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Abstract

Equidistant Frequency Permutation Arrays are combinatorial
objects of interest in coding theory. A frequency permutation
array is a type of constant composition code in which each
symbol occurs the same number of times in each codeword.
The problem is to find a set of codewords such that any pair
of codewords are a given uniform Hamming distance apart.
The equidistant case is of special interest given the result that
any optimal constant composition code is equidistant. This
paper presents, compares and combines a number of different
constraint formulations of this problem class, including a new
method of representing permutations with constraints. Using
these constraint models, we are able to establish several new
results, which are contributing directly to mathematical re-
search in this area.

Introduction
In this paper we consider Equidistant Frequency Permuta-
tion Arrays (EFPAs), combinatorial objects of interest in
coding theory. A frequency permutation array (introduced
in (Huczynska and Mullen 2006)) is a special kind of con-
stant composition code (CCC), in which each symbol oc-
curs the same number of times in each codeword. CCCs
have many applications, for example in powerline commu-
nications and balanced scheduling, and have recently been
much studied (eg (Chu, Colbourn, and Dukes 2004), (Chu,
Colbourn, and Dukes 2006)). The situation when CCCs are
equidistant is of particular interest, since it is known that
any CCC which is optimal must be equidistant. EFPAs are
introduced in (Huczynska 2009), where various bounds and
constructions are obtained; other results on families of such
codes can be found in (Ding and Yin 2006).

Informally, the problem is to find a set (often of max-
imal size) of codewords, such that any pair of codewords
are Hamming distance d apart. Each codeword (which may
be considered as a sequence) is made up of symbols from
the alphabet {1, . . . , q}, with each symbol occurring a fixed
number λ of times per codeword.

The problem has parameters v, q, λ, d and it is to find a
set E of size v, of sequences of length qλ, such that each
sequence contains λ of each symbol in the set {1, . . . , q}.
For each pair of sequences in E, the pair are Hamming dis-
tance d apart (i.e. there are d places where the sequences

c1 0 0 1 1 2 2
c2 0 1 0 2 1 2
c3 0 1 2 0 2 1
c4 0 2 1 2 0 1
c5 0 2 2 1 1 0

Table 1: EFPA example with v = 5, q = 3, λ = 2, d = 4

disagree). For the parameters v = 5, q = 3, λ = 2, d = 4,
table 1 shows a set E = {c1, c2, c3, c4, c5}.

We model and solve EFPA in constraints, using the Min-
ion solver (Gent, Jefferson, and Miguel 2006a; 2006b) and
the Tailor modelling assistant (Gent, Miguel, and Rendl
2007). Constraint solving proceeds in two phases. First, the
problem is modelled as a set of discrete decision variables,
and a set of constraints (relations, e.g. x1 + x2 ≤ x3) on
those variables that a solution must satisfy. Second, a con-
straint solver is used to search for solutions to the model:
assignments of values to variables satisfying all constraints.
Many constraint solvers (including Minion) interleave prop-
agation and depth-first backtracking search. Propagation
simplifies the problem by removing values from variable do-
mains, and search assigns values to variables, searching for a
solution. A successful model must propagate well, and will
also include an ordering of the variables for search.

We investigate six different formulations, starting with
two simple models based on two viewpoints. A set of im-
plied constraints is derived, which prove to be useful in
experiments. Furthermore, we develop a novel method of
modelling permutations with constraints.

The work described in this paper has direct application
in mathematics. During the course of this work, we gener-
ated 24 EFPAs (21 of which were proven to be maximal) to
assist with the mathematical research of one of the authors
(Huczynska). Some of these EFPAs directly refuted a work-
ing conjecture, and others provided supporting evidence that
a construction is maximal. This illustrates that, with careful
modelling and the power of fast constraint solvers such as
Minion and modelling assistants such as Tailor, constraint
programming can contribute to research in other disciplines.

Experiments are performed to compare the different mod-
els, using 24 carefully chosen instances of EFPA.



