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Abstract 
Classical planning deals with finding a (shortest) sequence 
of actions transferring the world from its initial state to a 
state satisfying the goal condition. Traditional planning 
systems explore either paths in the state space (state-space 
planning) or partial plans (plan-space planning). In this 
paper we show how the ideas from plan-space (partial 
order) planning can be integrated into state-space 
(sequential) planning by combining constraint models 
describing both types of planning. In particular, we extend 
our existing constraint model for sequential planning by 
constraints describing satisfaction of open goals. We 
demonstrate experimentally that this extension pays-off 
especially when the planning problems become harder. 
 

 Introduction   
Constraint satisfaction is a traditional technology for 
solving scheduling problems, but it is less frequently 
applied when solving planning problems completely. 
CPlan (van Beek and Chen, 1999) was one of the first 
attempts to formulate a planning problem as a constraint 
satisfaction problem (CSP). However, this approach was 
based on manually formulating the constraint model. Do 
and Kambhampati (2000) showed that constraint 
satisfaction techniques can be applied to plan extraction 
from the planning graph (Blum and Furst, 1997). Their 
system GP-CSP automatically encoded the planning graph 
as a CSP. Lopez and Bacchus (2003) suggested a more 
efficient constraint formulation of the planning graph – 
CSP-PLAN – that used Boolean variables and successor-
state constraints (Reiter, 2001). Barták and Toropila (2008) 
reformulated these models for sequential planning with 
multi-valued state variables and suggested using tabular 
(combinatorial, extensionally defined) constraints instead 
of logical constraints in the form of disjunction used in GP-
CSP and CSP-PLAN. The efficiency of constraint models 
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can be further improved by including techniques such as 
symmetry breaking, singleton consistency, lifting, and 
nogoods learning (Barták and Toropila, 2009). 
 The above models assume a sequential view of planning 
where the system produces plans in the form of a sequence 
of actions (GP-CSP and CSP-PLAN use parallel plans 
consisting of a sequence of sets of actions, where the 
actions in the set can be ordered in any way). Opposite to 
sequential planning, partial-order (plan-space) planning 
generates plans as a partially ordered structure of actions 
so the sequential plan can be obtained by linear ordering of 
the actions respecting the partial order. This has the 
advantage that artificial plan-permutation symmetries that 
appear during sequential planning are not explored during 
partial-order planning. CPT (Vidal and Geffner 2004) is 
probably the most successful (in terms of International 
Planning Competition) constraint-based planner that does 
partial-order planning. 
 In this paper we suggest to extend the sequential 
constraint-based planner from (Barták and Toropila, 2009) 
by some ideas originated from partial-order planning (and 
in some sense from GP-CSP). Namely, we propose adding 
redundant variables and constraints that describe actions 
giving particular goals and the position of these actions in 
the sequential plan. This redundant part of the model 
increases the propagation power of constraints so more 
inconsistencies are filtered out from the variables’ domains 
and hence the search space to be explored is smaller. 
Despite the overhead of propagating through the redundant 
constraints, the overall efficiency increases especially for 
more complex planning problems. 
 The paper is organized as follows. We will first 
introduce the necessary concepts both from planning and 
from constraint satisfaction. Then we will describe the base 
constraint model from (Barták and Toropila, 2008) and its 
extensions from (Barták and Toropila, 2009). After that, 
we will introduce the variables and constraints describing 
the redundant part of the model together with the 
channelling constraints connecting the redundant part with 
the original model. Finally, we compare all these models 
experimentally using several problems from the 
International Planning Competitions. 



