For Ru-
bik’s cube we showed that these general compression meth-
ods fail, and our method is the best compression method.
With our best implementation we beat the fastest solver cur-
rently available, which uses regular and dual lookups, by a
factor of four when limited to two gigabytes of memory. For
the Towers of Hanoi problem lossy methods are so good that
we could not improve on them. For the 24 puzzle we were
able to reduce the number of nodes expanded, but we could
not improve on the classic 6-6-6-6 partitioning time wise and
required more memory. In general our lossless compression
is useful for problems that do not allow lossy compression
using cliques or their generalization or where adjacent en-
tries in the PDB are not highly correlated.

Future work includes using this compression method with
dual search, which results in an inconsistent heuristic. For
dual lookups the heuristic values have to be read from the
two-bit PDBs the same way as for the start state.

It is also possible to generalize our method to inconsis-
tent PDB heuristics. Zahavi et al. (2007) defined the in-
consistency rate of a heuristic » and an edge e = (m,n)
as |[h(n) — h(m)|. A heuristic with a maximum incon-
sistency rate of k over all edges can be represented using
i = [log2(2 - (k + 1))] bits per entry. Applying an operator
can increase or decrease the heuristic estimate by a value of
up to k, so 2k + 1 values are required and one more value is
used during construction of the PDB. If ¢ is smaller than the
number of bits required per state in the uncompressed PDB
there is a memory gain from our compression.

Our method can also be extended to some problems where
operators do not have unit edge cost and are not reversible,
for example to sequence alignment (Hohwald, Thayer, &
Korf 2003; Zhou & Hansen 2003). PDBs constructed from
sub-alignments of sequences with a maximum edge cost of
k can be represented using ¢ = [loga(2 - (k4 1))] bits per
entry. Again if ¢ is smaller than the number of bits required
per state in the uncompressed PDB there is a memory gain
from compressing modulo 2k + 1. This method could also
be combined with external-memory PDBs (Zhou & Hansen
2005) reducing the time to read blocks of the PDB from disk.

Acknowledgment

This research was supported by NSF grant No. I1IS-0713178.
Thanks to Satish Gupta and IBM for providing the machine
these experiments were run on.

References
Ball, M., and Holte, R. C. 2008. The compression power
of symbolic pattern databases. In ICAPS-08, 2—11.
Chen, T., and Skiena, S. S. 1996. Sorting with fixed-length
reversals. Discrete Applied Mathematics 71:269-295.

Cooperman, G., and Finkelstein, L. 1992. New methods for
using cayley graphs in interconnection networks. Discrete
Applied Mathematics 37:95-118.

Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318-334.

Edelkamp, S. 2002. Symbolic pattern databases in heuris-
tic search planning. In AIPS-02, 274-283.

Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R. C. 2005.
Dual lookups in pattern databases. In IJCAI-05, 103-108.

Felner, A.; Korf, R. E.; Meshulam, R.; and Holte, R. C.
2007. Compressed pattern databases. JAIR 30:213-247.

Frame, J. S. 1941. Solution to advanced problem 3918.
American Mathematical Monthly 48:216-217.

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics
4(2):100-107.

Hohwald, H.; Thayer, I.; and Korf, R. E. 2003. Compar-
ing best-first search and dynamic programming for optimal
multiple sequence alignment. In IJCAI-03, 1239-1245.

Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.;
and Furcy, D. 2006. Maximizing over multiple pattern
databases speeds up heuristic search. Artif. Intell. 170(16-
17):1123-1136.

Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artif. Intell. 134(1-2):9-22.

Korf, R. E., and Felner, A. 2007. Recent progress in heuris-
tic search: A case study of the four-peg Towers of Hanoi
problem. In IJCAI-07, 2324-2329.

Korf, R. E., and Schultze, P. 2005. Large-scale parallel
breadth-first search. In AAAI-05, 1380-1385.

Korf, R. E.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005.
Frontier search. J. ACM 52(5):715-748.

Korf, R. E. 1985. Iterative-deepening-A*: An optimal
admissible tree search. In IJCAI-85, 1034-1036.

Korf, R. E. 1997. Finding optimal solutions to rubik’s cube
using pattern databases. In AAAI-97, 700-705.

Samadi, M.; Siabani, M.; Felner, A.; and Holte, R. 2008.
Compressing pattern databases with learning. In ECAI-08,
495-499.

Stewart, B. 1941. Solution to advanced problem 3918.
American Mathematical Monthly 48:217-219.

Yang, F.; Holte, R. C.; Culberson, J.; Zahavi, U.; and Fel-
ner, A. 2008. A general theory of additive state space
abstractions. JAIR 32:631-662.

Zahavi, U.; Felner, A.; Schaeffer, J.; and Sturtevant, N. R.
2007. Inconsistent heuristics. In AAAI-07, 1211-1216.
Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J. 2008.
Duality in permutation state spaces and the dual search al-
gorithm. Artif. Intell. 172(4-5):514-540.

Zhou, R., and Hansen, E. A. 2003. Sweep A*: Space-
efficient heuristic search in partially ordered graphs. In
ICTAI-03, 427-434.

Zhou, R., and Hansen, E. A. 2005. External-memory
pattern databases using structured duplicate detection. In
AAAI-05, 1398-1405.

Zhou, R., and Hansen, E. A. 2006. Breadth-first heuristic
search. Artif. Intell. 170(4):385-408.

