

Integrating Constraint Models for Sequential and Partial-Order Planning

Roman Barták*, Daniel Toropila*†
{roman.bartak, daniel.toropila}@mff.cuni.cz

*Charles University, Faculty of Mathematics and Physics
Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic

†Charles University, Computer Science Center
Ovocný trh 5, 116 36 Praha 1, Czech Republic

Abstract
Classical planning deals with finding a (shortest) sequence
of actions transferring the world from its initial state to a
state satisfying the goal condition. Traditional planning
systems explore either paths in the state space (state-space
planning) or partial plans (plan-space planning). In this
paper we show how the ideas from plan-space (partial
order) planning can be integrated into state-space
(sequential) planning by combining constraint models
describing both types of planning. In particular, we extend
our existing constraint model for sequential planning by
constraints describing satisfaction of open goals. We
demonstrate experimentally that this extension pays-off
especially when the planning problems become harder.

 Introduction
Constraint satisfaction is a traditional technology for
solving scheduling problems, but it is less frequently
applied when solving planning problems completely.
CPlan (van Beek and Chen, 1999) was one of the first
attempts to formulate a planning problem as a constraint
satisfaction problem (CSP). However, this approach was
based on manually formulating the constraint model. Do
and Kambhampati (2000) showed that constraint
satisfaction techniques can be applied to plan extraction
from the planning graph (Blum and Furst, 1997). Their
system GP-CSP automatically encoded the planning graph
as a CSP. Lopez and Bacchus (2003) suggested a more
efficient constraint formulation of the planning graph –
CSP-PLAN – that used Boolean variables and successor-
state constraints (Reiter, 2001). Barták and Toropila (2008)
reformulated these models for sequential planning with
multi-valued state variables and suggested using tabular
(combinatorial, extensionally defined) constraints instead
of logical constraints in the form of disjunction used in GP-
CSP and CSP-PLAN. The efficiency of constraint models

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

can be further improved by including techniques such as
symmetry breaking, singleton consistency, lifting, and
nogoods learning (Barták and Toropila, 2009).
 The above models assume a sequential view of planning
where the system produces plans in the form of a sequence
of actions (GP-CSP and CSP-PLAN use parallel plans
consisting of a sequence of sets of actions, where the
actions in the set can be ordered in any way). Opposite to
sequential planning, partial-order (plan-space) planning
generates plans as a partially ordered structure of actions
so the sequential plan can be obtained by linear ordering of
the actions respecting the partial order. This has the
advantage that artificial plan-permutation symmetries that
appear during sequential planning are not explored during
partial-order planning. CPT (Vidal and Geffner 2004) is
probably the most successful (in terms of International
Planning Competition) constraint-based planner that does
partial-order planning.
 In this paper we suggest to extend the sequential
constraint-based planner from (Barták and Toropila, 2009)
by some ideas originated from partial-order planning (and
in some sense from GP-CSP). Namely, we propose adding
redundant variables and constraints that describe actions
giving particular goals and the position of these actions in
the sequential plan. This redundant part of the model
increases the propagation power of constraints so more
inconsistencies are filtered out from the variables’ domains
and hence the search space to be explored is smaller.
Despite the overhead of propagating through the redundant
constraints, the overall efficiency increases especially for
more complex planning problems.
 The paper is organized as follows. We will first
introduce the necessary concepts both from planning and
from constraint satisfaction. Then we will describe the base
constraint model from (Barták and Toropila, 2008) and its
extensions from (Barták and Toropila, 2009). After that,
we will introduce the variables and constraints describing
the redundant part of the model together with the
channelling constraints connecting the redundant part with
the original model. Finally, we compare all these models
experimentally using several problems from the
International Planning Competitions.

