
Inconsistency-tolerant Reasoning with Classical Logic and Large Databases

Timothy L. Hinrichs
University of Chicago

Jui-Yi Kao ∗

Stanford University
Michael R. Genesereth

Stanford University

Abstract

Real-world automated reasoning systems must contend with
inconsistencies and the vast amount of information stored
in relational databases. In this paper, we introduce compi-
lation techniques for inconsistency-tolerant reasoning over
the combination of classical logic and a relational database.
Our resolution-based algorithms address a quantifier-free,
function-free fragment of first-order logic while leveraging
off-the-shelf database technology for all data-intensive com-
putation.

Introduction
Automated reasoning systems face two major challenges
in real-world reasoning: logically inconsistent information
and the vast amount of information stored in relational
databases.

These two issues stand out because of their prevalence in
the world today. Occasional errors and disagreements are
unavoidable in real-world information. A customer may re-
port an incorrect social security number; a technician may
record an incorrect parameter; two scholars may disagree
over the birth year of Julius Caeser; two organizations may
disagree over the gross domestic product of a country. It
is natural for errors and disagreements in our information
to cause contradictions. Classical reasoning systems unable
to cope with contradictions cannot differentiate one query
from another, making them useless when inconsistencies
arise. Orthogonally, relational databases are ubiquitous in
our society. Companies, universities, and governments rely
crucially on database technology to store and publish vast
amounts of information. Automated reasoning systems un-
able to integrate relational databases cannot exploit that in-
formation and consequently fail to find many desirable con-
clusions.

Building a reasoning system that copes with inconsis-
tencies is difficult because classical semantics is explosive
(entails every sentence from an inconsistent premise set).
Weakening this definition to one that captures our intuition
as to which conclusions one can reasonably draw from un-
reasonable premises has been the subject of much study, and

∗This work was supported in part by the National Science Foun-
dation under award number IIS-0841152.
Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as of yet no single definition has become the universal stan-
dard. Relational databases compound this problem by the
sheer quantity of information that they routinely store. Au-
tomated reasoning with premise sets that include gigabytes,
terabytes, or even petabytes of relational data introduces
memory and disk management problems that have not been
adequately addressed by the automated reasoning commu-
nity.

Recently, progress has been made toward semantics that
cope with logical inconsistency, especially in the context of
classical logic,e.g., (Subrahmanian and Amgoud 2007; Ev-
eraere, Konieczny, and Marquis 2008; Besnard and Hunter
2008). Of the relatively few results concerned with im-
plementation (da Costa et al. 1990; Sofronie-Stokkermans
2000; Besnard and Hunter 2006; Efstathiou and Hunter
2008; Binas and McIlraith 2008; Gomez, Chesnevar, and
Simari 2008), none address the problems of massive data
sets or interfacing with external databases. Standard tech-
niques such as procedural attachments (Weyhrauch 1980;
Myers 1990; Sikka 1996) and theory resolution (Stickel
1985) do not address inconsistency and only provide the in-
frastructure by which an automated reasoning system can
pose queries to a relational database. When the answers to
such queries are gigabytes large, the unaddressed memory
and disk management issues become crucial for operational
automated reasoning systems.

Our approach simultaneously addresses logical inconsis-
tency and the data management problems caused by com-
bining classical reasoning with database evaluation using
novel, resolution-based compilation algorithms. Instead of
building an inconsistency-tolerant automated reasoning sys-
tem that operates on classical axioms while periodically con-
sulting a database, our system compiles the classical ax-
ioms into database queries, invokes the database to answer
those queries, and returns exactly the database’s results.
An important advantage of this approach is that the com-
pilation layer deals directly with the classical premises but
not the massive amount of data in the database. The key
challenge of this approach is constructing database queries
that encapsulate the classical premise set and implement an
inconsistency-tolerant entailment relation. The compilation
algorithms introduced here meet this challenge for premise
sets in a finite version of function-free, quantifier-free first-
order logic and terminate exactly when the resolution clo-

sure of the premises is finite.
After formalizing the problem, we explain the compila-

tion algorithms for one non-explosive entailment relation
and soundness and completeness results for quantifier-free
premise sets. Then we discuss another non-explosive en-
tailment relation, which is popular in the literature, and the
extent to which our algorithms implement it. Finally, we cite
related work, and conclude with a discussion of future work.

Problem Statement
The inconsistency-tolerant reasoning system we designed
for combinations of classical logic and relational databases
first compiles the classical axioms into database queries,
then invokes the database to answer those queries, and fi-
nally returns exactly the database’s results. Since the sec-
ond two steps utilize off-the-shelf database technology, the
problem we address in this paper is the compilation of
classical axioms into database queries that implement an
inconsistency-tolerant entailment relation. Before formal-
izing this problem, we discuss languages for classical logic
and relational databases, the semantics for combinations of
classical logic and relational databases, and inconsistency-
tolerant entailment relations.

Two Languages: FHL andDATALOG

The objects of study in this paper are two knowledge
representation formalisms: classical logic and relational
databases. The classical logic considered is first-order logic
with equality and the following three restrictions: no func-
tion constants, a domain closure assumption (DCA), and a
unique names assumption (UNA). We call this logic Finite
Herbrand Logic (FHL) because the only models of interest
are the finite Herbrand models. The relational database lan-
guage studied in this paper is nonrecursiveDATALOG with
negation, which can be embedded in SQL and therefore used
in off-the-shelf database systems. We use standard syntax
and semantics for both languages and therefore only high-
light the crucial definitions below.