Modelling the EFPA problem
First we present two straightforward models based on two
viewpoints. One represents the set of sequences explicitly
in a two-dimensional table (like table 1). The other is simi-
lar, but extends the two-dimensional table in a third dimen-
sion, expanding each original variable into a set of Boolean
variables corresponding to each original value. The problem
constraints and symmetry breaking constraints are quite dif-
ferent on these two models. The three-dimensional model is
able to break symmetry in three planes rather than two, and
the two-dimensional model is able to take advantage of the
Global Cardinality Constraint (GCC) (Régin 1996) to en-
force the requirement that there are λ occurrences of each
symbol. Both straightforward models perform reasonably
well, which reflects well on constraint programming.

The two simple models are developed in various ways
to give six variants in total. Firstly, the two models are
channelled together, combining the symmetry breaking con-
straints on the three-dimensional Boolean model with prob-
lem constraints on the two-dimensional model. The chan-
nelled model is superior to the Boolean model in almost all
cases in our experiments.

Secondly, a set of implied constraints are derived for the
two-dimensional model. The first row of the table is fixed
by the symmetry breaking constraints. All other rows are
related to the first by the Hamming distance d, and we de-
rive additional GCC constraints from this. The implied con-
straints are somewhat similar to those proposed for BIBD
(Frisch, Jefferson, and Miguel 2004). The implied con-
straints are beneficial in most cases in our experiments.

Thirdly, we explicitly model the permutation between
each pair of sequences, using a representation of cycle nota-
tion. This greatly reduces the search space, and is to the best
of our knowledge the first time cycle notation has been ex-
plicitly modelled using standard CSP integer variables. Un-
fortunately this model has a large number of constraints and
is not always superior in terms of solver time. However, it
shows promise because of the reduction in search space.

To model the EFPA problem, we used the Tailor mod-
elling assistant (Gent, Miguel, and Rendl 2007). We for-
mulated each model in the solver-independent modelling
language ESSENCE′ and used Tailor v0.3 to flatten each
instance for input to the constraint solver Minion 0.8.1.
Tailor provides optional common subexpression elimina-
tion (CSE). Preliminary experiments revealed that CSE im-
proved the speed of Minion by a small margin, without af-
fecting the search tree explored. We use CSE throughout.

Boolean and non-Boolean models
In this section, we investigate two viewpoints and construct
two models based on the viewpoints, and a third which chan-
nels them together. The three models are compared experi-
mentally.

A Non-Boolean Model Viewed abstractly, the problem is
to find a fixed-size set of codewords, where a codeword is
a permutation of a multiset of symbols. Therefore the de-
cisions are how to represent the set, and how to represent
the permutations. In the non-Boolean model, we use an ex-

plicit representation of the set (Jefferson 2007) (i.e. each
element is explicitly represented). For each codeword, we
use the primal model of a permutation (Hnich, Smith, and
Walsh 2004). Each position in the codeword has one vari-
able whose domain is the alphabet. We do not explore the
dual model here, because it would complicate the Hamming
distance constraints.

There is an additional set of Boolean variables represent-
ing where pairs of codewords differ. For convenience we
will refer to the length of the sequences as n = qλ. The
variables are as follows.

• ∀a ∈ {1 . . . v},∀i ∈ {1 . . . n} : c[a, i] ∈ {1 . . . q} rep-
resenting the set of sequences. a is the sequence number
and i is the index into the sequence.

• ∀a ∈ {1 . . . v},∀b ∈ {a + 1 . . . v},∀i ∈ {1 . . . n} :
diff[a, b, i] ∈ {0, 1} representing whether two sequences
a and b differ at position i.

For each sequence, a GCC constraint is used to ensure that
there are λ occurrences of each symbol in the alphabet. A
reified disequality constraint is used to connect the diff vari-
ables to c, and a sum is used to enforce the Hamming dis-
tance d.