Classical AI Planning
Classical AI planning deals with finding a sequence of
actions that transfer the world from some initial state to a
desired state (Ghallab et al., 2004). The state space is large
but finite. It is also fully observable (we know precisely the
state of the world), deterministic (the state after performing
the action is known), and static (only the entity for which
we plan changes the world). Moreover, we assume the
actions to be instantaneous so we only deal with the correct
sequencing of actions respecting the causal relations (an
action that achieves a precondition of another action must
be ordered before that action and no action destroying the
precondition can be ordered in-between).
 We use the SAS+ formalism to formalize the planning
problem. This formalism is based on so called multi-valued
state variables, as mentioned in (Bäckström and Nebel
1995) or (Helmert 2006). For each feature of the world,
there is a variable describing this feature, for example
rloc(robot,S) describes the position of robot at state S.
World state is specified by values of all state variables at
the given state, for example rloc(robot, S) = loc1. Hence
the evolution of the world can be described as a set of
state-variable functions where each function specifies the
evolution of values of certain state variable. Actions are
then the entities changing the values of the state variables.
Each action consists of preconditions specifying the
required values of certain state variables and effects of
setting the values of certain state variables. The left part of
Figure 2 gives an example of how the actions are
represented when using the multi-valued state variables
(note that the state is not explicitly present in the
identification of the variable). We implicitly assume the
frame axiom, that is, other state variables than those
mentioned among the effects of the action are not changed
by applying the action.
 The set of state variables together with the set of actions
is called a planning domain. We assume both sets to be
finite. The initial state is specified by values of all state
variables (it is known completely); the goal is specified by
values of certain state variables (any state where the state
variables have these required values is a goal state). The
classical planning problem is defined by the planning
domain, the initial state and the goal. The planning task is
to find a shortest sequence of actions called a plan that
transfers the initial state into one of the goal states.

Constraint Satisfaction
Many combinatorial optimization problems including the
planning problems can be encoded and solved as constraint
satisfaction problems (Dechter, 2003). A constraint
satisfaction problem (CSP) P is a triple (X, D, C), where X
is a finite set of decision variables, for each xi ∈ X, Di ∈ D
is a finite set of possible values for the variable xi (the
domain), and C is a finite set of constraints. A constraint is
a relation over a subset of variables that restricts possible
combinations of values to be assigned to the variables. A
solution to a CSP is a complete assignment of values to the

variables such that the values are taken from respective
domains and all the constraints are satisfied.
 A typical constraint satisfaction approach is a
combination of inference and depth-first search. The most
frequently used inference technique for CSPs is called arc
consistency. We say that a constraint is (generalized) arc
consistent if for any value in the domain of any constrained
variable, there exist values in the domains of the remaining
constrained variables in such a way that the value tuple
satisfies the constraint. The CSP is arc consistent (AC) if
all the constraints are arc consistent and no domain is
empty. A stronger consistency technique derived from AC
is singleton arc consistency. We say that a value a in the
domain of some variable xi is singleton arc consistent if the
problem P|xi=a can be made arc consistent, where P|xi=a is
a CSP derived from P by reducing the domain of variable
xi to {a}. The CSP is singleton arc consistent (SAC) if all
values in variables’ domains are singleton arc consistent.
 As consistency techniques usually do not remove all
inconsistencies they need to be combined with search that
resolves the remaining alternatives. The search procedure
splits the problem into disjoint sub-problems that are
solved separately. Typically, the sub-problems differ in the
value assigned to a selected variable; however it is possible
to use different branching schemes, for example splitting
the domain of the variable into disjoint sets. This leads to a
smaller branching factor during search. Note that the
consistency technique is typically applied after each search
decision to see the effect of the decision – this is a form of
look ahead. Either it fails to make the problem consistent,
then the search backtracks (the whole sub-tree is pruned),
or it prunes parts of the search space. Because the
consistency procedure is called in each node of the search
tree, it is necessary to find a balance between the strength
of the consistency technique (determined by the number of
removed inconsistent values) and its efficiency. AC is the
most frequently used consistency level maintained during
search, while SAC is computationally too expensive to be
applied in every node of the search tree. Nevertheless,
SAC can be applied before search to remove some global
inconsistencies.
 The efficiency of constraint solving is highly influenced
by the choice of decision variables and constraints – a so
called constraint modeling. For example, arc consistency
cannot infer a lot for Boolean variables until some variable
is instantiated (filtering out a value from the binary domain
also corresponds to variable instantiation). Similarly, most
constraint solvers do not achieve full arc consistency for
the disjunctive constraints unless a more computationally
expensive constructive disjunction is used. The constraint
models can be enhanced by several ways. For example
adding symmetry breaking constraints removes the
symmetrical solutions from the search space and adding
redundant constraints (the constraints whose satisfaction is
guaranteed by the existing constraints) strengthens domain
filtering and hence decreases the search space. We shall
show later how these techniques can improve the constraint
models for planning problems.