The syntax for FHL is the same as for function-free first-
order logic. A model for FHL is the same as for first-
order logic but simplified to take advantage of the UNA and
DCA. A model is a set of ground atoms from the language.
A model satisfies a set of FHL sentences if it satisfies all
ground instances of those sentences. A sentence set is sat-
isfiable (or consistent) if there is some model that satisfies
it. A sentence set is complete if it is satisfied by at most one
model.Mod[Γ] denotes the set of models that satisfyΓ.

ForDATALOG, the syntax is also standard and can be iden-
tified by the use of:− for implication. Just as for FHL, a
model is a set of ground atoms. Unlike FHL, every set of
DATALOG sentences has exactly one model and thus repre-
sents a complete, consistent theory. Without negation, this
model is the smallest one (ordered by subset) that satisfies
the sentences under the FHL definition of satisfaction. With
negation, this model is assigned according to the stratified
semantics (Ullman 1989).

Since this paper introduces compilation algorithms for
FHL andDATALOG, it is convenient to have conventions for

discussing the canonical FHL andDATALOG representations
of complete, consistent theories (every theory axiomatizable
in DATALOG). A complete, consistent theory is said to be
representedexplicitly in FHL by a logically equivalent set of
ground literals, denotedExp[T] for theoryT . A complete,
consistent theory is said to be representedextensionallyin
DATALOG by the non-negated elements of its explicit repre-
sentation, denotedExt[T]. To denote the set of predicatesQ
that occur in the explicit representation of a complete, con-
sistent theoryT , we will say thatT is complete over predi-
catesQ.

For example, the following sentences induce a consistent
FHL theory complete over predicates{p, q}.

¬p(a) ∧ ¬p(b)
∀x.(¬p(x) ⇒ q(x, a))
∀x.¬q(x, b)

Below are the explicit and extensional representations.

Explicit Extensional
¬p(a) ¬p(b)
q(a, a) ¬q(a, b)
q(b, a) ¬q(b, b)

q(a, a)
q(b, a)

Combinations of FHL and DATALOG

The algorithms introduced in this paper enable reasoning
about the combination of FHL and relational databases;
thus, we must define the semantics of such combinations.
Since every database can be represented inDATALOG and
everyDATALOG theory is equivalent to a complete, consis-
tent FHL theory, we can formalize a database as a com-
plete, consistent FHL theory (hence our interest in FHL).
The combination of FHL axioms∆ and databaseΛ (a com-
plete, consistent FHL theory) will be written as〈∆,Λ〉. Its
semantics is the set of models that satisfy∆ ∪ Λ.

While the combination of FHL and databases is an im-
portant concept, it turns out that the compilation algorithms
we introduce in this paper operate on the combination of
FHL axioms and a databaseschema. To understand why,
first notice that it is natural for the compiler to be built upon
automated reasoning technology because it must manipulate
sentences in classical logic. A compiler capable of exam-
ining the contents of the databaseΛ (as opposed to just its
schema) would require automated reasoning technology ca-
pable of managing vast amounts of data—the very problem
our compilation work was meant to address. Second, if the
output of the compiler depends upon the database contents,
then as the database contents change (often a frequent occur-
rence), the compilation process must be started anew. Be-
cause our compilation algorithms operate on FHL axioms
and a database schema, they are both more practical to exe-
cute and need to be executed less frequently.

Definition 1 (Parameterized Theory). A parameterized
theory 〈∆, Q〉 is an FHL sentence set∆ and a predicate
setQ. An instance of the parameterized theory〈∆, Q〉 is
a two-tuple〈∆,Λ〉 whereΛ is a complete, consistent FHL
theory where all occurring predicates belong toQ.

A model satisfies a parameterized theory instance〈∆,Λ〉
if it satisfies∆ ∪ Λ.

Inconsistency
For both FHL andDATALOG, logical entailment is defined
as usual:Γ entailsφ (denotedΓ |= φ for FHL andΓ |=D φ
for DATALOG) if every model that satisfiesΓ also satisfies
φ. Since inconsistent theories trivially entail every sentence,
traditional entailment fails to tolerate inconsistencies; con-
sequently, we focus on a non-explosive notion of entailment
specialized for parameterized theories and similar to those
found in defeasible logic programming (e.g., (Gomez, Ches-
nevar, and Simari 2008)).

For a parameterized theory instance〈∆,Λ〉, strict existen-
tial entailmentstates thatΛ |=∆

E φ if there is a subsetΛ0 of
Λ such that∆ ∪ Λ0 is satisfiable and entailsφ. Intuitively,
a conclusion is strictly existentially entailed when there is
some portion of the database consistent with all the FHL ax-
ioms that entails the conclusion. As compared to the more
popular existential entailment, which allows all conclusions
entailed by any satisfiable subset of premises, strict existen-
tial entailment requires the justification for every conclusion
include the entire set of FHL axioms∆. We call the set of
all sentences strictly existentially entailed thestrict existen-
tial consequencesof a parameterized theory. For brevity, the
word “existential” may be dropped.

In practice, strict existential entailment is useful when
the FHL axioms correctly axiomatize some domain but the
database contains erroneous information,e.g., data acqui-
sition errors, out-of-sync information, or genuine disagree-
ments. Such axiom sets can be found, for example, in the de-
scription logic community, where ontologies are often veri-
fied or forced to be consistent.

Problem Statement
This work assumes that databases contain vast amounts of
information, and the combination of a database and classi-
cal logic will often result in inconsistency. Our work ad-
dresses both issues simultaneously by developing compila-
tion techniques that translate a parameterized theory〈∆, Q〉
into a series of database queries that when evaluated over a
database instance with schemaQ answer a fixed set of strict
entailment queries:p(ā) and¬p(ā) for every predicatep and
tuple of object constants̄a. We call the compilation problem
studied in this paper Parameterized Compilation toDATA -
LOG.

