Inconsistency-tolerant Reasoning with Classical Logic and Large Databases

Timothy L. Hinrichs Jui-Yi Kao * Michael R. Genesereth
University of Chicago Stanford University Stanford University
Abstract as of yet no single definition has become the universal stan-

dard. Relational databases compound this problem by the

inconsistencies and the vast amount of information stored Sh€er quantity of information that they routinely store. Au-

in relational databases. In this paper, we introduce compi- ~ tomated reasoning with premise sets that include gigabytes,

lation techniques for inconsistency-tolerant reasoning over terabytes, or even petabytes of relational data introduces

the combination of classical logic and a relational database. = memory and disk management problems that have not been
Our resolution-based algorithms address a quantifier-free, adequately addressed by the automated reasoning commu-

Real-world automated reasoning systems must contend with

function-free fragment of first-order logic while leveraging nity.
off-the-shelf database technology for all data-intensive com- Recently, progress has been made toward semantics that
putation. '

cope with logical inconsistency, especially in the context of
) classical logice.g, (Subrahmanian and Amgoud 2007; Ev-
Introduction eraere, Konieczny, and Marquis 2008; Besnard and Hunter
Automated reasoning systems face two major challenges 2008). Of the relatively few results concerned with im-
in real-world reasoning: logically inconsistent information plementation (da Costa et al. 1990; Sofronie-Stokkermans
and the vast amount of information stored in relational 2000; Besnard and Hunter 2006; Efstathiou and Hunter
databases. 2008; Binas and Mcllraith 2008; Gomez, Chesnevar, and
These two issues stand out because of their prevalence inSimari 2008), none address the problems of massive data
the world today. Occasional errors and disagreements are sets or interfacing with external databases. Standard tech-
unavoidable in real-world information. A customer may re- niques such as procedural attachments (Weyhrauch 1980;
port an incorrect social security number; a technician may Myers 1990; Sikka 1996) and theory resolution (Stickel
record an incorrect parameter; two scholars may disagree 1985) do not address inconsistency and only provide the in-
over the birth year of Julius Caeser; two organizations may frastructure by which an automated reasoning system can
disagree over the gross domestic product of a country. It pose queries to a relational database. When the answers to
is natural for errors and disagreements in our information such queries are gigabytes large, the unaddressed memory
to cause contradictions. Classical reasoning systems unableand disk management issues become crucial for operational
to cope with contradictions cannot differentiate one query automated reasoning systems.
from another, making them useless when inconsistencies Our approach simultaneously addresses logical inconsis-
arise. Orthogonally, relational databases are ubiquitous in tency and the data management problems caused by com-
our society. Companies, universities, and governments rely pining classical reasoning with database evaluation using
crucially on database technology to store and publish vast novel, resolution-based compilation algorithms. Instead of
amounts of information. Automated reasoning systems un- building an inconsistency-tolerant automated reasoning sys-
able to integrate relational databases cannot exploit that in- tem that operates on classical axioms while periodically con-
formation and consequently fail to find many desirable con- sulting a database, our system compiles the classical ax-
clusions. ioms into database queries, invokes the database to answer
Building a reasoning system that copes with inconsis- those queries, and returns exactly the database’s results.
tencies is difficult because classical semantics is explosive An important advantage of this approach is that the com-
(entails every sentence from an inconsistent premise set). pilation layer deals directly with the classical premises but
Weakening this definition to one that captures our intuition not the massive amount of data in the database. The key
as to which conclusions one can reasonably draw from un- challenge of this approach is constructing database queries
reasonable premises has been the subject of much study, andhat encapsulate the classical premise set and implement an
" *This work was supported in part by the National Science Foun- inconsistency-tolerant entailment relation. The compilation
dation under award number 11S-0841152. algorithms introduced here meet this challenge for premise

Copyright(© 2009, Association for the Advancement of Artificial ~ Sets in a finite version of function-free, quantifier-free first-
Intelligence (www.aaai.org). All rights reserved. order logic and terminate exactly when the resolution clo-

sure of the premises is finite.
After formalizing the problem, we explain the compila-
tion algorithms for one non-explosive entailment relation

discussing the canonical FHL andTALOG representations
of complete, consistent theories (every theory axiomatizable
in DATALOG). A complete, consistent theory is said to be

and soundness and completeness results for quantifier-freerepresentedxplicitlyin FHL by a logically equivalent set of

premise sets. Then we discuss another non-explosive en-
tailment relation, which is popular in the literature, and the
extent to which our algorithms implement it. Finally, we cite
related work, and conclude with a discussion of future work.

Problem Statement

The inconsistency-tolerant reasoning system we designed
for combinations of classical logic and relational databases
first compiles the classical axioms into database queries,
then invokes the database to answer those queries, and fi-
nally returns exactly the database’s results. Since the sec-
ond two steps utilize off-the-shelf database technology, the
problem we address in this paper is the compilation of
classical axioms into database queries that implement an
inconsistency-tolerant entailment relation. Before formal-
izing this problem, we discuss languages for classical logic
and relational databases, the semantics for combinations of
classical logic and relational databases, and inconsistency-
tolerant entailment relations.