Base Constraint Model for Planning
One of the difficulties of planning is that the length of the
plan, that is, the sequence of used actions, is unknown in
advance so some dynamic technique which can produce
plans of “unrestricted” length is required. Usually, the
shortest plan is sought, which is a form of optimal
planning. As it has been shown by Kautz and Selman
(1992), the problem of shortest-plan planning can be
translated to a series of SAT problems, where each SAT
instance encodes the problem of finding a plan of a given
length. First, we start with finding a plan of length 1 and if
it does not exist then we continue with a plan of length 2
etc. The whole process is repeated until the plan is found or
the computation runs out of time or another termination
condition applies. The same idea can be applied to
modeling the problem as a series of CSPs.

A0 An-1

V0
0 V0

1 V0
n-1

… …

precond

successor

Fig. 1 Base decision variables and constraints.

 The base constraint model is a version of CSP-PLAN
(Lopez and Bacchus, 2003) reformulated by Barták and
Toropila (2008) to sequential planning with multi-valued
state variables. The world state is described using v multi-
valued variables, instantiation of which exactly specifies a
particular state. A CSP denoting the problem of finding a
plan of length n consists of n+1 sets of the above-
mentioned multi-valued variables, having 1st set denoting
the initial state and kth set denoting the state after
performing k-1 actions, for k ∈ 〈2, n+1〉, and of n variables
indicating the selected actions. Hence, we have v(n+1)
state variables Vi

s and n action variables Aj, where i ranges
from 0 to v-1, j ranges from 0 to n-1, and s ranges from 0
to n (Figure 1).
 Constraints connect two adjacent sets of state variables
through the corresponding action variable between them.
In other words, the constraints describe how the state
variables change between the states if a particular action is
selected. There are two types of constraints in the model:
precondition constraints and successor state constraints.
For a given layer s the precondition constraint connects
state variable layer Vi

s, i ∈ 〈0, v-1〉 with action variable As:

 As = act → Pre(act)s , ∀act ∈ Dom(As), (1)
The successor state constraints merge the effect
constraints and the frame axioms together as follows: for
each possible assignment of state variable Vi

s = val,
val ∈ Dom(Vi

s), we have a constraint between it and the
same state variable assignment Vi

s-1 = val in the previous
layer. The constraint says that state variable Vi

s takes value
val if and only if some action assigned this value to
variable Vi

s, or equation Vi
s-1 = val held in the previous

layer and no action changed the assignment of variable Vi:
Vi

s = val ↔ As-1 ∈ C(i,val) ∨ (Vi
s-1 = val ∧ As-1 ∈ N(i)), (2)

where C(i,val) denotes the set of actions containing
Vi = val among their effects, and N(i) denotes the set of
actions that do not affect Vi.
 As already noted, disjunctive constraints do not
propagate well and hence all precondition constraints for a
given layer are encoded as a single tabular constraint
(sometimes also called a combinatorial constraint) where
the set of admissible tuples is given in a table-like
structure. Similarly, all successor state constraints for a
given state variable (and a layer) are encoded as a single
tabular constraint (Figure 2, right).

