
Tightened Transitive Closure of Integer Addition Constraints

Peter Revesz
Department of Computer Science and Engineering

University of Nebraska-Lincoln
revesz@cse.unl.edu

Abstract

We present algorithms for testing the satisfiability and find-
ing the tightened transitive closure of conjunctions of addi-
tion constraints of the form ±x ± y ≤ d and bound con-
straints of the form ±x ≤ d where x and y are integer vari-
ables and d is an integer constrant. The running time of these
algorithms is a cubic polynomial in the number of input con-
straints. We also describe an efficient matrix representation
of addition and bound constraints. The matrix representation
provides a easy, algebraic implementation of the satisfiability
and tightened transitive closure algorithms. We also outline
the use of these algorithms for the improved implementation
of abstract interpretation methods based on the octagonal ab-
stract domain.

1. Introduction
Many problems can be described by constraints of the form:

Addition : ±x± y ≤ d

Bound : ±x ≤ d

where x, y are rational or integer variables, and d is a con-
stant (Revesz 2002). Addition constraints are also called
unit two variables per inequality (UTVPI) constraints, and
bound constraints are also called single variable per in-
equality (SVPI) constraints (Jaffar et al. 1994).

One recent application of these constraints is in the
abstract interpretation of programs. Abstract interpreta-
tion derives either an over-approximation or an under-
approximation of the collection semantics of a program
(Cousot and Cousot 1976). (Miné 2001) pointed out that the
above constraints can be used as an abstract domain, called
the octagon abstract domain, and the program semantics can
be abstracted in terms of a disjunctive normal form formula
of the above constraints. This new abstract domain is more
precise than intervals (Cousot and Cousot 1976) but simpler
than polyhedra (Cousot and Halbwachs 1978).

Addition constraints include difference constraints of the
form x − y ≤ d. Since difference constraints play an
important role in software verification (Alur et al. 1995;
Clarke 1999; McMillan 1993), it is an interesting question

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

whether addition constraints will also prove beneficial for
software verification. It is well-known that difference con-
straints can be represented by Difference-Bound Matrices or
DBMs, which allow the definition of many efficient opera-
tions on them when the variables range over either the ratio-
nal numbers or the integers.

An abstract interpretation of Datalog queries with bound
and difference constraints is implemented in the MLPQ con-
straint database system (Revesz et al. 2000), based on ear-
lier constraint database concepts (Kanellakis et al. 1995,
Revesz 1993). Using this abstract interpretation, the MLPQ
system can be transformed into a software verification
system of both logic programs and procedural programs
(Delzanno and Podelski 1999; Fribourg and Olsén 1997;
Fribourg and Richardson 1996; Revesz 2007). The MLPQ
system also allows checking whether a given error condition
and the under-approximation of the program semantics in-
tersect, thereby proving that certain errors can occur during
program executions (Anderson and Revesz 2005).

The applicability of the octagon abstract domain will de-
pend largely on whether similarly efficient operators can be
defined on it. There are currently some promising results for
rational numbers. (Miné 2001) shows that testing the sat-
isfiability of addition and bound constraints over n rational
variables can be done in O(n3) time. However, (Miné 2001)
conjectures the satisfiability problem to be O(n4) with inte-
ger variables.

Currently the best tightened transitive closure algorithm
with n integer variables and m input constraints requires
O(mn2) time (Harvey and Stuckey 1997). This algorithm
also returns “unsatisfiable” if the input constraints have no
integer solution. Since with n integer variables m is O(n2),
this algorithm runs in O(n4) time in the worst case.

(Péron and Halbwachs 2007) recently discovered another
interesting difference between the case of rational and inte-
ger variables. They show that conjunctions of rational dif-
ference constraints and disequality constraints of the form
x 6= y still allow satisfiability testing in O(n3) time. This
is surprising because with integer variables the same prob-
lem is known to be NP-complete by a reduction of the graph
3-colorability problem (Rosenkrantz and Hunt 1980).