Two Languages: FHL andDATALOG

The objects of study in this paper are two knowledge
representation formalisms: classical logic and relational
databases. The classical logic considered is first-order logic
with equality and the following three restrictions: no func-
tion constants, a domain closure assumption (DCA), and a
unique names assumption (UNA). We call this logic Finite
Herbrand Logic (FHL) because the only models of interest
are the finite Herbrand models. The relational database lan-
guage studied in this paper is nonrecurabgALOG with
negation, which can be embedded in SQL and therefore used
in off-the-shelf database systems. We use standard syntax
and semantics for both languages and therefore only high-
light the crucial definitions below.

The syntax for FHL is the same as for function-free first-
order logic. A model for FHL is the same as for first-
order logic but simplified to take advantage of the UNA and
DCA. A model is a set of ground atoms from the language.
A model satisfies a set of FHL sentences if it satisfies all
ground instances of those sentences. A sentence set is sat
isfiable (or consistent) if there is some model that satisfies
it. A sentence set is complete if it is satisfied by at most one
model. M od[T"] denotes the set of models that satiBfy

ForDATALOG, the syntax is also standard and can be iden-
tified by the use of: — for implication. Just as for FHL, a
model is a set of ground atoms. Unlike FHL, every set of
DATALOG sentences has exactly one model and thus repre-

ground literals, denote@xp[T] for theoryT'. A complete,
consistent theory is said to be represerdggtensionallyin
DATALOG by the non-negated elements of its explicit repre-
sentation, denoteBx¢[T]. To denote the set of predicat@s
that occur in the explicit representation of a complete, con-
sistent theoryl’, we will say thatT" is complete over predi-
cates@.

For example, the following sentences induce a consistent
FHL theory complete over predicatés, ¢ }.

—p(a) A —p(b)
Ve.(-p(z) = g(z,a))

Va.—q(x,b)
Below are the explicit and extensional representations.
Explicit Extensional
—pla) — —p(b)
daa) —alat) | T
q(b,a) —q(b,b) ’

Combinations of FHL and DATALOG

The algorithms introduced in this paper enable reasoning
about the combination of FHL and relational databases;
thus, we must define the semantics of such combinations.
Since every database can be representamhi\LOG and
everyDATALOG theory is equivalent to a complete, consis-
tent FHL theory, we can formalize a database as a com-
plete, consistent FHL theory (hence our interest in FHL).
The combination of FHL axioma and databas (a com-
plete, consistent FHL theory) will be written 8a, A). Its
semantics is the set of models that sati&fy) A.

While the combination of FHL and databases is an im-
portant concept, it turns out that the compilation algorithms
we introduce in this paper operate on the combination of
FHL axioms and a databasehema To understand why,
first notice that it is natural for the compiler to be built upon
automated reasoning technology because it must manipulate
sentences in classical logic. A compiler capable of exam-
ining the contents of the databasgas opposed to just its
schema) would require automated reasoning technology ca-
pable of managing vast amounts of data—the very problem
our compilation work was meant to address. Second, if the
output of the compiler depends upon the database contents,
then as the database contents change (often a frequent occur-
rence), the compilation process must be started anew. Be-
cause our compilation algorithms operate on FHL axioms
and a database schema, they are both more practical to exe-
cute and need to be executed less frequently.

sents a complete, consistent theory. Without negation, this Definition 1 (Parameterized Theory). A parameterized
model is the smallest one (ordered by subset) that satisfiestheory (A, Q) is an FHL sentence sek and a predicate
the sentences under the FHL definition of satisfaction. With SetQ. An instance of the parameterized thedtdy, Q) is
negation, this model is assigned according to the stratified @ two-tuple(A, A) whereA is a complete, consistent FHL
semantics (Ullman 1989). theory where all occurring predicates belongdo

Since this paper introduces compilation algorithms for A model satisfies a parameterized theory instafaseA)
FHL andDATALOG, it is convenient to have conventions for if it satisfiesA U A.

Inconsistency

For both FHL andATALOG, logical entailment is defined

as usualT entails¢ (denoted = ¢ for FHL andT |=p ¢

for DATALOG) if every model that satisfieB also satisfies

¢. Since inconsistent theories trivially entail every sentence,
traditional entailment fails to tolerate inconsistencies; con-
sequently, we focus on a non-explosive notion of entailment
specialized for parameterized theories and similar to those
found in defeasible logic programming.¢, (Gomez, Ches-
nevar, and Simari 2008)).

For a parameterized theory instarice A), strict existen-
tial entailmentstates that\ =% ¢ if there is a subset, of
A such thatA U Ay is satisfiable and entails. Intuitively,

a conclusion is strictly existentially entailed when there is
some portion of the database consistent with all the FHL ax-
ioms that entails the conclusion. As compared to the more
popular existential entailment, which allows all conclusions
entailed by any satisfiable subset of premises, strict existen-
tial entailment requires the justification for every conclusion
include the entire set of FHL axiom&. We call the set of

all sentences strictly existentially entailed stect existen-

tial consequencesf a parameterized theory. For brevity, the
word “existential” may be dropped.

In practice, strict existential entailment is useful when
the FHL axioms correctly axiomatize some domain but the
database contains erroneous informatiery, data acqui-
sition errors, out-of-sync information, or genuine disagree-

ments. Such axiom sets can be found, for example, in the de-

scription logic community, where ontologies are often veri-
fied or forced to be consistent.