Classical AI Planning 
Classical AI planning deals with finding a sequence of 
actions that transfer the world from some initial state to a 
desired state (Ghallab et al., 2004). The state space is large 
but finite. It is also fully observable (we know precisely the 
state of the world), deterministic (the state after performing 
the action is known), and static (only the entity for which 
we plan changes the world). Moreover, we assume the 
actions to be instantaneous so we only deal with the correct 
sequencing of actions respecting the causal relations (an 
action that achieves a precondition of another action must 
be ordered before that action and no action destroying the 
precondition can be ordered in-between). 
 We use the SAS+ formalism to formalize the planning 
problem. This formalism is based on so called multi-valued 
state variables, as mentioned in (Bäckström and Nebel 
1995) or (Helmert 2006). For each feature of the world, 
there is a variable describing this feature, for example 
rloc(robot,S) describes the position of robot at state S. 
World state is specified by values of all state variables at 
the given state, for example rloc(robot, S) = loc1. Hence 
the evolution of the world can be described as a set of 
state-variable functions where each function specifies the 
evolution of values of certain state variable. Actions are 
then the entities changing the values of the state variables. 
Each action consists of preconditions specifying the 
required values of certain state variables and effects of 
setting the values of certain state variables. The left part of 
Figure 2 gives an example of how the actions are 
represented when using the multi-valued state variables 
(note that the state is not explicitly present in the 
identification of the variable). We implicitly assume the 
frame axiom, that is, other state variables than those 
mentioned among the effects of the action are not changed 
by applying the action. 
 The set of state variables together with the set of actions 
is called a planning domain. We assume both sets to be 
finite. The initial state is specified by values of all state 
variables (it is known completely); the goal is specified by 
values of certain state variables (any state where the state 
variables have these required values is a goal state). The 
classical planning problem is defined by the planning 
domain, the initial state and the goal. The planning task is 
to find a shortest sequence of actions called a plan that 
transfers the initial state into one of the goal states. 

Constraint Satisfaction 
Many combinatorial optimization problems including the 
planning problems can be encoded and solved as constraint 
satisfaction problems (Dechter, 2003). A constraint 
satisfaction problem (CSP) P is a triple (X, D, C), where X 
is a finite set of decision variables, for each xi ∈ X, Di ∈ D 
is a finite set of possible values for the variable xi (the 
domain), and C is a finite set of constraints. A constraint is 
a relation over a subset of variables that restricts possible 
combinations of values to be assigned to the variables. A 
solution to a CSP is a complete assignment of values to the 

variables such that the values are taken from respective 
domains and all the constraints are satisfied. 
 A typical constraint satisfaction approach is a 
combination of inference and depth-first search. The most 
frequently used inference technique for CSPs is called arc 
consistency. We say that a constraint is (generalized) arc 
consistent if for any value in the domain of any constrained 
variable, there exist values in the domains of the remaining 
constrained variables in such a way that the value tuple 
satisfies the constraint. The CSP is arc consistent (AC) if 
all the constraints are arc consistent and no domain is 
empty. A stronger consistency technique derived from AC 
is singleton arc consistency. We say that a value a in the 
domain of some variable xi is singleton arc consistent if the 
problem P|xi=a can be made arc consistent, where P|xi=a is 
a CSP derived from P by reducing the domain of variable 
xi to {a}. The CSP is singleton arc consistent (SAC) if all 
values in variables’ domains are singleton arc consistent. 
 As consistency techniques usually do not remove all 
inconsistencies they need to be combined with search that 
resolves the remaining alternatives. The search procedure 
splits the problem into disjoint sub-problems that are 
solved separately. Typically, the sub-problems differ in the 
value assigned to a selected variable; however it is possible 
to use different branching schemes, for example splitting 
the domain of the variable into disjoint sets. This leads to a 
smaller branching factor during search. Note that the 
consistency technique is typically applied after each search 
decision to see the effect of the decision – this is a form of 
look ahead. Either it fails to make the problem consistent, 
then the search backtracks (the whole sub-tree is pruned), 
or it prunes parts of the search space. Because the 
consistency procedure is called in each node of the search 
tree, it is necessary to find a balance between the strength 
of the consistency technique (determined by the number of 
removed inconsistent values) and its efficiency. AC is the 
most frequently used consistency level maintained during 
search, while SAC is computationally too expensive to be 
applied in every node of the search tree. Nevertheless, 
SAC can be applied before search to remove some global 
inconsistencies. 
 The efficiency of constraint solving is highly influenced 
by the choice of decision variables and constraints – a so 
called constraint modeling. For example, arc consistency 
cannot infer a lot for Boolean variables until some variable 
is instantiated (filtering out a value from the binary domain 
also corresponds to variable instantiation). Similarly, most 
constraint solvers do not achieve full arc consistency for 
the disjunctive constraints unless a more computationally 
expensive constructive disjunction is used. The constraint 
models can be enhanced by several ways. For example 
adding symmetry breaking constraints removes the 
symmetrical solutions from the search space and adding 
redundant constraints (the constraints whose satisfaction is 
guaranteed by the existing constraints) strengthens domain 
filtering and hence decreases the search space. We shall 
show later how these techniques can improve the constraint 
models for planning problems. 