Definition 2 (Parameterized Compilation to Datalog).
For a parameterized theory〈∆, Q〉, theDATALOG sentence
set∆′ is a parameterized compilation if for each predicate
p in ∆, there are predicatesp− and p+ occurring in ∆′
such that for every consistent FHL theoryΛ complete overQ

Exp[Λ] |=∆
E p(ā) iff ∆′ ∪ Ext[Λ] |=D p+(ā)

Exp[Λ] |=∆
E ¬p(ā) iff ∆′ ∪ Ext[Λ] |=D p−(ā)

Compilation
Our approach to parameterized compilation relies on a stan-
dard automated reasoning technique: resolution. In partic-
ular, we will employ resolution to compute the resolution
closure of the FHL axioms. This is the crucial step in the

compilation process that bridges the gap between classical
semantics andDATALOG semantics.

The utility of the resolution closure for compiling clas-
sical logic to DATALOG can be explained even without
the presence of inconsistency. When the FHL axioms∆
are closed under resolution, answering an entailment query
about∆ ∪ Λ (for anyΛ) is especially simple. To compute
whether or not∆ ∪ Λ entailsp(a), we must find a clauseδ
that belongs to∆ that together withΛ entailsp(a). In con-
trast, when∆ is not closed under resolution, one must find
an entiresetof statements belonging to∆ that together with
Λ entail p(a). The reduction of search from a set of state-
ments to a singleton is especially useful whenΛ is a set of
literals (as it is for databases) because unit resolution applied
to ∆ ∪Λ is by itself sufficient to answer entailment queries.

These observations about the connections between binary
resolution and unit resolution are important becauseDATA -
LOG evaluation amounts to a form of unit resolution. Intu-
itively the problem of compiling classical logic toDATALOG
is akin to the problem of making unit resolution a complete
rule of inference.

DATALOG evaluation is not exactly unit resolution,
however—it is an ordered form of unit resolution. To en-
sure completeness ofDATALOG evaluation, we must con-
struct from each clause in the resolution closure of∆ all of
its contrapositives. Each of these contrapositives then be-
comes a differentDATALOG query. This simple procedure
(compute the resolution closure of∆; compute the contra-
positives of each clause in the result; translate each con-
trapositive toDATALOG syntax) turns out to be sound and
complete for inconsistency-free theories〈∆,Λ when∆ is
quantifier-free andΛ is represented explicitly.

For example, consider a simple quantifier-free theory
closed under resolution, constituting∆.

p(x) ∨ q(x)
¬q(x) ∨ ¬r(x)
p(x) ∨ ¬r(x)

(1)

Suppose we want to constructDATALOG queries so that for
any database over predicatesQ = {p, q, r}, we could com-
pute whether or notp(x), q(x), andr(x) are entailed (for
any argumentx). To do that, we consider all contrapositives
of the clauses above, write each contrapositive in rule form,
and change the head of each rule to break recursive paths.
The result is a set of implications that can be interpreted as
DATALOG rules (modulo safety).

p+(X) :− ¬q(X)
q+(X) :− ¬p(X)
r+(X) :− p(X)
p+(X) :− r(X)

(2)

For any databaseΛ complete for{p, q, r}, the rules above
together withExt[Λ] entails (underDATALOG semantics)
all those atomic sentences entailed by∆ ∪ Exp[Λ] (under
FHL semantics) as long as∆ ∪ Λ is consistent.

The procedure outlined so far addresses one of the two
motivations for this paper: reasoning about the combina-
tion of classical logic and large databases. The second mo-
tivation, inconsistency-tolerant reasoning, can be addressed

with a small change to the procedure above. In particular,
to implement strict entailment one need only add a consis-
tency check to the end of each of the constructedDATA -
LOG queries. An algorithm for constructing such consis-
tency checks inDATALOG will be discussed in the section
that follows.

Algorithm 1 formalizes the procedure outlined above and
performs parameterized compilation when the FHL axioms
are quantifier-free. It is a one-line application of Algo-
rithm 2, which in addition to a parameterized theory takes
as input the set of sentences that must be included during
the consistency check. For strict entailment, that set is al-
ways the FHL axiom set, but later we will discuss a varia-
tion of strict-entailment (the well-known existential entail-
ment) that is a different one-line application of Algorithm 2.
Note that we useRES[CNF[∆]] to denote the resolution and
factoring closure of the clausal form of∆ andPREDS[φ] to
denote the set of predicates occurring inφ.

Algorithm 1 STRICT-COMPILATION[〈∆, Q〉]
1: COMPILATION[〈RES[CNF[∆]], Q〉, ∆]

Algorithm 2 COMPILATION[〈∆, Q〉, Σ]
Assumes: ∆ andΣ are clause sets.
Assumes: ∆ is closed under resolution and factoring.
Outputs: A DATALOG theory
1: for all predicatesp ∈ Q ∪ PREDS[∆]− {=} do
2: for all clausesd in ∆ ∪ {p(x̄) ∨ ¬p(x̄)} including a

literal p(t) do
3: write d asp(x̄) ⇐ φ(x̄)
4: when PREDS[φ(x̄)] 6⊆ Q] then goto next d
5: Γ := {d} ∪ Σ
6: OUTPUT-CONSISTENCY-CHECK [φ(x̄),Γ]
7: print

MAKE -SAFE[p+(x̄) :− φ(x̄)∧ consistentΓφ(x̄)]
8: end for
9: Likewise forp−.