The result of (Péron and Halbwachs 2007) suggested the
possibility that for conjunctions of bound and addition con-
straints too the basic operators will be harder with integer



variables than with rational variables. In spite of the ear-
lier conjectures and suggestions, in this paper we present
an O(n3) satisfiability testing algorithm with integer vari-
ables. We also present an O(n3 log n) algorithm that finds
the tightened transitive closure for conjunctions of integer
addition and bound constraints.

The rest of this paper is organized as follows. Section 2
gives a brief review of the basic concepts and previous work.
Section 3 presents a variable elimination algorithm and a
satisfiability testing algorithm, which is based on succes-
sive variable elimination. Section 4 presents a tightened
transitive closure algorithm for conjunctions of addition and
bound constraints. Finally, Section 5 discusses some related
and future work.

2. Basic Concepts

2.1 Addition-Bound Matrices

Several researchers developed Addition-Bound Matrices or
ABMs to represent conjunctions of addition and bound con-
straints in analogy to the well-known Difference-Bound Ma-
trices or DBMs that represent conjunctions of bound and
difference constraints.

(Miné 2001) represents a conjunction of addition and
bound constraints over variables V = {x1, . . . , xn} by a
conjunction of difference constraints over variables V + =
{x+

1 , x−1 , . . . , x+
n , x−n }, that is, every variable has a positive

form x+
i equivalent to xi and a negative form x−i equivalent

to−xi. While this representation takes advantage of already
well-developed DBM algorithms, in this paper we prefer a
simple three-matrices representation.

We say that an addition constraint ax + by ≤ d (or bound
constraint ax ≤ d) trivially implies another addition con-
straint ax+by ≤ d′ (respectively, bound constraint ax ≤ d′)
if d < d′. We always simplify the given addition and bound
constraints by deleting those constraints that are trivially im-
plied by other given constraints.

We allow 0 to be a special variable, denoted as x0, and
we number the other variables as x1, . . . , xn. Using x0 as
a dummy variable, we write every bound constraint as an
addition constraint. Due to the deletion of trivially implied
constraints, for each a, b ∈ {−1, 1} combination and dis-
tinct variables xi and xj , we can have only one constraint of
the form axi + bxj ≤ d.

We also rewrite every −xi + xj ≤ d into xj − xi ≤ d,
every xi + xj ≤ d where i > j into xj + xi ≤ d, and
every−xi−xj ≤ d where i > j into−xj−xi ≤ d. We use
matrix M+− to represent constraints when a = 1, b = −1,
matrix M++ to represent constraints when a = b = 1, and
matrix M−− to represent constraints when a = b = −1, as
follows:

M+−[i, j] =
{

d if (xi − xj ≤ d) ∈ C
+∞ otherwise

}

M++[i, j] =
{

d if (xi + xj ≤ d) ∈ C
+∞ otherwise

}

M−−[i, j] =
{

d if (−xi − xj ≤ d) ∈ C
+∞ otherwise

}
The above is a particularly efficient and convenient rep-

resentation of addition and bound constraints because M++

and M−− are upper triangular matrices and do not need the
variable 0.

Example 1 Consider the following conjunction of addition
and bound constraints over the variables x and y:

−x ≤ −25, y ≤ 3, x−y ≤ 4, x+y ≤ 10, −x−y ≤ −40

This set of addition and bound constraints can be represented
by the following three matrices.

M+−

0 x y
0 +∞ −25 +∞
x +∞ 4 +∞
y 3 +∞ +∞

M++

x y
x 10
y

M−−

x y
x −40
y

This representation is useful to check whether we have
a constraint of a certain form and to avoid trivially implied
constraints in our representation. In the following we as-
sume that when we add a new constraint axi + bxj ≤ d to
matrix Mab, then we overwrite Mab[i, j] with d if its cur-
rent value is greater than d. We also assume that initially all
entries are +∞.