Base Constraint Model for Planning 
One of the difficulties of planning is that the length of the 
plan, that is, the sequence of used actions, is unknown in 
advance so some dynamic technique which can produce 
plans of “unrestricted” length is required. Usually, the 
shortest plan is sought, which is a form of optimal 
planning. As it has been shown by Kautz and Selman 
(1992), the problem of shortest-plan planning can be 
translated to a series of SAT problems, where each SAT 
instance encodes the problem of finding a plan of a given 
length. First, we start with finding a plan of length 1 and if 
it does not exist then we continue with a plan of length 2 
etc. The whole process is repeated until the plan is found or 
the computation runs out of time or another termination 
condition applies. The same idea can be applied to 
modeling the problem as a series of CSPs. 
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Fig. 1 Base decision variables and constraints. 

 The base constraint model is a version of CSP-PLAN 
(Lopez and Bacchus, 2003) reformulated by Barták and 
Toropila (2008) to sequential planning with multi-valued 
state variables. The world state is described using v multi-
valued variables, instantiation of which exactly specifies a 
particular state. A CSP denoting the problem of finding a 
plan of length n consists of n+1 sets of the above-
mentioned multi-valued variables, having 1st set denoting 
the initial state and kth set denoting the state after 
performing k-1 actions, for k ∈ 〈2, n+1〉, and of n variables 
indicating the selected actions. Hence, we have v(n+1) 
state variables Vi

s and n action variables Aj, where i ranges 
from 0 to v-1, j ranges from 0 to n-1, and s ranges from 0 
to n (Figure 1).  
 Constraints connect two adjacent sets of state variables 
through the corresponding action variable between them. 
In other words, the constraints describe how the state 
variables change between the states if a particular action is 
selected. There are two types of constraints in the model: 
precondition constraints and successor state constraints. 
For a given layer s the precondition constraint connects 
state variable layer Vi

s, i ∈ 〈0, v-1〉 with action variable As: 

 As = act → Pre(act)s , ∀act ∈ Dom(As),  (1) 
The successor state constraints merge the effect 
constraints and the frame axioms together as follows: for 
each possible assignment of state variable Vi

s = val, 
val ∈ Dom(Vi

s), we have a constraint between it and the 
same state variable assignment Vi

s-1 = val in the previous 
layer. The constraint says that state variable Vi

s takes value 
val if and only if some action assigned this value to 
variable Vi

s, or equation Vi
s-1 = val held in the previous 

layer and no action changed the assignment of variable Vi:  
Vi

s = val ↔ As-1 ∈ C(i,val) ∨ (Vi
s-1 = val ∧ As-1 ∈ N(i)), (2) 

where C(i,val) denotes the set of actions containing 
Vi = val among their effects, and N(i) denotes the set of 
actions that do not affect Vi. 
 As already noted, disjunctive constraints do not 
propagate well and hence all precondition constraints for a 
given layer are encoded as a single tabular constraint 
(sometimes also called a combinatorial constraint) where 
the set of admissible tuples is given in a table-like 
structure. Similarly, all successor state constraints for a 
given state variable (and a layer) are encoded as a single 
tabular constraint (Figure 2, right). 