• ∀a ∈ {1 . . . v} : GCC(c[a, 1 . . . n], 〈1 . . . q〉, 〈λ . . . λ〉)
• ∀a ∈ {1 . . . v},∀b ∈ {a + 1 . . . v},∀i ∈ {1 . . . n} :

diff[a, b, i]⇔ (c[a, i] 6= c[b, i])

• ∀a ∈ {1 . . . v},∀b ∈ {a+1 . . . v} :
∑n
i=1 diff[a, b, i] = d

(any two sequences differ in d places)

The matrix c has a number of symmetries. In a solution,
rows, columns and symbols of the alphabet may be freely
permuted to create other solutions. To break some of the
symmetry, we apply lexicographic ordering (lex-ordering)
constraints to the rows and columns as follows.

• ∀a ∈ {2 . . . v} : c[a− 1, 1 . . . n] ≤lex c[a, 1 . . . n] (rows
are lex-ordered)

• ∀b ∈ {2 . . . n} : c[1 . . . v, b − 1] ≤lex c[1 . . . v, b]
(columns are lex-ordered)

These constraints are all found in Minion 0.8.1. The GCC
constraint enforces GAC in this situation (with a fixed
number of occurrences of each symbol). The reified not-
equal constraint enforces Bounds(Z)-consistency (Choi et
al. 2006). The sum constraint above is decomposed into
≤ d and ≥ d constraints (sumleq and sumgeq in Minion)
which also enforce Bounds(Z)-consistency. The lex order-
ing constraints enforce GAC.

The variable order is row-wise on c, in index order (i.e.
c[1, 1], . . . , c[1, n], c[2, 1], . . .). The values are searched in
ascending order.

A Boolean Model In this section we consider another sim-
ple model for EFPA, based on a different viewpoint to the
one above. The difference is in the representation of each
symbol in each codeword using a vector of Boolean vari-
ables. The model uses a three-dimensional matrix m of
Boolean variables to represent occurrences of the q symbols
in the v codewords. The first dimension is the codeword



1 . . . v, the second is the symbol 1 . . . q and the third is the
codeword position 1 . . . qλ.

• ∀i ∈ {1 . . . v},∀j ∈ {1 . . . q},∀k ∈ {1 . . . qλ} :
m[i, j, k] ∈ {0, 1}

Variable m[i, j, k] is 1 iff the codeword i has symbol j at
position k.

We must ensure that exactly one symbol appears at each
position in each codeword. This is done with the following
set of constraints.

• ∀i ∈ {1...v},∀j ∈ {1...qλ} :
∑q
k=1m[i, k, j] = 1

To ensure that there are λ of each symbol in each codeword
we post the following set of constraints.

• ∀i ∈ {1...v},∀j ∈ {1...q} :
∑qλ
k=1m[i, j, k] = λ

The final problem constraint set states that the Hamming dis-
tance between any pair of codewords is exactly d. The two
codewords are represented as planes in the matrix. For each
position where the pair of codewords differ, the planes in m
differ in two places corresponding to one symbol being re-
moved and another inserted. Therefore the number of places
where the two planes differ is 2d.

• ∀i ∈ {1...v},∀j ∈ {i+1...v} : [
∑qλ
k=1

∑q
l=1(m[i, l, k] 6=

m[j, l, k])] = 2d

Symbols, codewords and positions may all be freely per-
muted. In order to break some of this symmetry, we lex-
icographically order (lex order) planes of the matrix in all
three dimensions. (We rely on Tailor to vectorize the planes
in a consistent manner.)

• ∀i ∈ {1...qλ − 1} : m[1 . . . v, 1 . . . q, i] ≤lex
m[1 . . . v, 1 . . . q, i+ 1]

• ∀i ∈ {1...q − 1} : m[1 . . . v, i, 1 . . . qλ] ≤lex
m[1 . . . v, i+ 1, 1 . . . qλ]

• ∀i ∈ {1 . . . v − 1} : m[i, 1 . . . q, 1 . . . qλ] ≤lex m[i +
1, 1 . . . q, 1 . . . qλ]

Preliminary experiments reveal that these three constraint
sets drastically improve performance. In one instance the
addition of symmetry breaking constraints improved the per-
formance of the model by approximately 40 times. The
variable ordering is as follows. For each i in ascending or-
der: for each j in ascending order: for each k in ascending
order: m[i, j, k]. To illustrate: m[1, 1, 1], . . . ,m[1, 1, qλ],
m[1, 2, 1], . . . ,m[1, q, qλ],m[2, 1, 1], . . .. For all variables,
value 0 is branched first.