For simplicity we will not always use the above repre-
sentation in describing our algorithms when the representa-
tion is not needed. However, it is easy to translate our al-
gorithms into one that uses the above matrix representation
even though we prefer to describe some of the algorithmic
ideas using graphs. The translation from graphs to matrices
is the basis of efficient, algebraic computer implementations.

2.2 Harvey-Stuckey Tightened Transitive Closure

If±x±y ≤ d is an addition constraint, or±x ≤ d is a bound
constraint, where d is a rational number, then ±x± y ≤ bdc
and ±x ≤ bdc are tightened addition and bound constraints.



For example, x ≤ 3/2 can be tightened to the constraint
x ≤ 1. Tightening is a valid operation in the case of in-
teger variables because the tightened constraint always has
the same solutions as the untightened constraint. In the fol-
lowing we always try to keep the constraints in a tightened
form.

The tightened transitive closure of a set C of addition and
bound constraints is the set of addition and bound constraints
C∗ that C implies, such that, we cannot derive any more
addition and bound constraints which are not already in C∗

or trivially implied by one constraint in C∗.

The tightened transitive closure allows easy variable elim-
ination and testing simple implications of the original set of
constraints. The first tightened transitive closure algorithm
was presented by (Jaffar et al. 1994).

Theorem 1 [Jaffar et al. 1994] Let C be a set of addition
and bound constraints that is closed under transitivity and
tightening. Then C is integer satisfiable if and only if it does
not contain a constraint of the form 0 ≤ d where d < 0.

Although the algorithm of (Jaffar et al. 1994) is
inefficient, it was already improved by (Harvey and
Stuckey 1997).

Lemma 1 [Harvey and Stuckey 1997] Let A be a set of ad-
dition constraints, B be a set of bound constraints, such that
A∪B is integer satisfiable, tight, and transitively closed. Let
a, b, e, f ∈ {−1, 1} and d, d′, d′′ be integers. Also let C be
the addition constraint ax + by ≤ d where x 6= y.

A ∪ B ∪ C is integer unsatisfiable exactly when there is at
least one false inequality generated by the following rules:

0 ≤ d + d′ if −ax− by ≤ d′

0 ≤ d + d′ + d′′ if −ax ≤ d′, − by ≤ d′′

If A∪B∪C is integer satisfiable, then its tightened transitive
closure is A∪B ∪C ∪A′ ∪B′ where A′ is the union of the
constraints generated by the rules:

by + ex ≤ d + d′ if −ax + ez ≤ d′, z 6= y

ax + ft ≤ d + d′′ if −by + ft ≤ d′′, t 6= x

ex + ft ≤ d + d′ + d′′ if −ax + ez ≤ d′,

−by + ft ≤ d′′,

z 6= y, t 6= x, t 6= z

and B′ is the union of constraints generated by the rules:

by ≤ d + d′ if −ax ≤ d′

ax ≤ d + d′ if −by ≤ d′

ez ≤ d + d′ + d′′ if −ax ≤ d′,

−by + ez ≤ d′′, z 6= x

ez ≤ d + d′ + d′′ if −by ≤ d′,

−ax + ez ≤ d′′, z 6= y

by ≤
⌊

d + d′

2

⌋
if −ax + by ≤ d′

ax ≤
⌊

d + d′

2

⌋
if ax− by ≤ d′

ez ≤
⌊

d + d′ + d′′

2

⌋
if −ax + ez ≤ d′,

−by + ez ≤ d′′

Based on the above, (Harvey and Stuckey 1997) presents
a simple incremental tightened transitive closure algorithm
that adds one constraint at a time to the tightened transitive
closure. Initially, A′ and B′ are both empty. After adding
each new inequality, as well as testing for satisfiability, the
incremental algorithm updates A′ and B′ to ensure that A ∪
B ∪ C ∪A′ ∪B′ remains transitively closed.