Base Search Strategy 
Modeling is an important step, but as already noted, it is 
also necessary to specify the search strategy for 
instantiating the variables. One can use generic labeling 

Domain 
DWR domain with two locations (loc1,loc2), a 
robot capable of loading and unloading 
containers by itself (r), and one container (c) 

 
State Variables 

rloc ∈ {loc1,loc2} ;; robot’s location 
cpos ∈ {loc1,loc2,r} ;; container’s position  

 
Actions 

1 : move(r, loc1, loc2) 
;; robot r at location loc1 moves to location loc2 
Precond: rloc = loc1 
Effects: rloc ← loc2 

2 : move(r, loc2, loc1) 
;; robot r at location loc2 moves to location loc1 
Precond: rloc = loc2 
Effects: rloc ← loc1 

3 : load(r, c, loc1) 
;; robot r loads container c at location loc1 
Precond: rloc = loc1, cpos = loc1 
Effects: cpos ← r 

4 : load(r, c, loc2) 
;; robot r loads container c at location loc2 
Precond: rloc = loc2, cpos = loc2 
Effects: cpos ← r 

5 : unload(r, c, loc1) 
;; robot r unloads container c at location loc1 
Precond: rloc = loc1, cpos = r 
Effects: cpos ← loc1 

6 : unload(r, c, loc2) 
;; robot r unloads container c at location loc2 
Precond: rloc = loc2, cpos = r 
Effects: cpos ← loc2 

Tables for successor state constraint 

As rlocs rlocs+1 As cposs cposs+1 
2 {loc1,loc2} loc1 5 {loc1,loc2,r} loc1 
1 {loc1,loc2} loc2 6 {loc1,loc2,r} loc2 
{3,4,5,6} loc1 loc1 {3,4} {loc1,loc2,r} r 
{3,4,5,6} loc2 loc2 {1,2} loc1 loc1 

 {1,2} loc2 loc2 
 {1.2} r r 

Table for precondition constraint

As rlocs cposs 
1 loc1 {loc1,loc2,r} 
2 loc2 {loc1,loc2,r} 
3 loc1 loc1 
4 loc2 loc2 
5 loc1 r 
6 loc2 r 

Fig. 2.  Example of constraint model using combinatorial constraints; the domain is taken from (Ghallab et al., 2004). 



techniques, for example based on dom heuristics (select the 
variable with the smallest domain first), but our first 
experiments showed that this is not efficient for the 
proposed constraint model. First, one should realize that it 
is enough to instantiate just the action variables As because 
when their values are known, then the values of remaining 
variables, in particular the state variables, are set by means 
of constraint propagation. Of course, we assume that the 
values for state variables Vi

0 modeling the initial state were 
set and similarly the state variables Vi

n in the final layer 
were set according to the goal (the final state is just 
partially specified so some state variables in the final layer 
remain un-instantiated). 
 We utilized a regression planning approach in the search 
strategy meaning that we instantiate the action variables in 
the decreasing order from An-1 to A0. This is called a fixed 
variable ordering in constraint satisfaction. For each action 
variable we assume only actions that contribute to 
(sub)goal in the next state layer – these actions are called 
relevant in (Ghallab et al., 2004). The actions (values) in 
the action variable are explored in the order of appearance 
in the plan – the action that appeared later in the plan is 
tried first for instantiation. 

Model Enhancements 
It is rare that a direct constraint model is enough to solve 
complex problems and frequently some extensions are 
necessary. In (Barták and Toropila, 2009) we proposed 
four improvements of the base model. In particular, we 
suggested using lifting (called domain splitting in 
constraint satisfaction) to decrease the branching factor, 
dominance rules to break plan-permutation symmetries in 
the problem, singleton consistency to prune more of the 
search space by eliminating certain unreachable actions, 
and, finally, nogoods recording to learn unsatisfied goals. 

Lifting 
The search strategy used for the base model resembles the 
labeling technique in constraint satisfaction. At each step, 
we select an action that contributes to the current goal 
(regression/backward planning is used). As noted in 
(Ghallab et al., 2004) this strategy may be overcommitted, 
for example, when requiring a robot to be at certain 
location by selecting the move action we are also deciding 
from which location the robot will go. There might be 
many such actions (depending on the number of locations) 
so it seems more appropriate to postpone some particular 
decision to later. This is called lifting as instead of 
selecting a particular action we lift the decision by 
assuming a set of “similar” actions reaching the same goal. 
In terms of constraint satisfaction, this is realized by 
splitting the domain of the action variable rather than 
instantiating the variable. 
 Let us now describe the process of lifting more formally. 
Let PrecVars(a) be the state variables appearing in the 
precondition of action a and EffVars(a) be the state 

variables changed by action a (these variables appear in the 
effects of a). We say that actions a and b have the same 
scope if and only if PrecVars(a) = PrecVars(b) and 
EffVars(a) = EffVars(b). Let the base search procedure 
select action a to be assigned to variable As; in other words 
we split the search space by resolving the disjunction 
As = a ∨ As ≠ a. In the lifted version, we are resolving the 
following disjunction: 

As ∈ SameScope(a) ∨ As ∉ SameScope(a), 
where SameScope(a) = { b | b has the same scope as a }. 