Base Search Strategy
Modeling is an important step, but as already noted, it is
also necessary to specify the search strategy for
instantiating the variables. One can use generic labeling

Domain
DWR domain with two locations (loc1,loc2), a
robot capable of loading and unloading
containers by itself (r), and one container (c)

State Variables

rloc ∈ {loc1,loc2} ;; robot’s location
cpos ∈ {loc1,loc2,r} ;; container’s position

Actions

1 : move(r, loc1, loc2)
;; robot r at location loc1 moves to location loc2
Precond: rloc = loc1
Effects: rloc ← loc2

2 : move(r, loc2, loc1)
;; robot r at location loc2 moves to location loc1
Precond: rloc = loc2
Effects: rloc ← loc1

3 : load(r, c, loc1)
;; robot r loads container c at location loc1
Precond: rloc = loc1, cpos = loc1
Effects: cpos ← r

4 : load(r, c, loc2)
;; robot r loads container c at location loc2
Precond: rloc = loc2, cpos = loc2
Effects: cpos ← r

5 : unload(r, c, loc1)
;; robot r unloads container c at location loc1
Precond: rloc = loc1, cpos = r
Effects: cpos ← loc1

6 : unload(r, c, loc2)
;; robot r unloads container c at location loc2
Precond: rloc = loc2, cpos = r
Effects: cpos ← loc2

Tables for successor state constraint

As rlocs rlocs+1 As cposs cposs+1
2 {loc1,loc2} loc1 5 {loc1,loc2,r} loc1
1 {loc1,loc2} loc2 6 {loc1,loc2,r} loc2
{3,4,5,6} loc1 loc1 {3,4} {loc1,loc2,r} r
{3,4,5,6} loc2 loc2 {1,2} loc1 loc1

 {1,2} loc2 loc2
 {1.2} r r

Table for precondition constraint

As rlocs cposs
1 loc1 {loc1,loc2,r}
2 loc2 {loc1,loc2,r}
3 loc1 loc1
4 loc2 loc2
5 loc1 r
6 loc2 r

Fig. 2. Example of constraint model using combinatorial constraints; the domain is taken from (Ghallab et al., 2004).

techniques, for example based on dom heuristics (select the
variable with the smallest domain first), but our first
experiments showed that this is not efficient for the
proposed constraint model. First, one should realize that it
is enough to instantiate just the action variables As because
when their values are known, then the values of remaining
variables, in particular the state variables, are set by means
of constraint propagation. Of course, we assume that the
values for state variables Vi

0 modeling the initial state were
set and similarly the state variables Vi

n in the final layer
were set according to the goal (the final state is just
partially specified so some state variables in the final layer
remain un-instantiated).
 We utilized a regression planning approach in the search
strategy meaning that we instantiate the action variables in
the decreasing order from An-1 to A0. This is called a fixed
variable ordering in constraint satisfaction. For each action
variable we assume only actions that contribute to
(sub)goal in the next state layer – these actions are called
relevant in (Ghallab et al., 2004). The actions (values) in
the action variable are explored in the order of appearance
in the plan – the action that appeared later in the plan is
tried first for instantiation.

Model Enhancements
It is rare that a direct constraint model is enough to solve
complex problems and frequently some extensions are
necessary. In (Barták and Toropila, 2009) we proposed
four improvements of the base model. In particular, we
suggested using lifting (called domain splitting in
constraint satisfaction) to decrease the branching factor,
dominance rules to break plan-permutation symmetries in
the problem, singleton consistency to prune more of the
search space by eliminating certain unreachable actions,
and, finally, nogoods recording to learn unsatisfied goals.