Channelling Boolean and Non-Boolean Models The
Boolean model may have better symmetry breaking than
the non-Boolean model, because the value symmetry of the
non-Boolean model is transformed into variable symmetry
(Flener et al. 2002) and broken using lex constraints. How-
ever, in the non-Boolean model, the first row is invariant
because of the column lex constraints and therefore some of
the value symmetry is broken there.

The non-Boolean model is able to exploit the GCC con-
straint on the rows, and also has a neater representation of
the Hamming distance requirement. In this section we aim

to gain the advantages of both models by connecting the two
with channelling constraints, given below.

• ∀i ∈ {1 . . . v},∀j ∈ {1 . . . q},∀k ∈ {1 . . . qλ} :
m[i, j, k]⇔ (c[i, k] = j)

The symmetry breaking constraints in the non-Boolean
model are removed, because they contradict those in the
Boolean model.

The Boolean model has three sets of constraints other than
the symmetry breaking constraints. Inspection of each set
suggests that they will provide no useful propagation, be-
cause the non-Boolean representation of the same constraint
set is equivalent or stronger. Preliminary experimentation on
instance d = λ = q = 4, v = 9 showed that removing all
three sets does not affect the node count (2350155) but does
reduce the time taken from 86 s to 52 s. Therefore we do not
include the three sets of constraints.

Preliminary experiments suggest that searching on the c
(non-Boolean) variables is not effective when channelling,
using either an ascending or descending value ordering (with
the variable ordering described for c above). Therefore we
search on m, using the same variable and value ordering as
the standard Boolean model. Given that the constraints on
the non-Boolean formulation appear to be stronger, we ex-
pect that the channelled model will improve on the Boolean
model in terms of search nodes.

Empirical Evaluation To compare the three models em-
pirically, we picked twelve tuples 〈d, λ, q〉 with a range of
different values of d, λ and q. For each parameter set, the
usual task is to find the maximal set of codewords. This can
be done by solving iteratively, increasing v until the instance
is unsatisfiable. This provides a maximal set of codewords,
and a proof that there is no larger set. Typically the un-
satisfiable instance is much more difficult than the others.
Instances are identified by the tuple 〈d, λ, q, v〉.

For each parameter set, we use two consecutive values of
v such that the smaller instance is satisfiable and the larger
one is unsatisfiable or it takes longer than the time limit
of 2 hours to solve. This provides 12 satisfiable instances,
11 unsatisfiable instances and one 〈6, 4, 4, 14〉 which is un-
known1. We used Minion 0.8.1 on an Intel Xeon E5430 2.66
GHz 8-core machine, using all cores. The three models are
named as follows.

Non-Boolean refers to the two-dimensional model.

Boolean refers to the three-dimensional model.

Channelled refers to the combined model described in the
section above.

We enabled the SAC (Debruyne and Bessière 1997) prepro-
cessing option of Minion to be consistent with our other ex-
periments presented below. SAC preprocessing is cheap,
taking less than 0.2 s on the largest instances. Both the
non-Boolean and Channelled models include some variables
which are not necessary here, but are required for the im-
plied constraints and permutation model described below.

1The problem instances are available at
http://minion.sourceforge.net/benchmarks.html



For satisfiable instances, these spurious variables are set at
the end of the search process. Assigning each variable takes
1 search node, and a very small amount of time.

Figure 1 shows our results for the three models. Instance
〈6, 4, 4, 14〉 times out for all three models, and is the only
time-out for the channelled model. The non-Boolean model
times out on five instances. The channelled model improves
upon the Boolean model in both nodes and time, except for
the very easy satisfiable instance 〈4, 4, 3, 7〉. In this case,
there are 327 spurious variables, and the channelled model
explores 396 nodes. Therefore the spurious variables ac-
count for most of the nodes, and this instance should be dis-
regarded for comparing Boolean and channelled models.