Problem Statement

This work assumes that databases contain vast amounts of

information, and the combination of a database and classi-
cal logic will often result in inconsistency. Our work ad-

dresses both issues simultaneously by developing compila-

tion techniques that translate a parameterized théary))

into a series of database queries that when evaluated over
database instance with schefanswer a fixed set of strict
entailment queries:(a) and—p(a) for every predicate and
tuple of object constanta We call the compilation problem
studied in this paper Parameterized CompilatiomAgA -
LOG.

Definition 2 (Parameterized Compilation to Datalog).
For a parameterized theor{A, @), the DATALOG sentence
setA’ is a parameterized compilation if for each predicate
p in A, there are predicatep~ and p* occurring in A’
such that for every consistent FHL thedrgcomplete ove€)

BeplA] 4 p(a) iff AU Eat[A] Fp p* ()
ExplA] F4 —p(a) iff AU Eat[A] =p p (a)

Compilation

Our approach to parameterized compilation relies on a stan-
dard automated reasoning technique: resolution. In partic-
ular, we will employ resolution to compute the resolution
closure of the FHL axioms. This is the crucial step in the

compilation process that bridges the gap between classical
semantics andATALOG semantics.

The utility of the resolution closure for compiling clas-
sical logic to DATALOG can be explained even without
the presence of inconsistency. When the FHL axiains
are closed under resolution, answering an entailment query
aboutA U A (for any A) is especially simple. To compute
whether or notA U A entailsp(a), we must find a clausé
that belongs ta\ that together with\ entailsp(a). In con-
trast, whenA is not closed under resolution, one must find
an entiresetof statements belonging th that together with
A entail p(a). The reduction of search from a set of state-
ments to a singleton is especially useful wheis a set of
literals (as it is for databases) because unit resolution applied
to A U A is by itself sufficient to answer entailment queries.

These observations about the connections between binary
resolution and unit resolution are important becanisen -

LOG evaluation amounts to a form of unit resolution. Intu-
itively the problem of compiling classical logic taTALOG

is akin to the problem of making unit resolution a complete
rule of inference.

DATALOG evaluation is not exactly unit resolution,
however—it is an ordered form of unit resolution. To en-
sure completeness @fATALOG evaluation, we must con-
struct from each clause in the resolution closuréddll of
its contrapositives. Each of these contrapositives then be-
comes a differenbATALOG query. This simple procedure
(compute the resolution closure &f, compute the contra-
positives of each clause in the result; translate each con-
trapositive toDATALOG syntax) turns out to be sound and
complete for inconsistency-free theorié&, A when A is
guantifier-free and\ is represented explicitly.

For example, consider a simple quantifier-free theory
closed under resolution, constitutidg

p(z) vV q(z)
—q(x) V —r(z)
p(x) vV —r(x)

@

aSuppose we want to construsATALOG queries so that for

any database over predicat@s= {p, ¢, 7}, we could com-
pute whether or nop(z), ¢(x), andr(z) are entailed (for

any argument). To do that, we consider all contrapositives
of the clauses above, write each contrapositive in rule form,
and change the head of each rule to break recursive paths.
The result is a set of implications that can be interpreted as
DATALOG rules (modulo safety).

pH(X) = ~q(X)
gt (X) :— —p(X)
rH(X) = p(X)
pH(X):—r(X)

For any databas& complete for{p, ¢, r}, the rules above
together withExt[A] entails (UndemATALOG semantics)
all those atomic sentences entailed &dyJ Exp[A] (under

FHL semantics) as long & U A is consistent.

The procedure outlined so far addresses one of the two
motivations for this paper: reasoning about the combina-
tion of classical logic and large databases. The second mo-
tivation, inconsistency-tolerant reasoning, can be addressed

)

with a small change to the procedure above. In particular,
to implement strict entailment one need only add a consis-
tency check to the end of each of the construabeda -

LOG queries. An algorithm for constructing such consis-
tency checks iDATALOG will be discussed in the section
that follows.

Algorithm 1 formalizes the procedure outlined above and
performs parameterized compilation when the FHL axioms
are quantifier-free. It is a one-line application of Algo-
rithm 2, which in addition to a parameterized theory takes

as input the set of sentences that must be included during

the consistency check. For strict entailment, that set is al-
ways the FHL axiom set, but later we will discuss a varia-
tion of strict-entailment (the well-known existential entail-
ment) that is a different one-line application of Algorithm 2.
Note that we us&@Eg CNFA]] to denote the resolution and
factoring closure of the clausal form & andPREDY¢] to
denote the set of predicates occurringin

Algorithm 1 STRICT-COMPILATION[(A, Q)]
1: COMPILATION[(RESCNF[A]], @), A]

Algorithm 2 COMPILATION[(A, @), X]

Assumes: A andX. are clause sets.
Assumes: A is closed under resolution and factoring.
Outputs: A DATALOG theory
1: for all predicatep € Q UPREDJA] — {=} do
2 forall clausesi in A U {p(z) V —p(z)} including a
literal p(t) do
write d asp(z) < ¢(x)
whenPREDY¢(z)] € Q] then goto next d
r={djux
OUTPUT-CONSISTENCY-CHECK [¢(Z),I']
print
MAKE -SAFE[pT (T) : — ¢(T) A consistenty, (T)]
8: endfor
9: Likewise forp~—.
10: end for

A

In Algorithm 2, MAKE-SAFE forces its argument to
satisfy theDATALOG syntax requirements, anduTPUT
CONSISTENCY¥CHECK outputs an axiomatization of the
consistency check inserted into eachTALOG rule in
line (6): consistenty(z). The next section dis-
cusses howOUTPUT-CONSISTENCY¥CHECK axiomatizes
consistenty(z) in more detail, but for the moment it suf-
fices to describe its semantics.