10: end for

In Algorithm 2, MAKE -SAFE forces its argument to
satisfy theDATALOG syntax requirements, andOUTPUT-
CONSISTENCY-CHECK outputs an axiomatization of the
consistency check inserted into eachDATALOG rule in
line (6): consistentΓφ(x̄). The next section dis-
cusses howOUTPUT-CONSISTENCY-CHECK axiomatizes
consistentΓφ(x̄) in more detail, but for the moment it suf-
fices to describe its semantics.

Definition 3 (consistentΘφ). SupposeΘ is an FHL sentence
set. For an FHL sentenceφ(x̄), consistentΘφ (x̄) is com-
pletely and consistently defined to be true for exactly those
ā such thatφ(ā) and Θ are consistent.Ccon denotes the
complete theory definingconsistentΘφ for all φ(x̄).

The next theorems guarantee the soundness and complete-
ness of our core compilation algorithm (Algorithm 2) under
a very strong assumption: that the FHL axioms are closed

under resolution and factoring. Proofs have been omitted
for lack of space but can be found in the extended version of
this paper (Hinrichs, Kao, and Genesereth 2009).

Theorem 1 (Soundness of COMPILATION). Consider a
parameterized theory〈∆, Q〉, where ∆ is a clause set
closed under resolution and factoring, andΣ is a satisfi-
able set of FHL sentences. Use∆′ to denote the output of
COMPILATION(〈∆, Q〉,Σ). SupposeΛ is a consistent theory
complete over the predicatesQ. If

∆′ ∪ Ext[Λ] ∪ Ext[Ccon] |=D p+(ā)

then there is a satisfiable subset of∆ ∪ Exp[Λ] that is con-
sistent withΣ and entailsp(ā).
Theorem 2 (Completeness of COMPILATION). Consider
a parameterized FHL theory〈∆, Q〉, where∆ is a clause
set closed under resolution and factoring, andΣ is a satis-
fiable set of FHL sentences. Use∆′ to denote the output of
COMPILATION(〈∆, Q〉,Σ). SupposeΛ is a consistent the-
ory complete over the predicatesQ. If there is a satisfiable
subset of∆ ∪ Exp[Λ] consistent withΣ that entailsp(ā)
then

∆′ ∪ Ext[Λ] ∪ Ext[Ccon] |=D p+(ā).

The corollaries below guarantee soundness and complete-
ness for our top-level compilation algorithm (Algorithm 1)
and remove the restriction that the FHL clauses are closed
under resolution. Those corollaries rely on the following
proposition, which states that for strict entailment, arbi-
trary equivalence-preserving operations can be applied to
the FHL axioms of a parameterized theory without chang-
ing the strict existential consequences.

Proposition 1. Supposef is an operation such that for all
premise sets∆ in its domain,Mod[∆] = Mod[f [∆]]. For
every strict entailment query,

Λ |=∆
E φ if and only ifΛ |=f [∆]

E φ.

Proof. SupposeΛ |=∆
E φ. Then there is aΛ0 ⊆ Λ such

thatΛ0 ∪∆ is satisfiable and entailsφ. BecauseMod[∆] =
Mod[f [∆]], Λ0 ∪ f [∆] must be satisfiable and entailφ by
the usual definition of satisfaction and entailment. Thus,Λ0

witnesses the strict entailmentΛ |=f [∆]
E φ. The other direc-

tion follows similarly.

To prove the soundness and completeness ofSTRICT-
COMPILATION, we leverage the fact that the conversion to
clausal form (denotedCNF) and the resolution and factoring
closure of a clause set (denotedRES) are well-known to be
model-preserving when the premises are quantifier-free.

Corollary 1 (Soundness of STRICT -COMPILATION).
Suppose ∆′ denotes the output of STRICT-
COMPILATION(〈∆, Q〉), where ∆ is quantifier-free.
Further supposeΛ is a consistent theory, complete over the
predicatesQ. If

∆′ ∪ Ext[Λ] ∪ Ext[Ccon] |=D p+(ā)

thenExp[Λ] |=∆
E p(ā).

Proof. Suppose∆′ ∪Ext[Λ] ∪Ext[Ccon]) |=D p+(ā). By
the definition of STRICT-COMPILATION and Theorem 1,
we see that there is a satisfiable subset ofExp[Λ] that
is consistent withRES[CNF[∆]] and entailsp(ā). Conse-
quently,Exp[Λ] |=RES[CNF[∆]]

E p(ā). Since∆ is quantifier-
free, RES[CNF[∆]] has exactly the same models as∆. By
Proposition 1,Exp[Λ] |=∆

E p(ā).

Corollary 2 (Completeness of STRICT -COMPILATION).
Suppose ∆′ denotes the output of STRICT-
COMPILATION(〈∆, Q〉), where ∆ is quantifier-free.
Further supposeΛ is a consistent theory complete over the
predicatesQ. If Exp[Λ] |=∆

E p(ā) then

∆′ ∪ Ext[Λ] ∪ Ext[Ccon] |=D p+(ā).

Proof. SupposeExp[Λ] |=∆
E p(ā). Then because∆ is

quantifier-free,∆ has the same models asRES[CNF[∆]], and
by Proposition 1,Exp[Λ] |=RES[CNF[∆]]

E p(ā). Theorem 2 can
then be applied (whereΣ is RES[CNF[∆]]) to produce the
desired result:

∆′ ∪ Ext[Λ] ∪ Ext[Ccon] |=D p+(ā).