Dominance Rules (a.k.a. Symmetry Breaking) 
Recall, that we are looking for the sequential plans. 
Assume that we have two actions a1 and a2 such that these 
actions do not interfere, for example, a move action of 
certain robot and load action of a different robot. If we 
have a valid plan where a1 is right before a2 then the plan 
where we swap both actions is also valid. This feature, 
called plan-permutation symmetry (Long and Fox, 2003), 
can be exploited during search in the following way. 
 First, we need to define formally what it means that two 
actions do not interfere. Recall, that our motivation is that 
two actions a1 and a2 can be swapped without influencing 
validity of the plan. Swapping of actions a1 and a2 can be 
realized if for any state s the following condition holds: 
γ(γ(s,a1),a2) = γ(γ(s,a2),a1), where γ(s,a) is a state obtained 
by applying action a to state s. Such situation happens if 
actions a1 and a2 are independent (Ghallab et al., 2004), but 
a weaker allowance condition can be applied: 

EffVars(a1) ∩ PrecVars(a2) = ∅, 
Effects(a2) don’t clash with Preconditions(a1), 
Effects(a1) don’t override Effects(a2). 

We say that effects of action a clash with preconditions of 
action b if action a assigns value val to some state variable 
Vi such that the assignment Vi = val is inconsistent with the 
preconditions of action b. Also, we say that effects of 
action a do not override effects of action b if both actions a 
and b set the same value for each state variable 
V ∈ (EffVars(a) ∩ EffVars(b)). 
 The allowance relation between a1 and a2 guarantees 
that if a1 appears before a2 in some plan then we can swap 
the actions without changing the resulting state. However, 
the allowance relation is not symmetrical (in contrast to the 
independence relation) and it does not guarantee a sound 
swap of actions if a2 appears before a1. 
 Now it is possible to include the following dominance 
rule to the search procedure. We choose an arbitrary 
ordering of actions such that action ai is before action ai+1 
in the ordering (this ordering has nothing in common with 
the ordering of actions in the plan). Assume that action ai 
has been assigned to state variable As (the action at position 
s). Then, when selecting the action for state variable As-1, 
we only consider actions aj for which at least one of the 
following conditions holds: either aj and ai violate the 
allowance condition or j > i. This way, we prevent the 
solver from exploring permutations of actions leading to 
the same resulting state. 



Singleton Consistency 
So far, we discussed improvements of the search strategy. 
Another way to improve the efficiency of constraint 
solving is incorporating a stronger consistency technique. 
Singleton arc consistency (SAC) would be a good 
candidate because it is easy to implement on top of arc 
consistency. However, it is computationally expensive to 
make the problem SAC so we suggest applying SAC in a 
restricted form. 
 When a new layer is added to the constraint model we 
check whether the newly assumed actions have a support 
in the previous layer. Formally, let P be a constraint model 
describing the problem of finding a plan of length n+1 and 
a be an action that appears in the domain of An but not in 
the domain of An-1 (a newly introduced action). For any 
precondition Vi=v of a, if there is no action b such that Vi=v 
is among its effects, and P|An=a, An-1=b is arc consistent, 
then a can be removed from the domain of An. The reason 
for filtering out action a is that there is no plan of length n 
giving the preconditions of a (the n-th layer is the first 
layer where action a appeared so the precondition cannot 
be provided fully by actions before layer n-1). 