Definition 3 (consz‘stentg). Suppos® is an FHL sentence

set. For an FHL sentence(z), consistentg)(fc) is com-
pletely and consistently defined to be true for exactly those
a such thatg(a) and © are consistent.C,,,, denotes the
complete theory definin@nsz’stentg’ for all ¢(z).

The next theorems guarantee the soundness and complete-

ness of our core compilation algorithm (Algorithm 2) under
a very strong assumption: that the FHL axioms are closed

under resolution and factoring. Proofs have been omitted
for lack of space but can be found in the extended version of
this paper (Hinrichs, Kao, and Genesereth 2009).

Theorem 1 (Soundness of GMPILATION). Consider a
parameterized theoryA, @), where A is a clause set
closed under resolution and factoring, andis a satisfi-
able set of FHL sentences. U&¢ to denote the output of
COMPILATION({A, @),X). Supposé is a consistent theory
complete over the predicatés If

A" U Ext[A] U Ext[Ceon] Ep pT (@)

then there is a satisfiable subset®fU Exp[A] that is con-
sistent with® and entailsp(a).

Theorem 2 (Completeness of GMPILATION). Consider
a parameterized FHL theoryA,), whereA is a clause
set closed under resolution and factoring, aids a satis-
fiable set of FHL sentences. UAg to denote the output of
COMPILATION({A, @),X). Suppose\ is a consistent the-
ory complete over the predicatés If there is a satisfiable
subset ofA U Exzp[A] consistent with: that entailsp(a)
then

A’ U Ezt[A| U Ext[C.on) EEp pT(a).

The corollaries below guarantee soundness and complete-
ness for our top-level compilation algorithm (Algorithm 1)
and remove the restriction that the FHL clauses are closed
under resolution. Those corollaries rely on the following
proposition, which states that for strict entailment, arbi-
trary equivalence-preserving operations can be applied to
the FHL axioms of a parameterized theory without chang-
ing the strict existential consequences.

Proposition 1. Supposef is an operation such that for all
premise seta\ in its domain,Mod[A] = Mod[f[A]]. For
every strict entailment query,

A 4 ¢ifand only ifA =114 ¢,

Proof. SupposeA =4 ¢. Then there is &\, C A such
thatAy U A is satisfiable and entails Because\/ od[A] =
Mod[f[A]], Ao U f[A] must be satisfiable and entgilby
the usual definition of satisfaction and entailment. Thys,
witnesses the strict entailmem):ém ¢. The other direc-
tion follows similarly. O

To prove the soundness and completenessTICT
COMPILATION, we leverage the fact that the conversion to
clausal form (denotedNF) and the resolution and factoring
closure of a clause set (denoteds) are well-known to be
model-preserving when the premises are quantifier-free.

Corollary 1 (Soundness of SRICT-COMPILATION).
Suppose A’ denotes the output of STRICT-
COMPILATION({A, @)), where A is quantifier-free.
Further suppose\ is a consistent theory, complete over the
predicates). If

A" U Ezt[A] U Ext[Ceon] Ep pT(a)
thenExp[A] =5 p(a).

Proof. Suppose\’ U Ext[A] U Ext[Ceon]) Ep pt(a). By
the definition of SRICT-COMPILATION and Theorem 1,
we see that there is a satisfiable subsetEofp[A] that
is consistent witrREgCNF[A]] and entailsp(a). Conse-
quently, Ezp[A] =5-3YA @), SinceA is quantifier-
free, RE§CNFA]] has exactly the same models As By
Proposition 1,Exp[A] =5 p(a). O

Corollary 2 (Completeness of SRICT-COMPILATION).
Suppose A’ denotes the output of STRICT-
COMPILATION((A, @)), where A is quantifier-free.

Further supposé\ is a consistent theory complete over the

predicates)). If Exp[A] =4 p(a) then
A’ U Ezt[A| U Ext[Ceon] Ep pT(a).

Proof. SupposeExp[A] =% p(a). Then becausé\ is

guantifier-free A has the same modelsRsg cNFA]], and
by Proposition 1Eap[A] =344 (@), Theorem 2 can
then be applied (wher& is RECNFA]]) to produce the
desired result:

A’ U Ezt[A| U Ext[Ceon] Ep pT(a).

Axiomatizing the Consistency Check

Here we introduce an algorithm for axiomatizing the con-

sistency check of Definition 3 imMATALOG. It operates
on a conjunction of literalsy(z) and a sentence s&.
conszstentg(Z) must be true for exactly thosewhereg(a)

is consistent witt®. Intuitively, this means that the variable
bindings are not made in such a way that a subset of the liter-

als in¢ unify with the negated literals of some clausedn

The algorithm that follows implements this intuition using

subsumption.