Lifting
The search strategy used for the base model resembles the
labeling technique in constraint satisfaction. At each step,
we select an action that contributes to the current goal
(regression/backward planning is used). As noted in
(Ghallab et al., 2004) this strategy may be overcommitted,
for example, when requiring a robot to be at certain
location by selecting the move action we are also deciding
from which location the robot will go. There might be
many such actions (depending on the number of locations)
so it seems more appropriate to postpone some particular
decision to later. This is called lifting as instead of
selecting a particular action we lift the decision by
assuming a set of “similar” actions reaching the same goal.
In terms of constraint satisfaction, this is realized by
splitting the domain of the action variable rather than
instantiating the variable.
 Let us now describe the process of lifting more formally.
Let PrecVars(a) be the state variables appearing in the
precondition of action a and EffVars(a) be the state

variables changed by action a (these variables appear in the
effects of a). We say that actions a and b have the same
scope if and only if PrecVars(a) = PrecVars(b) and
EffVars(a) = EffVars(b). Let the base search procedure
select action a to be assigned to variable As; in other words
we split the search space by resolving the disjunction
As = a ∨ As ≠ a. In the lifted version, we are resolving the
following disjunction:

As ∈ SameScope(a) ∨ As ∉ SameScope(a),
where SameScope(a) = { b | b has the same scope as a }.

Dominance Rules (a.k.a. Symmetry Breaking)
Recall, that we are looking for the sequential plans.
Assume that we have two actions a1 and a2 such that these
actions do not interfere, for example, a move action of
certain robot and load action of a different robot. If we
have a valid plan where a1 is right before a2 then the plan
where we swap both actions is also valid. This feature,
called plan-permutation symmetry (Long and Fox, 2003),
can be exploited during search in the following way.
 First, we need to define formally what it means that two
actions do not interfere. Recall, that our motivation is that
two actions a1 and a2 can be swapped without influencing
validity of the plan. Swapping of actions a1 and a2 can be
realized if for any state s the following condition holds:
γ(γ(s,a1),a2) = γ(γ(s,a2),a1), where γ(s,a) is a state obtained
by applying action a to state s. Such situation happens if
actions a1 and a2 are independent (Ghallab et al., 2004), but
a weaker allowance condition can be applied:

EffVars(a1) ∩ PrecVars(a2) = ∅,
Effects(a2) don’t clash with Preconditions(a1),
Effects(a1) don’t override Effects(a2).

We say that effects of action a clash with preconditions of
action b if action a assigns value val to some state variable
Vi such that the assignment Vi = val is inconsistent with the
preconditions of action b. Also, we say that effects of
action a do not override effects of action b if both actions a
and b set the same value for each state variable
V ∈ (EffVars(a) ∩ EffVars(b)).
 The allowance relation between a1 and a2 guarantees
that if a1 appears before a2 in some plan then we can swap
the actions without changing the resulting state. However,
the allowance relation is not symmetrical (in contrast to the
independence relation) and it does not guarantee a sound
swap of actions if a2 appears before a1.
 Now it is possible to include the following dominance
rule to the search procedure. We choose an arbitrary
ordering of actions such that action ai is before action ai+1
in the ordering (this ordering has nothing in common with
the ordering of actions in the plan). Assume that action ai
has been assigned to state variable As (the action at position
s). Then, when selecting the action for state variable As-1,
we only consider actions aj for which at least one of the
following conditions holds: either aj and ai violate the
allowance condition or j > i. This way, we prevent the
solver from exploring permutations of actions leading to
the same resulting state.

Singleton Consistency
So far, we discussed improvements of the search strategy.
Another way to improve the efficiency of constraint
solving is incorporating a stronger consistency technique.
Singleton arc consistency (SAC) would be a good
candidate because it is easy to implement on top of arc
consistency. However, it is computationally expensive to
make the problem SAC so we suggest applying SAC in a
restricted form.
 When a new layer is added to the constraint model we
check whether the newly assumed actions have a support
in the previous layer. Formally, let P be a constraint model
describing the problem of finding a plan of length n+1 and
a be an action that appears in the domain of An but not in
the domain of An-1 (a newly introduced action). For any
precondition Vi=v of a, if there is no action b such that Vi=v
is among its effects, and P|An=a, An-1=b is arc consistent,
then a can be removed from the domain of An. The reason
for filtering out action a is that there is no plan of length n
giving the preconditions of a (the n-th layer is the first
layer where action a appeared so the precondition cannot
be provided fully by actions before layer n-1).