Theorem 2 [Harvey and Stuckey 1997] The tightened tran-
sitive closure of m number of bound and addition constraints
over n variables can be computed in O(mn2) time.

3. Variable Elimination and Satisfiability

We present an incremental algorithm that eliminates each
variable one-by-one. When C is any set of constraints and x
is any fixed variable symbol, we denote by C\x the subset of
C that contains those constraints that do not contain x. We
also denote by x/y the substitution of variable x by variable
y.

Below we give an improved set of variable elimination
rules.

Definition 1 Let a, b, e ∈ {−1, 1} and d, d′ be integers.



0 ≤ d + d′ if −ax ≤ d, ax ≤ d′

0 ≤ d + d′ if −ax + by ≤ d, ax− by ≤ d′

by ≤ d + d′ if −ax + by ≤ d, ax ≤ d′

by ≤
⌊

d + d′

2

⌋
if −ax + by ≤ d, ax + by ≤ d′

by + ez ≤ d + d′ if −ax + by ≤ d, ax + ez ≤ d′, y 6= z

It is easy to show that the above set of rules are valid.

Lemma 2 The rules in Definition 1 are valid.

Proof: One way to see the validity of rules in Definition 1
is to rewrite them into the following logically equivalent
forms.

0 ≤ d + d′ if −d ≤ ax, ax ≤ d′

0 ≤ d + d′ if by − d ≤ ax, ax ≤ by + d′

by ≤ d + d′ if by − d ≤ ax, ax ≤ d′

by ≤
⌊

d + d′

2

⌋
if by − d ≤ ax, ax ≤ −by + d′

by + ez ≤ d + d′ if by − d ≤ ax, ax ≤ d′ − ez, y 6= z

It can be seen that in each case there are two constraints
on the right hand side of “if.” One of the constraints is of
the form l ≤ ax where l is some lower bound of ax and the
other is a constraint of the form ax ≤ u where u is an upper
bound of ax. From these two constraints l ≤ u follows by
transitivity of the ≤ relation. Finally the constraint on the
left hand side of “if” is always some simplification of the
l ≤ u constraint. The simplification includes tightening in
the case of fourth rule. �

Next we show that the rules of Definition 1 can be used
to eliminate a variable from any set of addition and bound
constraints.

Lemma 3 Let A be a set of addition constraints, and let B
be a set of bound constraints with variables x1, . . . , xn. Let
I be the set of constraints derivable using Definition 1 rules
(1-2) with substitutions x/x1 and y/xi for some 2 ≤ i ≤ n.
Let B′ be the set of constraints derivable using Defini-
tion 1 rules (3-4) with substitutions x/x1 and y/xi for some
2 ≤ i ≤ n. Let A′ be the set of constraints derivable using
Definition 1 rule (5) with substitutions x/x1 and y/xi and
z/xj where 2 ≤ i, j ≤ n. Then A ∪ B is integer satisfiable
if and only if I ∪A\x ∪A′ ∪B\x ∪B′ is satisfiable.

Proof: Consider all the constraints in A ∪B that have x1 in
them. They can be bound constraints of the form x1 ≤ d or
−x1 ≤ d′. The latter can be written as d′ ≤ x1. They can be
also addition constraints of the form x1+bxi ≤ di or−x1+
bxj ≤ dj . These latter ones can be written in the form x1 ≤
−bxi + di and bxj − dj ≤ x1. Therefore, every constraint
that contains x1 can be written as either some lower or some
upper bound on x1.

It can be also seen that for every pair of lower bound and
upper bound constraints of the general form l ≤ x1 ≤ u
one of the rules of Definition 1 derives a constraint that is
equivalent to l ≤ u. In fact the rules only derive constraints
that are equivalent to these types of constraints.

The derived constraints are contained in I if they contain
no variables, in B′ if they contain only one variable, or in A′

if they contain two different variables. Hence it is easy to see
that if A∪B is integer satisfiable, then I∪A\x∪A′∪B\x∪B′

is also integer satisfiable.