Algorithm 3 OUTPUT-CONSISTENCY¥CHECK(¢,0)
Assumes: ¢ is a conjunction of literals with variables
Assumes: O is a clause set.

Outputs: A DATALOG axiomatization OEonSistentg).

1: © := REY[O]
2: ¢ := ¢ inclausal form // a single clause
3: T:={o|o is a maximally general substitution such that

¢o is inconsisterit

N

somed € © subsumeso}
: print MAKE-SAFE[

9]

consistentg(i') i— t=u
ceXUT t—u€co

For illustration, here is an example of the in-

put and output of OTPUT-CONSISTENCY¥CHECK.

Input: ¢ : —p(x,y) A gy, a),
O : {p(x,b) Vr(z,b),~r(a,y) V ~q(y, 2)}
RegO] = {p(z,b) V r(z,b),

—r(a,y) V =q(y, 2),
(a7b) _‘Q(bvz)}'

: 3¥:={o|o is a maximally general substitution such that

No substitution into the variables gfcauses a contradic-
tion on its own, sd’ is empty. The only substitution into the
variables of¢ that contradict® iso = {a — z,b — y}.
¢o = —p(a,b) A q(b,a), contradictings(a, b) V —q(b, 2).

Output: consistentg(x, y) 1 — universe(z,y) Ax # a
consistentd@)(x, y) : — universe(x,y) Ny £ b
In practice, the rule bodies produced byu®uT

CONSISTENCY¥CHECK can be inlined in theDATALOG
queries produced by @vprILATION for the sake of effi-
ciency. In a bottom-up evaluation of the resultingraLoG
program, inlining the consistency checks avoid the need to
first build these consistency relations.

Theorem 3 (Consistency Axiomatization).Given an FHL
clause seB closed under resolution and factoring and an
FHL conjunction of literals¢(z) with variablesz, Algo-
rithm 3 produces @ATALOG definition ofconsistenty (z)

such thatcanszstent@() evaluates to true if and only if
¢(a) and© are consistent.

In Algorithm 3, it's not immediately clear how to com-
pute the sek, or even that the set is finite. It turns out that
it is sufficient for computing= to consider eachi € © and
for each one run a slightly modified subsumption algorithm,
e.g. Stillman’s (Stillman 1973). Similarly, the sEtis easy
to compute: whenever a predicate occurs both positively and
negatively ing, add to7" the most general unifier of the cor-
responding atoms.

Non-strict Existential Entailment

Recall that for a parameterized theory instarige A) to
strictly entail a conclusiop(a), there must be a portion of
consistent withA that entailsy(a). In particular, this means
that all the premises used to prop@i) must be consistent
with A in its entirety. WhenA correctly axiomatizes the
domain of interest, strict entailment produces intuitive re-
sults, but whem includes mistakes, strict entailment may
produce fewer results than one would like. For example, if
A is inconsistent, there are no strict consequences for any
database.

One entailment relation, popular in the literature, that is
tolerant of inconsistencies both withih as well as across
A andA is existential entailment existentially entails if
there is a consistent subsetldthat entailsp. Likewise, for
a parameterized theory U A existentially entails if there
is a consistent subset & U A that entailsp. Thus, unlike
strict entailment, existential entailment does not allow an in-
consistency inA to block all conclusions. Existential en-
tailment is therefore stronger (produces more consequences)
than strict entailment but is weaker (produces fewer conse-
guences) than traditional entailment.

Algorithm 4, a simple application of our core compilation
algorithm (Algorithm 2), performs parameterized theory
compilation while preserving the existential consequences
(as opposed to the strict consequences) of a parameterized
theory. Soundness and completeness hold when the FHL
axioms are clauses closed under resolution and factoring.

Corollary 3 (Soundness of EXISTENTIAL COMPILA -
TION). Suppose)’ denotes the output OEXISTENTIAL-

Algorithm 4 EXISTENTIAL-COMPILATION[(A, Q)]
1: COMPILATION[(A, Q), 0]

COMPILATION({A, @)), whereA is a clause set closed un-
der resolution and factoring. Further suppoAes a consis-
tent theory, complete over the predicatgslf

A’ U Ext[A] U Ext[Ceon] E=p pT (@)
thenA U Exp[A] =g p(a).

Proof. Suppose\’ U Ext[A] U Ext[Ceon]) Ep pt(a). By

the definition of EXISTENTIAL-COMPILATION, Theorem 1
applies becausA is closed under resolution and factoring
andX is the empty set. Thus we see that there is a satisfiable
subset ofA U Exp[A] that entailgy(a). ConsequentlyA U
ExplA] =g p(a). O

Corollary 4 (Completeness of EXISTENTIAL COMPILA -
TION). SupposeA’ denotes the output OEXISTENTIAL -
COMPILATION((A, @)), where A is a clause set closed
under resolution and factoring. Further suppogdeis a
consistent theory complete over the predicaiesIf A U
Ezxpl[A] EE p(a) then

A’ U Ezt[A| U Ext[Ceon] Ep pT(a).