Nogood Learning
The last (but not least) improvement we have incorporated
is the use of so-called nogoods. This well-known
technique, often mentioned in the connection with
dependency-directed backtracking or backjumping, helps
the planner to leverage from the failures it has encountered
during the search, and uses them to avoid the same failures
later, saving thus valuable time the search procedure would
have spent otherwise for exploring the same failure again.
In order to beware that case, we have to do a single thing:
memorize the reason of the failure – a nogood.
 As described above, the search starts with the goals to be
satisfied and continues backwards by selecting an action An
that satisfies some of the goals. Preconditions of the
selected action are then merged with unsatisfied goals in
order to create new goals for the next step of the search
(note that the next step of the search moves to the layer
n-1). Thus, encountering a failure in fact means that the set
of goals at a given layer is unsatisfiable (there is no other
action that we could try to apply in order to satisfy the
required goals) and that the next time we can avoid trying
to satisfy the same set of goals at that layer – a nogood is
recorded for future reference as a set of unsatisfiable goals
at certain layer. Formally, the goal is a set of acceptable
values for a given state variable:
 Goals ≈ V1∈Vals1 ∧ V2∈Vals2 ∧ ... ∧ Vk∈Valsk,
where Valsi represents the set of allowed values for
variable Vi.
 For each layer we record the sets of goals that are
proved to be unsatisfiable for that layer – a nogood. Next
time, when we reach the same layer with a different set of
goals G, we claim this set of goals to be unsatisfiable
(without search) if it is more demanding than some stored
nogood H. The set of goals G is more demanding than set

of goals H, if for each state variable Vi ∈ H also Vi ∈ G and
Valsi(G) ⊆ Valsi(H), where Valsi(X) denotes the set of
allowed values for variable Vi within the set of goals X.
Currently, we store only the “direct” nogoods without
trying to generalize the set of stored nogoods.

Dual Model
There are several problems of sequential planning that
decrease the overall efficiency of planners. One of them is
exploration of symmetrical plans that do not solve the
planning problem (Long and Fox, 2003). We addressed
(partially) this problem by introducing the symmetry
breaking constraints. Another problem is hidden in the
incremental extensions of the plan length as proposed by
Kautz and Selman (1992). Our experiments showed that
the sequential planner spends most of the time by proving
that plans of shorter length does not exist and as soon as
the planner reaches the particular layer where the goal can
be satisfied, finding the plan is frequently fast. Hence, it
would be a big advantage if the planner can easily (in a fast
way) detect that the plan of a given length does not exist
and move to the next layer.
 The particular problem that we are trying to resolve is as
follows. Assume that there are k different state variables in
the goal and the value of each of these state variables must
be set by a different action. Clearly, it means that we need
the plan with at least k actions. Unfortunately, the
sequential planner cannot detect such a situation and it
explores by search many plans of shorter lengths.
However, if we know that k different actions are necessary
and there are less than k available slots (layers), we can
deduce immediately that no plan exists.
 The resolve the above problems we suggest exploiting
partial-order planning also known as plan-space planning
(Ghallab et al., 2004). This type of planning focuses purely
on causal relations and does not explicitly assume states.
This is not appropriate for the planning problems where,
for example, the values of some state variables are derived
from the values of other state variables. Hence, we tried to
include some of the principles of partial-order planning in
the sequential planner where we still have the explicit
representation of world states.
 We suggest the following extension of the constraint
model that we call a dual model. The motivation goes from
partial-order planning where one of the tasks is closing
open goals, that is, finding an action that provides the value
of the state variable in the goal or in the precondition of
another action. For each state variable Vi in the goal
condition we introduce a support variable Si describing
which action is setting the requested value. Assume that
the requested value of the state variable is b then the
domain of the support variable is a set of actions (supports)
that have Vi ← b among their effects. If there are more
possible values for the state variable (this may happen due
to lifting) then we use a binary constraint between the
support variable and the state variable that ensures that
actions in the domain of the support variable provide the