Let us consider now the other direction. Consider any
given integer solution of I ∪ A\x ∪ A′ ∪ B\x ∪ B′. Ob-
viously, it must satisfy all the derived constraints as it con-
tains I ∪ A′ ∪ B′. Among the constraints that contain x1,
when rewritten as explained in the first paragraph, there is
some lmax which under the given integer solution gives the
largest lower bound on x1 and there is some umin which un-
der the same integer solution gives the smallest upper bound
on x1. As we saw above, one of the rules must have de-
rived a constraint that is equivalent to lmax ≤ umin. Since
I ∪ A\x ∪ A′ ∪ B\x ∪ B′ is satisfiable, lmax ≤ umin must
be satisfiable.

Further, lmax and umin are sums of integers. Hence they
must be integers themselves. Since lmax ≤ umin holds and
lmax and umin are integers, there must be some integer x1

such that lmax ≤ x1 ≤ umin. Clearly this integer solution
for x1 satisfies all other lower bound and upper bound con-
straints on x1. Therefore A ∪B must be satisfiable. �

Lemma 3 gives the idea that we successively eliminate the
variables from A ∪ B. When the last variable is eliminated,
and we have not found yet any unsatisfiable constraint be-
tween constants, then A ∪ B is satisfiable. The following
satisfiability testing algorithm is based on this idea.



Satisfiability(A,B)

input: A is addition constraints, B is bound constraints
with variables x1, . . . , xn.

output: “satisfiable” or “unsatisfiable” depending on
whether A ∪B is satisfiable.

for k = 1 to n do
I = A′ = B′ = ∅

for i = k to n do
I = I ∪ constraints by Definition 1 rules (1-2)

with x/xk and y/xi

B′ = B′ ∪ constraints by Definition 1 rules (3-4)
with x/xk and y/xi

end-for

if any constraint in I is false then
return “unsatisfiable”

end-if

for i = k to n do
for j = k to n do

A′ = A′ ∪ constraints by Definition 1 rule (5)
with x/xk, y/xi and z/xj

end-for
end-for

A = A\x ∪A′

B = B\x ∪B′

end-for

return “satisfiable”

Based on the above algorithm we can show the following
theorem.

Theorem 3 Satisfiability of addition and bound constraints
over n variables can be computed in O(n3) time.

Proof: We show that algorithm SATISFIABILITY is correct
and runs in O(n3) time. Each execution of the outermost
for-loop of the algorithm will eliminate the kth variable.
Since all the variables x1, . . . , xk−1 are already eliminated
by that time, the algorithm correctly considers only substi-
tutions from the still active variables xk, . . . , xn. Otherwise,
the proof of correctness follows from repeated applications
of Lemma 3.

The computational complexity is easily seen to be in
O(n3) time because we have triple nested for loops. Oth-
erwise, each step can be done in constant time. When we
try out for a particular rule particular variable substitutions
with either −1 or 1 value of the coefficients, we have only
a constant number of substitutions to try. The derived con-
straints are added to the known constraints when they are

tighter than the ones already known (this can be checked
easily using the ABM three-matrices representation of Sec-
tion 2). Hence each rule application with one particular sub-
stitution of the variables can be done in constant time. �

The following practical theorem also follows as a corol-
lary of the above.

Theorem 4 We can eliminate k variables from a set of addi-
tion and bound constraints over n variables in O(kn2) time.
�

4. Tightened Transitive Closure
We now develop an efficient tightened transitive closure al-
gorithm. For the sake of a clearer view of the algorithm, let
us represent the addition and bound constraints as a graph.
In the graph each variable is represented as a vertex. We also
introduce a special vertex that represents the constant 0.

Each addition constraint of the form ax + by ≤ d where
a, b ∈ {−1, 1} is represented as an undirected edge between
vertices x and y with three labels. Label a adjacent to vertex
x, label b adjacent to vertex y, and label d, which we will
call the weight, in the middle of the edge.