Axiomatizing the Consistency Check
Here we introduce an algorithm for axiomatizing the con-
sistency check of Definition 3 inDATALOG. It operates
on a conjunction of literalsφ(x̄) and a sentence setΘ.
consistentΘφ (x̄) must be true for exactly thoseawhereφ(ā)
is consistent withΘ. Intuitively, this means that the variable
bindings are not made in such a way that a subset of the liter-
als inφ unify with the negated literals of some clause inΘ.
The algorithm that follows implements this intuition using
subsumption.

Algorithm 3 OUTPUT-CONSISTENCY-CHECK(φ,Θ)
Assumes:φ is a conjunction of literals with variables̄x.
Assumes: Θ is a clause set.
Outputs: A DATALOG axiomatization ofconsistentΘφ .
1: Θ := RES[Θ]
2: φ̄ := ¬φ in clausal form // a single clause
3: T := {σ|σ is a maximally general substitution such that

φσ is inconsistent}
4: Σ := {σ|σ is a maximally general substitution such that

somed ∈ Θ subsumes̄φσ}
5: print MAKE -SAFE

[
consistentΘφ (x̄) :− ¬

∨
σ∈Σ∪T

∧
t←u∈σ

t = u
]

For illustration, here is an example of the in-
put and output of OUTPUT-CONSISTENCY-CHECK.

Input: φ : ¬p(x, y) ∧ q(y, a),
Θ : {p(x, b) ∨ r(x, b),¬r(a, y) ∨ ¬q(y, z)}

RES[Θ] = {p(x, b) ∨ r(x, b),
¬r(a, y) ∨ ¬q(y, z),
p(a, b) ∨ ¬q(b, z)}.

No substitution into the variables ofφ causes a contradic-
tion on its own, soT is empty. The only substitution into the
variables ofφ that contradictsΘ is σ = {a → x, b → y}.
φσ = ¬p(a, b) ∧ q(b, a), contradictingp(a, b) ∨ ¬q(b, z).

Output: consistentΘφ (x, y) :− universe(x, y) ∧ x 6= a

consistentΘφ (x, y) :− universe(x, y) ∧ y 6= b
In practice, the rule bodies produced by OUTPUT-

CONSISTENCY-CHECK can be inlined in theDATALOG
queries produced by COMPILATION for the sake of effi-
ciency. In a bottom-up evaluation of the resultingDATALOG
program, inlining the consistency checks avoid the need to
first build these consistency relations.

Theorem 3 (Consistency Axiomatization).Given an FHL
clause setΘ closed under resolution and factoring and an
FHL conjunction of literalsφ(x̄) with variablesx̄, Algo-
rithm 3 produces aDATALOG definition ofconsistentΘφ (x̄)
such thatconsistentΘφ (ā) evaluates to true if and only if
φ(ā) andΘ are consistent.

In Algorithm 3, it’s not immediately clear how to com-
pute the setΣ, or even that the set is finite. It turns out that
it is sufficient for computingΣ to consider eachd ∈ Θ and
for each one run a slightly modified subsumption algorithm,
e.g. Stillman’s (Stillman 1973). Similarly, the setT is easy
to compute: whenever a predicate occurs both positively and
negatively inφ, add toT the most general unifier of the cor-
responding atoms.

Non-strict Existential Entailment
Recall that for a parameterized theory instance〈∆,Λ〉 to
strictly entail a conclusionp(ā), there must be a portion ofΛ
consistent with∆ that entailsp(ā). In particular, this means
that all the premises used to provep(ā) must be consistent
with ∆ in its entirety. When∆ correctly axiomatizes the
domain of interest, strict entailment produces intuitive re-
sults, but when∆ includes mistakes, strict entailment may
produce fewer results than one would like. For example, if
∆ is inconsistent, there are no strict consequences for any
database.

One entailment relation, popular in the literature, that is
tolerant of inconsistencies both within∆ as well as across
∆ andΛ is existential entailment.Γ existentially entailsφ if
there is a consistent subset ofΓ that entailsφ. Likewise, for
a parameterized theory,∆∪Λ existentially entailsφ if there
is a consistent subset of∆ ∪ Λ that entailsφ. Thus, unlike
strict entailment, existential entailment does not allow an in-
consistency in∆ to block all conclusions. Existential en-
tailment is therefore stronger (produces more consequences)
than strict entailment but is weaker (produces fewer conse-
quences) than traditional entailment.

Algorithm 4, a simple application of our core compilation
algorithm (Algorithm 2), performs parameterized theory
compilation while preserving the existential consequences
(as opposed to the strict consequences) of a parameterized
theory. Soundness and completeness hold when the FHL
axioms are clauses closed under resolution and factoring.

Corollary 3 (Soundness of EXISTENTIAL COMPILA -
TION). Suppose∆′ denotes the output ofEXISTENTIAL -

Algorithm 4 EXISTENTIAL -COMPILATION[〈∆, Q〉]
1: COMPILATION[〈∆, Q〉, ∅]

COMPILATION(〈∆, Q〉), where∆ is a clause set closed un-
der resolution and factoring. Further supposeΛ is a consis-
tent theory, complete over the predicatesQ. If

∆′ ∪ Ext[Λ] ∪ Ext[Ccon] |=D p+(ā)

then∆ ∪ Exp[Λ] |=E p(ā).

Proof. Suppose∆′ ∪Ext[Λ] ∪Ext[Ccon]) |=D p+(ā). By
the definition of EXISTENTIAL -COMPILATION, Theorem 1
applies because∆ is closed under resolution and factoring
andΣ is the empty set. Thus we see that there is a satisfiable
subset of∆ ∪ Exp[Λ] that entailsp(ā). Consequently,∆ ∪
Exp[Λ] |=E p(ā).