Proof. Suppose\ U Ezp[A] =g p(a). Then applying The-
orem 2 whereX is the empty set, we immediately get the
desired result. O

Negative Results

The important condition on the soundness and completeness
results of the previous section (for non-strict existential en-
tailment) is that the FHL axiomA must be closed under res-

Proof. Consider the following four sentences.

p
-pVaqgVr
-p
pV-qVr

Perform resolution on the first two clauses to produce

r. Perform resolution on the last two clauses to produce
—q V r. Perform resolution on these two to producéince

r is included in the resolution closure, it is an existential
consequence of the closure.

Notice though that no satisfiable subset of the original
premises entait; thus, the resolution closure does not pre-
serve existential consequences. Also, notice that if sub-
sumption is applied to the original premises, the result is
two unit clausesp and—p. Neither of these clauses entails
g Vv r, which is an existential consequence of the original
sentences; thus, subsumption does not preserve existential
consequences. O

Resolution is not the only inference rule for which com-
puting the closure fails to preserve existential consequences;
rather, failure can occur when closing any sound set of in-
ference rules.

Proposition 4 (Closure Failure). SupposeR is a binary
inference rule that is sound for existential entailmdrg,,
for every two premises and, R[¢,] C ECons[{,¢}].
Use R*[I'] to denote the closure df under R. It is not
necessarily the case th&*[I') C ECons|[I.

Proof. The proof of Proposition 3 provides the counterex-
ample. All three applications of resolution are sound (pro-
duce existential consequences of the sentences that were re-

olution. In contrast, the soundness and completeness resultsS0/ved together), but the last application produces a sentence

for strict entailment allowA to be any quantifier-free ax-
iom set. It is tempting to forcibly closA under resolution,
just as we did with strict entailment; however, it turns out
that the resolution closure of an axiom set does not give the
same existential consequences as the original. Here we il-
lustrate this property, denoting the existential consequences
of a sentence s@t with ECons|I.

First we show that neither clausal form conversion nor
resolution preserve the existential consequences of a sen-
tence set.

Proposition 2 (CNF Failure). SupposeCNF denotes
clausal form conversion. It is not necessarily the case that
ECons[I'| = ECons[CNF[I]].

Proof. The sentencg A —p has no existential consequences
(except tautologies), but its clausal form has the existential
consequencesand—p. O

Proposition 3 (Resolution and Subsumption Failures).
SupposerESs denotes the resolution closure asdBSUMP
denotes the subsumption deletion strategy. It is not neces-
sarily the case that'Cons[I'] = ECons[RE]I]] nor that
ECons[I'| = ECons[SUBSUMALY].

not existentially entailed by the original premise set. [

Since soundness is insufficient to guarantee the preserva-
tion of existential consequences, it is as of yet unclear how to
predict the effects of inference rules on the existential con-
sequences of a premise set. Despite this, certain types of
closures are known to have certain effects. If the closure
only adds sentences to the premise set, like resolution, the
existential consequences must monotonically increase, and
if the closure only removes sentences, like subsumption, the
consequences must monotonically decrease. Closures that
apply both additive and subtractive inference rules, like reso-
lution with subsumption, neither monotonically increase nor
decrease the existential consequences.

A New Entailment Relation

The negative results of the last section demonstrate the diffi-
culties of implementing existential entailment using our core
compilation algorithm (Algorithm 2) for premise sets not

closed under resolution. The obvious approach, comput-
ing the resolution closure before compiling (Algorithm 5,

shown below), turns out not to preserve the existential con-
sequences of the original theory; however, that algorithm

does address the two concerns of this paper: tolerating in- possible arguments with an argument treg,, (Efstathiou
consistency and reasoning about the combination of classi- and Hunter 2008; Besnard and Hunter 2008), we find exactly
cal logic and a relational database. Since there is currently two arguments for each conclusion: one supporting and one
no standard definition for drawing conclusions from incon- undermining.

sistent premise sets (non-explosively), the community is In the context of knowledge compilation, most work does
well-served when people identify easy-to-implement, non- not address the combination of databases and classical logic
explosive entailment relations. Algorithm 5 is easy to imple- (Darwiche and Marquis 2002; Selman and Kautz 1996;
ment, and below we show that it implements a non-explosive Nagy, Lukacsy, and Szeredi 2006; Calvanese et al. 2008;
entailment relation. Besnard and Hunter 2006) or does not consider inconsis-
tency (Hinrichs and Genesereth 2008; Cadoli and Mancini
2002; Nagy, Lukacsy, and Szeredi 2006; Calvanese et al.
2008). With the exception discussed below, the compila-
tion work we are aware of that addresses inconsistency in
the context of data separate from complex axioms does not
focus on large data sets (Flouris et al. 2006; Huang, van
Harmelen, and ten Teije 2005).