For the non-Boolean and channelled models, neither al-
ways dominates the other, either in nodes or time. The non-
Boolean model is faster on 13 instances, and the channelled
model on 10 instances. For the instance that timed out, we
can observe that the channelled model explores fewer nodes
than the other two. For this instance, the channelling has
some overhead, as one would expect.

Extensions of the Non-Boolean Model
In this section we explore two extensions of the non-Boolean
model, both of which exploit knowledge about the permuta-
tion of d elements between pairs of codewords.

Implied Constraints It is possible to derive some im-
plied constraints between pairs of sequences. Consider
the sequence 〈1, 1, 1, 2, 2, 2, 3, 3, 3〉, and assume that d =
4. To construct another sequence with the appropriate
Hamming distance, we can swap two 1’s with two 2’s:
〈1, 2, 2, 1, 1, 2, 3, 3, 3〉. However, it is not possible to move
all three 1’s, since that would cause six disagreements. In
general, for each symbol, the maximum number which can
be moved is bd2c.

If bd2c < λ, then this observation allows us to add useful
constraints to the model. Between any pair of sequences in
the set, and for each symbol a, at least λ − bd2c instances
of a must remain in the same place. We do not exploit this
observation for every pair of rows, but only for the pairs
containing the first row. This is because the first row is fixed
and this makes the statement of the constraints considerably
simpler.

If q = λ = 3 then the first row is 〈1, 1, 1, 2, 2, 2, 3, 3, 3〉 in
the non-Boolean model, because of the symmetry breaking
constraints. It is arranged in q blocks of length λ, and each
of the other sequences is divided into q blocks in the same
way, as shown in the table below.

c[1, 1 . . . qλ] 1 1 1 2 2 2 3 3 3
c[2, 1 . . . qλ] Block 1 Block 2 Block 3

To state the constraints, we have auxiliary variables
occab,d ∈ {0 . . . λ} representing the number of occurrences
of value d in sequence a, block b (where the blocks are num-
bered 1 . . . q in index order). We post q GCC constraints to
count the symbols in each block, as follows. Also, we con-
strain the occurrences of the relevant occ variables.

• ∀a ∈ {2 . . . v},∀b ∈ {1 . . . q} :
GCC(ca(b−1)λ+1...bλ, 〈1 . . . q〉, occab,1...q)

• ∀a ∈ {2 . . . v},∀b ∈ {1 . . . q} : occab,b ≥ λ− bd2c
To improve the propagation of these constraints, we also
state that for each symbol, the occurrence variables for all
blocks in a sequence must add up to λ.

• ∀a ∈ {2 . . . v},∀b ∈ {1 . . . q} :
∑

occa1...q,b = λ

The GCC constraint (with variables as its third argument)
performs a hybrid consistency. It reads the bounds of the oc-
currence variables, and performs GAC over the target vari-
ables only, using Régin’s algorithm (Régin 1996). Also, it
uses a simple counting algorithm to prune the occurrence
variables. For example, if two target variables are assigned
to 0, and five variables have 0 in their domain, then the lower
bound for occurrences of 0 is two, and the upper bound is
five. This implementation of GCC is named gccweak in
Minion.

Note that this constraint set cannot be applied to the chan-
nelled model, because it relies on the symmetry breaking
constraints of the non-Boolean model. In the channelling
model, the first row is in descending order.

Modelling Permutations From any sequence to any
other, there is a permutation with a fixed number of move-
points. The implied constraints in the section above make
some use of this fact between the first sequence and all oth-
ers. In this section we consider all pairs of sequences, and
we explicitly model the cycle notation, using an array of d
variables containing indices into the sequences. A further
variable cform represents the form of the cycle notation. For
example, when d = 4, there are two possible forms of the
cycle notation: (p, q, r, s) and (p, q)(r, s), therefore cform
has two values. In fact we have only implemented the per-
mutation model for d = 4. The subclass of EFPA where
d = 4 is of interest to mathematicians as it is the smallest
value of d where the precise upper bound for the size of an
EFPA is not obvious (due to the fact that there is more than
one possible cycle structure for a derangement of 4 points).