Corollary 4 (Completeness of EXISTENTIAL COMPILA -
TION). Suppose∆′ denotes the output ofEXISTENTIAL -
COMPILATION(〈∆, Q〉), where ∆ is a clause set closed
under resolution and factoring. Further supposeΛ is a
consistent theory complete over the predicatesQ. If ∆ ∪
Exp[Λ] |=E p(ā) then

∆′ ∪ Ext[Λ] ∪ Ext[Ccon] |=D p+(ā).

Proof. Suppose∆∪Exp[Λ] |=E p(ā). Then applying The-
orem 2 whereΣ is the empty set, we immediately get the
desired result.

Negative Results
The important condition on the soundness and completeness
results of the previous section (for non-strict existential en-
tailment) is that the FHL axioms∆ must be closed under res-
olution. In contrast, the soundness and completeness results
for strict entailment allow∆ to be any quantifier-free ax-
iom set. It is tempting to forcibly close∆ under resolution,
just as we did with strict entailment; however, it turns out
that the resolution closure of an axiom set does not give the
same existential consequences as the original. Here we il-
lustrate this property, denoting the existential consequences
of a sentence setΓ with ECons[Γ].

First we show that neither clausal form conversion nor
resolution preserve the existential consequences of a sen-
tence set.

Proposition 2 (CNF Failure). SupposeCNF denotes
clausal form conversion. It is not necessarily the case that
ECons[Γ] = ECons[CNF[Γ]].

Proof. The sentencep∧¬p has no existential consequences
(except tautologies), but its clausal form has the existential
consequencesp and¬p.

Proposition 3 (Resolution and Subsumption Failures).
SupposeRES denotes the resolution closure andSUBSUMP
denotes the subsumption deletion strategy. It is not neces-
sarily the case thatECons[Γ] = ECons[RES[Γ]] nor that
ECons[Γ] = ECons[SUBSUMP[Γ]].

Proof. Consider the following four sentences.

p

¬p ∨ q ∨ r
¬p
p ∨ ¬q ∨ r

Perform resolution on the first two clauses to produceq ∨
r. Perform resolution on the last two clauses to produce
¬q ∨ r. Perform resolution on these two to producer. Since
r is included in the resolution closure, it is an existential
consequence of the closure.

Notice though that no satisfiable subset of the original
premises entailr; thus, the resolution closure does not pre-
serve existential consequences. Also, notice that if sub-
sumption is applied to the original premises, the result is
two unit clauses:p and¬p. Neither of these clauses entails
q ∨ r, which is an existential consequence of the original
sentences; thus, subsumption does not preserve existential
consequences.

Resolution is not the only inference rule for which com-
puting the closure fails to preserve existential consequences;
rather, failure can occur when closing any sound set of in-
ference rules.

Proposition 4 (Closure Failure). SupposeR is a binary
inference rule that is sound for existential entailment,i.e.,
for every two premisesφ andψ,R[φ, ψ] ⊆ ECons[{φ, ψ}].
UseR∗[Γ] to denote the closure ofΓ underR. It is not
necessarily the case thatR∗[Γ] ⊆ ECons[Γ].

Proof. The proof of Proposition 3 provides the counterex-
ample. All three applications of resolution are sound (pro-
duce existential consequences of the sentences that were re-
solved together), but the last application produces a sentence
not existentially entailed by the original premise set.

Since soundness is insufficient to guarantee the preserva-
tion of existential consequences, it is as of yet unclear how to
predict the effects of inference rules on the existential con-
sequences of a premise set. Despite this, certain types of
closures are known to have certain effects. If the closure
only adds sentences to the premise set, like resolution, the
existential consequences must monotonically increase, and
if the closure only removes sentences, like subsumption, the
consequences must monotonically decrease. Closures that
apply both additive and subtractive inference rules, like reso-
lution with subsumption, neither monotonically increase nor
decrease the existential consequences.

A New Entailment Relation
The negative results of the last section demonstrate the diffi-
culties of implementing existential entailment using our core
compilation algorithm (Algorithm 2) for premise sets not
closed under resolution. The obvious approach, comput-
ing the resolution closure before compiling (Algorithm 5,
shown below), turns out not to preserve the existential con-
sequences of the original theory; however, that algorithm

does address the two concerns of this paper: tolerating in-
consistency and reasoning about the combination of classi-
cal logic and a relational database. Since there is currently
no standard definition for drawing conclusions from incon-
sistent premise sets (non-explosively), the community is
well-served when people identify easy-to-implement, non-
explosive entailment relations. Algorithm 5 is easy to imple-
ment, and below we show that it implements a non-explosive
entailment relation.

Algorithm 5 EXISTENTIAL RES-COMPILATION[〈∆, Q〉]
1: COMPILATION[〈RES[CNF[∆]], Q〉, ∅]

Proposition 5. The entailment relation|=′ is non-explosive
when defined as follows.

∆ ∪ Λ |=′ φ if RES[CNF[∆]] ∪ Λ |=E φ

Proof. Let ∆ be the sentences{p∨q,¬p} andΛ be{p}. To-
gether these sentences are inconsistent. Since the sentences
are already in clausal form, consider the resolution closure
of ∆: {p ∨ q,¬p, q}. When combined with{p}, ¬q is not
an existential consequence; hence,|=′ is non-explosive.