values of the state variable and vice versa. Moreover, we
also introduce layer variable Li identifying the layer where
the support action is located. Assume that the goal appears
at layer n, then the initial domain of the layer variable is
{0,…,n-1} (recall that the action layers are numbered from
0). Though it is possible to introduce the above support and
layer variables statically based on the maximal number of
possible sub-goals during planning, we have found it to be
more efficient to introduce these variables dynamically on-
demand. It means that at the beginning we introduce these
variables just for the state variables in the planning goal
and when we move during search to the previous layer we
introduce these variables for the preconditions of the
selected action (and remove the variables upon
backtracking). This dual model mimics the behavior of
partial-order planners where the planner is finding a
supporting action for the open goal. Note also that similar
support variables were used in GP-CSP planner (Do and
Kambhampati, 2000) with the difference that the support
variables in GP-CSP are defined for each state variable and
the support action is assumed to be exactly in the previous
layer (hence no-op actions are used in case the action
setting the value of the state variables is not in the layer
directly preceding the sub-goal). In our model, the support
actions are introduced just for the open goals
(preconditions) and the support action can be in any
previous layer (defined in the layer variable).
 Clearly the dual model must be connected via so called
channelling constraints to the original model to ensure that
the support action appears exactly in the layer specified by
the layer variable. There is already a channelling constraint
between the support variable and the state variable, but we
can do more by connecting the support variables with the
action variables (slots). This is where we use the layer
variables. Assume that we are at layer k so we are still

looking for actions in action variables A0,..., Ak-1 (recall that
we are doing backward planning). For each support
variable S and its corresponding layer variable L we post
the constraint element(L,[A0,..., Ak-1],S). The semantics of
element(X,List,Y) is as follows: Y is the X-th element in
List (the first element has index 0). This constraint
connects support actions with actions that can be used in
the plan in particular positions (reachable actions). It helps
with pruning actions that cannot be used as a support for a
particular goal because they are not reachable.
 Let us recall the original motivation for introducing the
dual model – we would like to detect situations where k
different support actions are necessary but less than k slots
are available. This can be implemented by using
constraints ensuring that there are enough slots (layers) for
the support activities. Assume that we are finding supports
for m goals in the k-th layer, that is, there are k available
slots for actions. If k < m then it may happen that it is not
possible to place all supports to the slots unless the
supports are shared (one action supports several goals). In
such a situation, we post a constraint nvalue (Bessiere et
al., 2005) over the set of support variables in this layer and
some integer variable N whose domain is {1,…,k}. The
constraint nvalue(S,N) ensures that there are exactly N
different values in the set S. In our setting, the constraint
ensures that there are at most k different support actions for
a given layer. The combination of nvalue and element
constraints may deduce that actions cannot be at given
position in the plan because otherwise there are not enough
slots for other supports.
 In summary, the dual constraint model is introduced
dynamically during the search. Each time we introduce a
new goal (this is the precondition of just selected action in
the plan) we generate the support and layer variables and
post the corresponding constraints that use these variables.

1

10

100

1000

10000

100000

1000000

10000000

base

enhanced

dual

Fig. 3. Comparison of runtimes (logarithmic scale) for selected problems from IPC 1-5.