• ∀e ∈ {1 . . . d} : perm[e] ∈ {1 . . . qλ}
• cform ∈ {1 . . . cforms} where cforms is the number of

cycle forms.

To allow us to map from one sequence to another using the
permutation, we introduce a table of variables p. There are
cforms rows and d columns in p. The rows correspond to
different forms of the cycle notation. Each row contains ele-
ments of the first sequence (those elements indexed by perm)
permuted according to the form of the cycle notation.

• ∀i ∈ {1 . . . cforms},∀j ∈ {1 . . . d} : p[i, j] ∈ {1 . . . q}
For example, if the first sequence is s1 = 〈1, 1, 2, 2, 3, 3〉,
d = 4 and perm is 〈1, 3, 4, 6〉, then p is given in table 2. In
the first row, indices for each pair are swapped, and in the
second row the indices are rotated according to the inverse
of the 4-cycle.

For the second sequence s2, positions 1,3,4 and 6 (i.e. the
values of perm) must equal the appropriate value from p.
cform is used to select the appropriate row in p. For position
1, s2[1] = p[cform, 1]. Also, constraints are posted stating
that s1 and s2 are equal at all positions not in perm. In this
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Figure 1: Comparison of non-Boolean, Boolean and channelled models

1 2 3 4
1 (1, 3)(4, 6) s1[3] = 2 s1[1] = 1 s1[6] = 3 s1[4] = 2
2 (1, 3, 4, 6) s1[6] = 3 s1[1] = 1 s1[3] = 2 s1[4] = 2

Table 2: Example of p



example, if cform = 1 then s2 = 〈2, 1, 1, 3, 3, 2〉, and if
cform = 2 then s2 = 〈3, 1, 1, 2, 3, 2〉.

The basic set of constraints is given below.

• ∀i ∈ {1 . . . cforms},∀j ∈ {1 . . . d} : p[i, j] = s1[k]
where k is the inverse mapping of j by the permutation
(perm with cycle form i).

• ∀i ∈ {1 . . . d} : s2[perm[i]] = p[cform, i]

• ∀i ∈ {1 . . . n} : (
∧d
j=1 perm[j] 6= i) ⇔ (s1[i] = s2[i])

(If index i is not present in perm, then the value at position
i remains the same, and vice versa)

We add symmetry breaking constraints to perm. In general,
within each cycle, the smallest element is placed at the front,
and cycles of equal length are ordered by their first element.
The ordering constraints are shown below for d = 4. Only
one of the constraints is conditional on cform; the other three
are true for either cycle form.

• (cform = 1)⇒ (perm[3] < perm[4])
• (perm[1] < perm[2])∧(perm[1] < perm[3])∧(perm[1] <

perm[4])

As a special case for d = 4, we add an allDifferent to the val-
ues permuted by the 4-cycle form. The reason is that if the
values are not all different, the 4-cycle can be reformulated
as two 2-cycles.

• (cform = 2)⇒ allDifferent(p[2, 1 . . . d])

The expression above is decomposed as a reified allDif-
ferent and an implies constraint on two Boolean variables.
GAC is enforced on both these constraints, which is equiva-
lent to GAC on the original expression.

When cform = 1, the transposed values must be differ-
ent, therefore we add the following constraints. These con-
straints are also true when cform = 2, so there is no need for
them to be conditional.

• p[1, 1] 6= p[1, 2] ∧ p[1, 3] 6= p[1, 4]

Empirical Evaluation In this section we compare the fol-
lowing four models, using the same set of instances and ex-
perimental details as in the previous experiment.

Non-Boolean refers to the two-dimensional model.
Implied is the non-Boolean model with additional con-

straints described in the section with heading Implied
Constraints.

Permutation is the non-Boolean model with additional per-
mutation constraints described in the Modelling Permuta-
tions section.

Implied+Perm is the non-Boolean model with both Im-
plied and Permutation constraint sets.