It turns out a very similar entailment relation was defined
by Besnard and Hunter (Hunter 1998) for propositional logic
and was called quasi-classical logic. Its proof theory con-
verts a premise set to clausal form, computes the resolution
closure, and entails exactly the nonempty disjunctions in
that closure (where each nonempty disjunction may be aug-
mented with arbitrary new literals via disjunction introduc-
tion). The entailment relation discussed above differs in that
resolution is only applied to a portion of the premise set (∆),
and a conclusion is entailed only if it is existentially entailed
by the database and the closure; thus, there is a consistency
requirement imposed by|=′ not imposed by quasi-classical
entailment. Consequently, the|=′ consequences are a strict
subset of the quasi-classical consequences.

Related Work
The related work involves two issues studied in the litera-
ture: reasoning about inconsistency and knowledge com-
pilation. Recently, much attention has been paid to incon-
sistency tolerance in the context of classical logic (Hunter
1998; Besnard and Hunter 2005; Konieczny, Lang, and
Marquis 2005; Huang, van Harmelen, and ten Teije 2005;
Zamansky and Avron 2006; Flouris et al. 2006; Subrahma-
nian and Amgoud 2007; Hunter and Konieczny 2008; Ev-
eraere, Konieczny, and Marquis 2008; Besnard and Hunter
2008). In contrast to some of that work, the problem ad-
dressed in this paper involves detecting but not repairing
inconsistencies (Everaere, Konieczny, and Marquis 2008;
Benferhat, Lagrue, and Rossit 2007; Subrahmanian and
Amgoud 2007). Second, our work focuses on a classical
logic that is properly neither propositional,e.g., (Efstathiou
and Hunter 2008), yet retains decidability nor first-order
(Besnard and Hunter 2005) yet retains a relational syntax.
Third, instead of establishing the relationships between all

possible arguments with an argument tree,e.g., (Efstathiou
and Hunter 2008; Besnard and Hunter 2008), we find exactly
two arguments for each conclusion: one supporting and one
undermining.

In the context of knowledge compilation, most work does
not address the combination of databases and classical logic
(Darwiche and Marquis 2002; Selman and Kautz 1996;
Nagy, Lukacsy, and Szeredi 2006; Calvanese et al. 2008;
Besnard and Hunter 2006) or does not consider inconsis-
tency (Hinrichs and Genesereth 2008; Cadoli and Mancini
2002; Nagy, Lukacsy, and Szeredi 2006; Calvanese et al.
2008). With the exception discussed below, the compila-
tion work we are aware of that addresses inconsistency in
the context of data separate from complex axioms does not
focus on large data sets (Flouris et al. 2006; Huang, van
Harmelen, and ten Teije 2005).

The closest related work (Gomez, Chesnevar, and Simari
2008) translates a description logic, which naturally sepa-
rates the data (Abox) and constraints (Tbox), into defeasi-
ble logic programming (DeLP) for the purpose of reasoning
about inconsistent premises. Several distinctions are worth
mentioning. First, (Gomez, Chesnevar, and Simari 2008)
defines entailment with respect to the constructed DeLP pro-
gram, i.e., a sentence is entailed by the description logic
premises if it is entailed by the translation of the premises to
DeLP; thus, it is unclear which paraconsistency semantics
are being computed by the translation. Second, the transla-
tion to DeLP applies only to a specific fragment of all sen-
tences expressible in the given description logic; the same
holds true of our work, but the fragments are incompara-
ble. Lastly, in (Gomez, Chesnevar, and Simari 2008), the
premises for every argument must be consistent with the en-
tire Abox; our work does just the opposite for the case of
strict entailment. The data is assumed less trustworthy than
the constraints, and arguments never need to be consistent
with all of the data.

Conclusion and Future Work
This paper describes compilation algorithms that implement
non-explosive entailment relations for inconsistent combi-
nations of Finite Herbrand Logic (a decidable fragment of
first-order logic) and relational databases. For strict existen-
tial entailment, our algorithms are sound and complete as
long as the FHL axioms are quantifier-free. For non-strict
existential entailment, the same basic compilation algorithm
is sound and complete as long as the FHL axioms are closed
under resolution and factoring. Termination is guaranteed
when the resolution closure of the FHL axioms is finite.

In the future, we plan to address several issues. First is
the possibility that the compilation procedure does not ter-
minate because the resolution closure is infinite. It is feasi-
ble that by targeting a more expressive database query lan-
guage (stratifiedDATALOG), we could construct recursive
database queries that simulate the effects of resolution, simi-
lar to (Nagy, Lukacsy, and Szeredi 2006). The benefit is that
whereas the compiler does not know the size of the data (and
hence cannot bound the size of the resolution closure), the
database does have access to that information and can avoid
a non-terminating computation.

Second, this work addressed the combination of databases
and classical logic, which was motivated in part by today’s
largest knowledge bases: Cyc (Lenat and Guha 1990) and
SUMO (Niles and Pease 2001). These knowledge bases sep-
arate data from complex axioms, but instead of applying the
closed world assumption to the data, they employ the open
world assumption. In the future we will investigate tech-
niques for handling the open world assumption.

Finally, in the context of reasoning about inconsistency,
substantial energy has been devoted to constructing argu-
ment trees that represent the relationships among the sen-
tences existentially entailed by a premise set. These trees
differentiate conclusions that are undermined (entailed by
premises whose negations are also entailed) and those that
are not. Such information gives a better understanding of
the inconsistencies and their implications than the simple
queries studied in this paper. In the future we will extend
our compilation techniques to handle argument trees.

References
Benferhat, S.; Lagrue, S.; and Rossit, J. 2007. An egalitarist
fusion of incommensurable ranked belief bases under constraints.
In Proceedings of the AAAI Conference on Artificial Intelligence,
367–372.