Further, each bound constraint of the form ax ≤ d where
a ∈ {−1, 1} is represented as an undirected edge between
vertices x and 0. The label a appears adjacent to vertex x,
in the middle the weight d is written, but we do not put any
label adjacent to vertex 0 because the label is irrelevant in
that case.

For simplicity we can assume that the constraints were
already tested for satisfiability and are satisfiable. Therefore,
we do not need to use the first two rules of Definition 1. We
can translate the third and the fourth rules of Definition 1
into a graph representation as follows where x 6= y and x 6=
z.

©y b

d + d′
©0 if ©y b − a

d
©x a

d′
©0

©y b

b(d + d′)/2c
©0 if ©y b − a

d
©x a b

d′
©y

By the symmetry of every undirected edge, the second
line above, that is, the fourth rule of Definition 1, can be
rewritten as the first graphical rule of Figure 1. Finally, the
fifth rule of Definition 1 is shown as the second graphical
rule in Figure 1. Note that the third rule of Definition 1 is
now a special case of the fifth rule of Definition 1, assuming
that for 0 we can introduce either a−1 or +1 label any time.
Hence we need to use only the graphical rules in Figure 1 to
derive new constraints.

This alternative graphical view of the rules of Definition 1
allows us to make some important observations. Imagine
that in the initial graph there is between vertices v1 and vl a
path of the following form:

©v1
a1 −a2

d1
©v2 . . . ©vl−1

al−1 −al

dl−1
©vl



©y b

b(d + d′)/2c
©0 b

b(d + d′)/2c
©y if ©y b − a

d
©x a b

d′ ©y (1)

©y b e

d + d′ ©z if ©y b − a

d
©x a e

d′ ©z (y 6= z) (2)

Figure 1: Graphical visualizations of the rules of Definition 1.

where the vis for 1 ≤ i ≤ l are distinct.
We can assume that the initial graph does not contain any

edge from 0 to 0. (If it did with a positive value, it would
mean that the entire graph is unsatisfiable. If it did with a
non-positive value, then it would be superfluous.) Hence
we can assume that if vi is the 0 vertex, then the adjacent
vertices on the path, that is vi−1 and vi+1, are not 0.

Let us apply rule (2) at each place where it is applicable.
Further let us repeat this log2 l times. Then we will get a
single edge between v1 to vl of the form:

©v1
a1 −al

d1+...+dl−1
©vl

In general, in the entire graph log2 n repeated parallel ap-
plications of rule (2) will generate a similar single edge in
place of every path where the vertices are all distinct. Now
suppose that there is another edge from vl to v1 of the form:

©vl
al a1

dl
©v1

Note that there is now a cycle from v1 to itself. With the
previous single edge and the new single edge, we can apply
rule (1), which will yield:

©v1
a1
b(d1+...+dl)/2c©0

By rule (1) of Figure 1, this is equivalent to:

©v1
a1
b(d1+...+dl)/2c©0 a1

b(d1+...+dl)/2c©v1

Hence we have replaced each cycle of the form where rule
(1) applies into a pair of tightened edges. Further, if there
was a path between any pair of vertices in the initial graph,
there is now a path that leads through such tightened pair of
edges instead of untightened cycles of the form we had in v1

to itself.
Now in the new graph consider any shortest path. A short-

est path between a pair of vertices u1 and um is a path be-
tween them that has a minimal number of edges among those
paths that have a minimal sum of weights between them.

Lemma 4 In the new graph between any two vertices there
is always a shortest path that uses at most two occurrences
of each distinct variable.

Proof: Consider a shortest path between u1 and um. Let us
traverse the path from u1 to um. Suppose that some vertex
w appears at least three times on this shortest path. Consider
on the path the vertex w′ before and the vertex w′′ after the
second occurrence of w.