All the above models have the same set of variables, in-
cluding all variables used by the implied constraints and the
permutation model. For solvable instances, the unused vari-
ables are enumerated at the end of the search process, adding
a small constant to the node count. The permutation models
are only used where d = 4, since they are not defined for
other values.

We found it important to perform singleton consistency
(SAC) (Debruyne and Bessière 1997) preprocessing. It
is a very cheap preprocessing step which is nevertheless
very important for the permutation model. Table 3 shows
that SAC preprocessing is important on the instance where
d = λ = q = 4 and v = 9, for two of the four models
listed above. For both models that include the permutation
constraint set, the preprocessing is vital. Therefore we use
SAC preprocessing throughout.

Figure 2 shows our results for these models. It is clear
that both the implied constraints and the permutation model
are effective in reducing the number of search nodes, and in
most cases the combined model gives a further reduction.
The permutation model is particularly effective. For ex-
ample, on the instance 〈4, 5, 4, 11〉 the non-Boolean model
takes 25271680 nodes, the implied model takes 14607410
nodes and the permutation model takes 6032900 nodes, a
reduction of 76%. Where d = 4, there is a clear ordering
among the four models.

However, the search times are not so straightforward. In
most cases, the implied constraints are worthwhile. How-
ever, the permutation model is never worthwhile, and like-
wise for the Implied+Perm model. It is clear that the per-
mutation constraint set adds a considerable overhead to the
search process, and therefore it takes longer to solve even
though it is exploring many fewer nodes.

Finally, we compare the Implied model with the Chan-
nelled model from the previous experiment. These models
use a different variable and value ordering as well as a dif-
ferent constraint set, so there is no reason to expect one to
always dominate the other in terms of search nodes. The Im-
plied model is the most efficient when searching on c vari-
ables, and likewise the channelled model is the most efficient
when searching on m, therefore this makes an interesting fi-
nal comparison. The data are plotted in figure 3. Recall that
the implied constraint set cannot be added to the channelling
model, because it is incompatible with the symmetry break-
ing constraints.

The two models behave remarkably similarly, given their
considerable differences. For the instance which times out,
it can be seen that the two models explored a similar number
of nodes, indicating a similar node rate. The implied model
was faster for 13 instances, and the channelled model was
faster for 10. However, the implied model timed out on five
instances, and the channelled model timed out on one.

Conclusions
We have modelled the equidistant frequency permutation ar-
ray problem using constraint programming, investigating a
range of models. We devised a channelled model which ex-
ploits symmetry breaking constraints on one viewpoint and
problem constraints on the other viewpoint. We invented a
set of implied constraints and showed their benefit in most
cases. This set of constraints may generalise to other prob-
lems involving fixed Hamming distance. As a potential item
of future work for EFPA, the implied constraints could be
reformulated to be compatible with the channelled model.

We gave a novel representation of cycle notation, mod-
elling a permutation with a fixed number of move points.



Search nodes Non-Boolean Implied Permutation Implied+Perm
No preprocessing 6788586 4032510 6021363 3471775

SAC preprocessing 6788361 4032306 1674826 1340546

Table 3: Search nodes with and without SAC preprocessing, d = λ = q = 4, v = 9
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Figure 2: Comparison of non-Boolean, Implied, Permutation and Implied+Perm models
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Figure 3: Comparison of Implied and Channelled models

This was shown to be very effective for cutting down the
search space, which indicates its potential. However, the
overhead of the additional constraints negated the benefits.
With a different formulation or a different constraint solver,
the permutation model could prove to be beneficial. Also, it
may apply to other problems involving fixed Hamming dis-
tance. It would be interesting to investigate this further.

Our work has direct application in mathematics. One of
the authors (Huczynska) is a mathematician and is exploit-
ing our novel results in her own theoretical investigations
(Huczynska 2009). This illustrates that, with careful mod-
elling and the power of fast constraint solvers such as Min-
ion and modelling assistants such as Tailor, constraint pro-
gramming can contribute to research in other disciplines.
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