Besnard, P., and Hunter, A. 2005. Practical first-order argumen-
tation. InProceedings of the AAAI Conference on Artificial Intel-
ligence, 590–595.

Besnard, P., and Hunter, A. 2006. Knowledgebase compilation
for efficient logical argumentation. InProceedings of the Inter-
national Conference on Principles of Knowledge Representation
and Reasoning, 123–133.

Besnard, P., and Hunter, A. 2008.Elements of Argumentation.
MIT Press.

Binas, A., and McIlraith, S. 2008. Peer-to-peer query answering
with inconsistent knowledge. InProceedings of the International
Conference on Principles of Knowledge Representation and Rea-
soning, 329–339.

Cadoli, M., and Mancini, T. 2002. Knowledge compilation =
query rewriting + view synthesis. InProceedings of the ACM
Symposium on Principles of Database Systems, 199–208.

Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.; Poggi,
A.; Rosati, R.; and Ruzzi, M. 2008. Data integration through dl-
litea ontologies. InProceedings of the International Workshop on
Semantics in Data and Knowledge Bases.

da Costa, N. C.; Henschen, L. J.; Lu, J. J.; and Subrahmanian,
V. S. 1990. Automatic theorem proving in paraconsistent logics:
Theory and implementation. InProceedings of the Conference on
Automated Deduction, 72–86.

Darwiche, A., and Marquis, P. 2002. A knowledge compilation
map.Journal of Artificial Intelligence Research17:229–264.

Efstathiou, V., and Hunter, A. 2008. Algorithms for effective
argumentation of classical propositional logic. InProceedings
of the Symposium on Foundations of Information and Knowledge
Systems.

Everaere, P.; Konieczny, S.; and Marquis, P. 2008. Conflict-based
merging operators. InProceedings of the International Confer-
ence on Principles of Knowledge Representation and Reasoning,
348–357.

Flouris, G.; Huang, Z.; Pan, J. Z.; Plexousakis, D.; and Wache,
H. 2006. Inconsistencies, negations and changes in ontologies.

In Proceedings of the AAAI Conference on Artificial Intelligence,
1295–1300.
Gomez, S. A.; Chesnevar, C. I.; and Simari, G. R. 2008. An argu-
mentative approach to reasoning with inconsistent ontologies. In
Proceedings of the KR Workshop on Knowledge Representation
and Ontologies, 11–20.
Hinrichs, T. L., and Genesereth, M. R. 2008. Injecting the how
into the what: Investigating a finite classical logic. InProceed-
ings of the International Conference on Principles of Knowledge
Representation and Reasoning.
Hinrichs, T. L.; Kao, J.-Y.; and Genesereth, M. R. 2009.
Inconsistency-tolerant reasoning with classical logic and large
databases. Technical report, University of Chicago.
Huang, Z.; van Harmelen, F.; and ten Teije, A. 2005. Reasoning
with inconsistent ontologies. InProceedings of the International
Joint Conference on Artificial Intelligence.
Hunter, A., and Konieczny, S. 2008. Measuring inconsistency
through minimal inconsistent sets. InProceedings of the Inter-
national Conference on Principles of Knowledge Representation
and Reasoning.
Hunter, A. 1998. Paraconsistent logics. InHandbook of Defea-
sible Reasoning and Uncertain Information. Kluwer Academic
Publishers. 11–36.
Konieczny, S.; Lang, J.; and Marquis, P. 2005. Reasoning under
inconsistency: the forgotten connective. InProceedings of the In-
ternational Joint Conference on Artificial Intelligence, 484–489.
Lenat, D. B., and Guha, R. V. 1990.Building Large Knowledge-
Based Systems: Representation and Inference in the CYC Project.
Addison-Wesley.
Myers, K. 1990. Automatically generating universal attachments
through compilation. InProceedings of the AAAI Conference on
Artificial Intelligence.
Nagy, Z.; Lukacsy, G.; and Szeredi, P. 2006. Translating descrip-
tion logic queries to prolog. InProceedings of the Symposium on
Practical Aspects of Declarative Languages, 168–182.
Niles, I., and Pease, A. 2001. Towards a standard upper ontology.
In Proceedings of the Formal Ontology in Information Systems,
2–9.
Selman, B., and Kautz, H. 1996. Knowledge compilation and
theory approximation.Journal of the ACM43(2):193–224.
Sikka, V. 1996. Integrating Specialized Procedures into Proof
Systems. Ph.D. Dissertation, Stanford University.
Sofronie-Stokkermans, V. 2000. Automated theorem proving by
resolution for finitely-valued logics based on distributive lattices
with operators.Multiple-Valued Logic6:289–344.
Stickel, M. 1985. Automated deduction by theory resolution.
Journal of Automated Reasoning1:333–356.
Stillman, R. B. 1973. The concept of weak substitution in
theorem-proving.J. ACM20(4):648–667.
Subrahmanian, V. S., and Amgoud, L. 2007. A general frame-
work for reasoning about inconsistency. InProceedings of the In-
ternational Joint Conference on Artificial Intelligence, 599–604.
Ullman, J. 1989.Principles of Database and Knowledge-Base
Systems. Computer Science Press.
Weyhrauch, R. 1980. Prolegomena to a theory of mechanized
formal reasoning.Artificial Intelligence13:133–170.
Zamansky, A., and Avron, A. 2006. Non-deterministic semantics
for first-order paraconsistent logics. InProceedings of the Inter-
national Conference on Principles of Knowledge Representation
and Reasoning, 431–439.