Nogood Learning 
The last (but not least) improvement we have incorporated 
is the use of so-called nogoods. This well-known 
technique, often mentioned in the connection with 
dependency-directed backtracking or backjumping, helps 
the planner to leverage from the failures it has encountered 
during the search, and uses them to avoid the same failures 
later, saving thus valuable time the search procedure would 
have spent otherwise for exploring the same failure again. 
In order to beware that case, we have to do a single thing: 
memorize the reason of the failure – a nogood. 
 As described above, the search starts with the goals to be 
satisfied and continues backwards by selecting an action An 
that satisfies some of the goals. Preconditions of the 
selected action are then merged with unsatisfied goals in 
order to create new goals for the next step of the search 
(note that the next step of the search moves to the layer 
n-1). Thus, encountering a failure in fact means that the set 
of goals at a given layer is unsatisfiable (there is no other 
action that we could try to apply in order to satisfy the 
required goals) and that the next time we can avoid trying 
to satisfy the same set of goals at that layer – a nogood is 
recorded for future reference as a set of unsatisfiable goals 
at certain layer. Formally, the goal is a set of acceptable 
values for a given state variable: 
 Goals ≈ V1∈Vals1 ∧ V2∈Vals2 ∧ ... ∧ Vk∈Valsk, 
where Valsi represents the set of allowed values for 
variable Vi. 
 For each layer we record the sets of goals that are 
proved to be unsatisfiable for that layer – a nogood. Next 
time, when we reach the same layer with a different set of 
goals G, we claim this set of goals to be unsatisfiable 
(without search) if it is more demanding than some stored 
nogood H. The set of goals G is more demanding than set 

of goals H, if for each state variable Vi ∈ H also Vi ∈ G and 
Valsi(G) ⊆ Valsi(H), where Valsi(X) denotes the set of 
allowed values for variable Vi within the set of goals X. 
Currently, we store only the “direct” nogoods without 
trying to generalize the set of stored nogoods. 

Dual Model 
There are several problems of sequential planning that 
decrease the overall efficiency of planners. One of them is 
exploration of symmetrical plans that do not solve the 
planning problem (Long and Fox, 2003). We addressed 
(partially) this problem by introducing the symmetry 
breaking constraints. Another problem is hidden in the 
incremental extensions of the plan length as proposed by 
Kautz and Selman (1992). Our experiments showed that 
the sequential planner spends most of the time by proving 
that plans of shorter length does not exist and as soon as 
the planner reaches the particular layer where the goal can 
be satisfied, finding the plan is frequently fast. Hence, it 
would be a big advantage if the planner can easily (in a fast 
way) detect that the plan of a given length does not exist 
and move to the next layer. 
 The particular problem that we are trying to resolve is as 
follows. Assume that there are k different state variables in 
the goal and the value of each of these state variables must 
be set by a different action. Clearly, it means that we need 
the plan with at least k actions. Unfortunately, the 
sequential planner cannot detect such a situation and it 
explores by search many plans of shorter lengths. 
However, if we know that k different actions are necessary 
and there are less than k available slots (layers), we can 
deduce immediately that no plan exists. 
 The resolve the above problems we suggest exploiting 
partial-order planning also known as plan-space planning 
(Ghallab et al., 2004). This type of planning focuses purely 
on causal relations and does not explicitly assume states. 
This is not appropriate for the planning problems where, 
for example, the values of some state variables are derived 
from the values of other state variables. Hence, we tried to 
include some of the principles of partial-order planning in 
the sequential planner where we still have the explicit 
representation of world states. 
 We suggest the following extension of the constraint 
model that we call a dual model. The motivation goes from 
partial-order planning where one of the tasks is closing 
open goals, that is, finding an action that provides the value 
of the state variable in the goal or in the precondition of 
another action. For each state variable Vi in the goal 
condition we introduce a support variable Si describing 
which action is setting the requested value. Assume that 
the requested value of the state variable is b then the 
domain of the support variable is a set of actions (supports) 
that have Vi ← b among their effects. If there are more 
possible values for the state variable (this may happen due 
to lifting) then we use a binary constraint between the 
support variable and the state variable that ensures that 
actions in the domain of the support variable provide the 