The closest related work (Gomez, Chesnevar, and Simari
2008) translates a description logic, which naturally sepa-
rates the data (Abox) and constraints (Tbox), into defeasi-
Proof. Let A be the sentencd®V ¢, —p} andA be{p}. To- ble logic programming (DeLP) for the purpose of reasoning
gether these sentences are inconsistent. Since the sentencesbout inconsistent premises. Several distinctions are worth
are already in clausal form, consider the resolution closure mentioning. First, (Gomez, Chesnevar, and Simari 2008)
of A: {pV ¢,—p,q}. When combined witHp}, —¢ is not defines entailment with respect to the constructed DeLP pro-
an existential consequence; herneé,is non-explosive. [gram, i.e, a sentence is entailed by the description logic

o))) premises if it is entailed by the translation of the premises to

It turns out a very similar entailment relation was defined pe| p: thus, it is unclear which paraconsistency semantics
by Besnard and Hunter (Hunter 1998) for propositional logic 4re peing computed by the translation. Second, the transla-
and was called quasi-classical logic. Its proof theory con- tjon to DelLP applies only to a specific fragment of all sen-
verts a premise set to clausal form, computes the resolution tances expressible in the given description logic; the same
closure, and entails exactly the nonempty disjunctions in ho|gs true of our work, but the fragments are incompara-
that closure (where each nonempty disjunction may be aug- pje. Lastly, in (Gomez, Chesnevar, and Simari 2008), the
mented with arbitrary new literals via disjunction introduc- premises for every argument must be consistent with the en-
tion). T_he gntailment (elation disc_ussed above d!ffers inthat jre Abox; our work does just the opposite for the case of
resolution is only applied to a portion of the premise 28}, (strict entailment. The data is assumed less trustworthy than

and a conclusion is entailed only if itis existentially entailed the constraints, and arguments never need to be consistent
by the database and the closure; thus, there is a consistencyyith all of the data.

requirement imposed b’ not imposed by quasi-classical
entailment. Consequently, the’ consequences are a strict
subset of the quasi-classical consequences.

Algorithm 5 EXISTENTIALRES-COMPILATION[(A, Q)]
1: COMPILATION[(RESICNF[A]], Q), 0]

Proposition 5. The entailment relatiok=' is non-explosive
when defined as follows.

AUA E ¢if RESCNFA]JUA g ¢

Conclusion and Future Work

This paper describes compilation algorithms that implement
non-explosive entailment relations for inconsistent combi-
nations of Finite Herbrand Logic (a decidable fragment of
first-order logic) and relational databases. For strict existen-
tial entailment, our algorithms are sound and complete as

Related Work

The related work involves two issues studied in the litera-
ture: reasoning about inconsistency and knowledge com-

pilation. Recently, much attention has been paid to incon-
sistency tolerance in the context of classical logic (Hunter
1998; Besnard and Hunter 2005; Konieczny, Lang, and
Marquis 2005; Huang, van Harmelen, and ten Teije 2005;

long as the FHL axioms are quantifier-free. For non-strict
existential entailment, the same basic compilation algorithm
is sound and complete as long as the FHL axioms are closed
under resolution and factoring. Termination is guaranteed

Zamansky and Avron 2006; Flouris et al. 2006; Subrahma- when the resolution closure of the FHL axioms is finite.

nian and Amgoud 2007; Hunter and Konieczny 2008; Ev- In the future, we plan to address several issues. First is
eraere, Konieczny, and Marquis 2008; Besnard and Hunter the possibility that the compilation procedure does not ter-
2008). In contrast to some of that work, the problem ad- minate because the resolution closure is infinite. It is feasi-
dressed in this paper involves detecting but not repairing ble that by targeting a more expressive database query lan-
inconsistencies (Everaere, Konieczny, and Marquis 2008; guage (stratifiedATALOG), we could construct recursive
Benferhat, Lagrue, and Rossit 2007; Subrahmanian and database queries that simulate the effects of resolution, simi-
Amgoud 2007). Second, our work focuses on a classical lar to (Nagy, Lukacsy, and Szeredi 2006). The benefit is that
logic that is properly neither propositional.g, (Efstathiou whereas the compiler does not know the size of the data (and
and Hunter 2008), yet retains decidability nor first-order hence cannot bound the size of the resolution closure), the
(Besnard and Hunter 2005) yet retains a relational syntax. database does have access to that information and can avoid
Third, instead of establishing the relationships between all a non-terminating computation.

Second, this work addressed the combination of databases

and classical logic, which was motivated in part by today’s
largest knowledge bases: Cyc (Lenat and Guha 1990) and

SUMO (Niles and Pease 2001). These knowledge bases sep-

arate data from complex axioms, but instead of applying the
closed world assumption to the data, they employ the open
world assumption. In the future we will investigate tech-
nigues for handling the open world assumption.

Finally, in the context of reasoning about inconsistency,
substantial energy has been devoted to constructing argu-

ment trees that represent the relationships among the sen-

tences existentially entailed by a premise set. These trees
differentiate conclusions that are undermined (entailed by

premises whose negations are also entailed) and those that

are not. Such information gives a better understanding of
the inconsistencies and their implications than the simple
gueries studied in this paper. In the future we will extend
our compilation techniques to handle argument trees.

References

Benferhat, S.; Lagrue, S.; and Rossit, J. 2007. An egalitarist
fusion of incommensurable ranked belief bases under constraints.
In Proceedings of the AAAI Conference on Artificial Intelligence
367-372.

Besnard, P., and Hunter, A. 2005. Practical first-order argumen-
tation. InProceedings of the AAAI Conference on Atrtificial Intel-
ligence 590-595.