If w′ 6= w′′, then by rule (2) there must be an edge be-
tween w′ and w′′ such that its weight is equal to the sum of
the weights on the edge from w′ to w and from w to w′′.
Then there is a path from u1 to um which is shorter than the
one given, which is a contradiction.

If w′ = w′′, then there are two cases.

Case I: The outgoing label of w′ is the opposite of the in-
coming label of w′′. Then rule (2) still applies and we can
find a shorter path when we replace w′ w w′′ by a single
edge between w′ and w′′. This is a contradiction to the as-
sumption that the path between u1 and um is a shortest path.

Case II: The outgoing label of w′ is the same as the incom-
ing label of w′′. Then by rule (1) we can replace the path w′

w w′′ by a path w′ 0 w′′. This path will have the same num-
ber of edges, the same or possibly smaller sum of weights
(because of the tightening) and have one fewer occurrence
of w.

By a repetition of the above argument we can eliminate
all the other intermediate occurrences of w or derive a con-
tradiction. �

Lemma 4 implies that if we now apply again rule (2) in
parallel log2 n times, then we get a single edge between ev-
ery pair of vertices such that the weight of the edge is the
minimal weight that can be obtained by any application of
rules (1-2).

Example 2 Consider the following path between vertices z
and t.

©z e −b
1 ©y b −a

5 ©x a b
4 ©y −b f

7 ©t
The first time we apply rule (2) in parallel we add the edges:

©z e −a
6 ©x a f

11 ©t
The second time we apply rule (2) in parallel we add the
edges:

©z e b
10 ©y ©y b f

16 ©t ©z e f
17 ©t



Then we apply rule (1) and get:

©y b b
8 ©y

Then again we apply rule (2) in parallel and get:

©z e b
9 ©y ©y b f

15 ©t
Finally we apply rule (2) again in parallel and get:

©z e f
16 ©t

Hence we conclude that the shortest path between z and t
has length 16.

The tightened transitive closure algorithm is shown below.

TransitiveClosure(G)
input: An integer satisfiable set of addition and bound
constraints as a graph G with variables x0, x1, . . . , xn.
output: The tightened transitive closure of G.

G′ = ∅
for m = 1 to log n do

for i = 0 to n do
for j = 0 to n do

for k = 0 to n do
G′ = G′∪ apply Figure 1 rule (2)

with y/xi, x/xk, z/xj

end-for
end-for

end-for
G = G ∪G′

G′ = ∅
end-for

for i = 0 to n do
for k = 0 to n do

G′ = G′∪ apply Figure 1 rule (1)
with y/xi and x/xk

end-for
end-for

G = G ∪G′

G′ = ∅
for m = 1 to log n do

for i = 0 to n do
for j = 0 to n do

for k = 0 to n do
G′ = G′∪ apply Figure 1 rule (2)

with y/xi, x/xk, z/xj

end-for
end-for

end-for
G = G ∪G′

G′ = ∅
end-for
return G

Although for simplicity we presented the above algorithm
using a graph representation, it can be rewritten into a log-
ically equivalent algorithm that uses the matrix representa-
tion of Section 2. The addition of the constraints in G′ to
G can then be implemented efficiently, and we can keep the
size of the representation of the graph O(n2).

Theorem 5 The tightened transitive closure of addition and
bound constraints over n variables can be computed in
O(n3 log n) time.

Proof: The proof is based on showing the correctness of
algorithm TRANSITIVECLOSURE. The key condition is ex-
pressed in Lemma 4. Based on Lemma 4, it is easy to show
that the actual shortest path can be computed in log n + 1
parallel applications of the rules in Figure 1. �

5. Related and Future Work
One advantage of our satisfiability testing and tightened
transitive closure algorithms is that they can be relatively
easily implemented based on matrices. We are currently
working on implementing in the MLPQ system the evalua-
tion of the under-approximation and the over-approximation
of the least fixed point semantics of Datalog queries with ad-
dition and bound constraints. An interesting open problem
is to find conditions when the under-approximation and the
over-approximation of the program semantics are the same,
resulting in a precise evaluation.