Experimental Comparison
We implemented the base model, its enhancements, and
the model with redundant constraints (we call it dual) using
clpfd library of SICStus Prolog 4.0.5 and we compared all
three models using the selected planning problems from
past International Planning Competitions (STRIPS
versions). Namely, we used Gripper, Logistics, Mystery
(IPC1), Blocks, Elevator (IPC2), Depots, Zenotravel,
DriverLog (IPC3), Airport, PSR (IPC4), and Pipesworld,
Rovers, TPP (IPC5). The experiments ran on Intel Xeon
CPU E5335 2.0 GHz processor with 8GB RAM under
Ubuntu Linux 8.04.2 (Hardy Heron). The reported runtime
includes the time to generate the constraint model (prepare
the tables) and the time to find the shortest (optimal) plan.
 Figure 3 shows the comparison of runtimes (in
milliseconds; using 30 min. time limit) to find the shortest
plan for all models. We sorted the planning problems
increasingly using the runtime of the base model.
 The results clearly demonstrate that the enhancements of
the base model improved efficiency though for some
simpler problems the runtime is worse due to the
computational complexity of singleton consistency that
outweighs the positive effect of search space reduction in
these problems. The influence of particular enhancement to
efficiency is studied in more details in (Barták and
Toropila, 2009). Adding the redundant constraints in the
style of partial-order planning further improved efficiency
for the harder problems and we can solve more problems
than with the original constraint model. Moreover, the
overhead of propagating through the redundant constraints
is not significant though for some simpler problems it
makes the runtime worse than for the original model.

Conclusions
The paper studies the constraint models for traditional
sequential planning. We presented the base model from
(Barták and Toropila, 2008) that already significantly
outperformed a sequential version of CSP-PLAN. This
model was enhanced by some traditional techniques used
in planning and constraint satisfaction (Barták and
Toropila, 2009). A completely new contribution of this
paper is the introduction of the redundant constraints in the
style of partial-order planning. This dual model further
improves the time efficiency. It is important to mention
that all constraint models are generated fully automatically
from the declarative description of the planning problem
(we have a semi-automated translation from PDDL to this
Prolog-like problem description). Moreover, thanks to the
constraint satisfaction technology, the models are ready to
go beyond logical reasoning and various numerical
preconditions and effects can be naturally integrated.
 As a future work, we plan to improve the filtering power
of the channeling constraints as we believe that even
stronger integration and hence pruning may be achieved.
We will also focus on improving the search strategy; in

particular, it might be interesting to do search (at least
partially) in the dual part of the model.

Acknowledgments
The research is supported by the Czech Science
Foundation under the projects 201/07/0205 and
201/09/H057.

References
Bäckström, Ch., Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4), 625-655.
Barták, R., Toropila D. 2008. Reformulating Constraint
Models for Classical Planning. In: 21st International
Florida AI Research Society Conference (FLAIRS 2008),
AAAI Press, 525-530
Barták, R., Toropila D. 2009. Enhancing Constraint Models
for Planning Problems. To appear in ISMIS 2009 (a
preliminary version available from PlanSIG 2008).
Bessiere, Ch., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh,
T. 2005. Filtering algorithms for the NValue constraint. In
Proceedings CPAIOR’05, LNCS 3524, Springer Verlag.
Blum, A. and Furst, M. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90, 281-300.
Dechter, R. 2003. Constraint Processing. Morgan
Kaufmann.
Do, M.B. and Kambhampati, S. 2000. Solving planning-
graph by compiling it into CSP. Proceedings of the Fifth
International Conference on Artificial Planning and
Scheduling (AIPS-2000), AAAI Press, 82-91.
Ghallab, M., Nau, D., Traverso P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26, 191-246.
Kautz, H. and Selman, B. 1992. Planning as satisfiability.
Proceedings of ECAI, 359-363.
Long, D., Fox. M. 2003. Plan Permutation Symmetries as a
Source of Planner Inefficiency. In: 22nd Workshop of UK
Planning and Scheduling Special Interest Group (PlanSIG-
22)
Lopez, A. and Bacchus, F. 2003. Generalizing GraphPlan
by Formulating Planning as a CSP. Proceedings of IJCAI,
954-960.
Reiter, R. 2001. Knowledge in Action: Logical Foundation
for Specifying and Implementing Dynamic Systems. MIT
Press.
van Beek, P. and Chen, X. 1999. CPlan: A Constraint
Programming Approach to Planning. Proceedings of AAAI-
99, 585-590.
Vidal, V. and Geffner, H. 2004. Branching and Pruning:
An Optimal Temporal POCL Planner based on Constraint
Programming. Proceedings of AAAI-04, 570-577.