Besnard, P., and Hunter, A. 2006. Knowledgebase compilation
for efficient logical argumentation. IRroceedings of the Inter-
national Conference on Principles of Knowledge Representation
and Reasoningl23-133.

Besnard, P., and Hunter, A. 200&lements of Argumentation
MIT Press.

Binas, A., and Mcllraith, S. 2008. Peer-to-peer query answering
with inconsistent knowledge. IRroceedings of the International
Conference on Principles of Knowledge Representation and Rea-
soning 329-339.

Cadoli, M., and Mancini, T. 2002. Knowledge compilation =
query rewriting + view synthesis. IRroceedings of the ACM
Symposium on Principles of Database Systei88-208.

Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.; Poggi,
A.; Rosati, R.; and Ruzzi, M. 2008. Data integration through dlI-
litea ontologies. IProceedings of the International Workshop on
Semantics in Data and Knowledge Bases

da Costa, N. C.; Henschen, L. J.; Lu, J. J.; and Subrahmanian,
V. S. 1990. Automatic theorem proving in paraconsistent logics:
Theory and implementation. FProceedings of the Conference on
Automated Deductiqry2—86.

Darwiche, A., and Marquis, P. 2002. A knowledge compilation
map.Journal of Artificial Intelligence Researdv:229-264.

Efstathiou, V., and Hunter, A. 2008. Algorithms for effective
argumentation of classical propositional logic. Pnoceedings

of the Symposium on Foundations of Information and Knowledge
Systems

Everaere, P.; Konieczny, S.; and Marquis, P. 2008. Conflict-based
merging operators. IRroceedings of the International Confer-
ence on Principles of Knowledge Representation and Reasoning
348-357.

Flouris, G.; Huang, Z.; Pan, J. Z.; Plexousakis, D.; and Wache,
H. 2006. Inconsistencies, negations and changes in ontologies.

In Proceedings of the AAAI Conference on Artificial Intelligence
1295-1300.

Gomez, S. A.; Chesnevar, C. I.; and Simari, G. R. 2008. An argu-
mentative approach to reasoning with inconsistent ontologies. In
Proceedings of the KR Workshop on Knowledge Representation
and Ontologies11-20.

Hinrichs, T. L., and Genesereth, M. R. 2008. Injecting the how
into the what: Investigating a finite classical logic. Pmoceed-
ings of the International Conference on Principles of Knowledge
Representation and Reasoning

Hinrichs, T. L.; Kao, J.-Y.; and Genesereth, M. R. 2009.
Inconsistency-tolerant reasoning with classical logic and large
databases. Technical report, University of Chicago.

Huang, Z.; van Harmelen, F.; and ten Teije, A. 2005. Reasoning
with inconsistent ontologies. IRroceedings of the International
Joint Conference on Artificial Intelligence

Hunter, A., and Konieczny, S. 2008. Measuring inconsistency
through minimal inconsistent sets. Rroceedings of the Inter-
national Conference on Principles of Knowledge Representation
and Reasoning

Hunter, A. 1998. Paraconsistent logics. Handbook of Defea-
sible Reasoning and Uncertain Informatiokluwer Academic
Publishers. 11-36.

Konieczny, S.; Lang, J.; and Marquis, P. 2005. Reasoning under
inconsistency: the forgotten connective Aroceedings of the In-
ternational Joint Conference on Atrtificial Intelligenc&84—489.

Lenat, D. B., and Guha, R. V. 1998uilding Large Knowledge-
Based Systems: Representation and Inference in the CYC Project
Addison-Wesley.

Myers, K. 1990. Automatically generating universal attachments
through compilation. IProceedings of the AAAI Conference on
Artificial Intelligence

Nagy, Z.; Lukacsy, G.; and Szeredi, P. 2006. Translating descrip-
tion logic queries to prolog. IRroceedings of the Symposium on
Practical Aspects of Declarative Languag@§8-182.

Niles, I., and Pease, A. 2001. Towards a standard upper ontology.
In Proceedings of the Formal Ontology in Information Systems
2-9.

Selman, B., and Kautz, H. 1996. Knowledge compilation and
theory approximationJournal of the ACM43(2):193-224.

Sikka, V. 1996. Integrating Specialized Procedures into Proof
SystemsPh.D. Dissertation, Stanford University.

Sofronie-Stokkermans, V. 2000. Automated theorem proving by
resolution for finitely-valued logics based on distributive lattices
with operators Multiple-Valued Logid5:289-344.

Stickel, M. 1985. Automated deduction by theory resolution.
Journal of Automated Reasonidg333—-356.

Stillman, R. B. 1973. The concept of weak substitution in
theorem-provingJ. ACM20(4):648—667.

Subrahmanian, V. S., and Amgoud, L. 2007. A general frame-
work for reasoning about inconsistency.Rroceedings of the In-
ternational Joint Conference on Atrtificial Intelligence99-604.

Ullman, J. 1989.Principles of Database and Knowledge-Base
SystemsComputer Science Press.

Weyhrauch, R. 1980. Prolegomena to a theory of mechanized
formal reasoningArtificial Intelligence13:133-170.

Zamansky, A., and Avron, A. 2006. Non-deterministic semantics
for first-order paraconsistent logics. Rroceedings of the Inter-
national Conference on Principles of Knowledge Representation
and Reasoningd31-439.