References
R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-
H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine.
The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138(1):3–34, 1995.
S. Anderson and P. Revesz. Verifying the incorrectness of
programs and automata. In Proc. 6th International Sympo-
sium on Abstraction, Reformulation, and Approximation,
volume 3607 of Lecture Notes in Computer Science, pages
1–13. Springer-Verlag, 2005.
E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. MIT Press, 1999.
P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construc-
tion or aproximation of fixpoints. In Proc. ACM Principles
on Programming Languages, pages 238–252. ACM Press,
1977.
P. Cousot and N. Halbwachs. Automatic discovery of lin-
ear restraints among variables of a program. In Proc.
ACM Principles on Programming Languages, pages 84–
97. ACM Press, 1978.
G. Delzanno and A. Podelski. Model checking in CLP.
In 2nd International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, volume
1579 of Lecture Notes in Computer Science, pages 74–88.
Springer-Verlag, 1999.
L. Fribourg and H. Olsén. A decompositional approach
for computing least fixed-points of Datalog programs with
Z-counters. Constraints, 2(3–4):305–36, 1997.



L. Fribourg and J. D. C. Richardson. Symbolic verification
with gap-order constraints. In Proc. Logic Program Syn-
thesis and Transformation, volume 1207 of Lecture Notes
in Computer Science, pages 20–37. Springer-Verlag, 1996.
W. Harvey and P. Stuckey. A unit two variable per in-
equality integer constraint solver for constraint logic pro-
gramming. In Proc. Australian Computer Science Con-
ference (Australian Computer Science Communications),
pages 102–11, 1997.
J. Jaffar, M. J. Maher, P. Stuckey, and R. H. Yap. Beyond
finite domains. In A. Borning, editor, Proc. 2nd Interna-
tional Workshop on Principles and Practice of Constraint
Programming, volume 874 of Lecture Notes in Computer
Science, pages 86–94. Springer-Verlag, 1994.
P. C. Kanellakis, G. M. Kuper, and P. Revesz. Constraint
query languages. Journal of Computer and System Sci-
ences, 51(1):26–52, 1995.
K. McMillan. Symbolic Model Checking. Kluwer, 1993.
A. Miné. The octagon abstract domain. In Proc. Analysis,
Slicing and Transformation, pages 310–319. IEEE Press,
2001.
M. Péron and N. Halbwachs. An abstract domain ex-
tending difference-bound matrices with disequality con-
straints. In Proc. 8th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation, volume
4349 of Lecture Notes in Computer Science, pages 268–
282. Springer-Verlag, 2007.
P. Revesz. A closed-form evaluation for Datalog queries
with integer (gap)-order constraints. Theoretical Computer
Science, 116(1):117–49, 1993.
P. Revesz. Reformulation and approximation in model
checking. In Proc. 4th International Symposium on
Abstraction, Reformulation, and Approximation, volume
1864 of Lecture Notes in Computer Science, pages 124–
43. Springer-Verlag, 2000.
P. Revesz. Introduction to Constraint Databases. Springer-
Verlag, 2002.
P. Revesz. The constraint database approach to software
verification. In Proc. 8th International Conference on Veri-
fication, Model Checking, and Abstract Interpretation, vol-
ume 4349 of Lecture Notes in Computer Science, pages
329–345. Springer-Verlag, 2007.
P. Revesz, R. Chen, P. Kanjamala, Y. Li, Y. Liu, and
Y. Wang. The MLPQ/GIS constraint database system. In
Proc. ACM SIGMOD International Conference on Man-
agement of Data, 2000.
D. J. Rosenkrantz and H. B. Hunt. Processing conjunctive
predicates and queries. In Proc. IEEE International Con-
ference on Very Large Databases, pages 64–72, 1980.