values of the state variable and vice versa. Moreover, we 
also introduce layer variable Li identifying the layer where 
the support action is located. Assume that the goal appears 
at layer n, then the initial domain of the layer variable is 
{0,…,n-1} (recall that the action layers are numbered from 
0). Though it is possible to introduce the above support and 
layer variables statically based on the maximal number of 
possible sub-goals during planning, we have found it to be 
more efficient to introduce these variables dynamically on-
demand. It means that at the beginning we introduce these 
variables just for the state variables in the planning goal 
and when we move during search to the previous layer we 
introduce these variables for the preconditions of the 
selected action (and remove the variables upon 
backtracking). This dual model mimics the behavior of 
partial-order planners where the planner is finding a 
supporting action for the open goal. Note also that similar 
support variables were used in GP-CSP planner (Do and 
Kambhampati, 2000) with the difference that the support 
variables in GP-CSP are defined for each state variable and 
the support action is assumed to be exactly in the previous 
layer (hence no-op actions are used in case the action 
setting the value of the state variables is not in the layer 
directly preceding the sub-goal). In our model, the support 
actions are introduced just for the open goals 
(preconditions) and the support action can be in any 
previous layer (defined in the layer variable). 
 Clearly the dual model must be connected via so called 
channelling constraints to the original model to ensure that 
the support action appears exactly in the layer specified by 
the layer variable. There is already a channelling constraint 
between the support variable and the state variable, but we 
can do more by connecting the support variables with the 
action variables (slots). This is where we use the layer 
variables. Assume that we are at layer k so we are still 

looking for actions in action variables A0,..., Ak-1 (recall that 
we are doing backward planning). For each support 
variable S and its corresponding layer variable L we post 
the constraint element(L,[A0,..., Ak-1],S). The semantics of 
element(X,List,Y) is as follows: Y is the X-th element in 
List (the first element has index 0). This constraint 
connects support actions with actions that can be used in 
the plan in particular positions (reachable actions). It helps 
with pruning actions that cannot be used as a support for a 
particular goal because they are not reachable. 
 Let us recall the original motivation for introducing the 
dual model – we would like to detect situations where k 
different support actions are necessary but less than k slots 
are available. This can be implemented by using 
constraints ensuring that there are enough slots (layers) for 
the support activities. Assume that we are finding supports 
for m goals in the k-th layer, that is, there are k available 
slots for actions. If k < m then it may happen that it is not 
possible to place all supports to the slots unless the 
supports are shared (one action supports several goals). In 
such a situation, we post a constraint nvalue (Bessiere et 
al., 2005) over the set of support variables in this layer and 
some integer variable N whose domain is {1,…,k}. The 
constraint nvalue(S,N) ensures that there are exactly N 
different values in the set S. In our setting, the constraint 
ensures that there are at most k different support actions for 
a given layer. The combination of nvalue and element 
constraints may deduce that actions cannot be at given 
position in the plan because otherwise there are not enough 
slots for other supports. 
 In summary, the dual constraint model is introduced 
dynamically during the search. Each time we introduce a 
new goal (this is the precondition of just selected action in 
the plan) we generate the support and layer variables and 
post the corresponding constraints that use these variables. 
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Fig. 3. Comparison of runtimes (logarithmic scale) for selected problems from IPC 1-5. 



Experimental Comparison 
We implemented the base model, its enhancements, and 
the model with redundant constraints (we call it dual) using 
clpfd library of SICStus Prolog 4.0.5 and we compared all 
three models using the selected planning problems from 
past International Planning Competitions (STRIPS 
versions). Namely, we used Gripper, Logistics, Mystery 
(IPC1), Blocks, Elevator (IPC2), Depots, Zenotravel, 
DriverLog (IPC3), Airport, PSR (IPC4), and Pipesworld, 
Rovers, TPP (IPC5). The experiments ran on Intel Xeon 
CPU E5335 2.0 GHz processor with 8GB RAM under 
Ubuntu Linux 8.04.2 (Hardy Heron). The reported runtime 
includes the time to generate the constraint model (prepare 
the tables) and the time to find the shortest (optimal) plan. 
 Figure 3 shows the comparison of runtimes (in 
milliseconds; using 30 min. time limit) to find the shortest 
plan for all models. We sorted the planning problems 
increasingly using the runtime of the base model. 
 The results clearly demonstrate that the enhancements of 
the base model improved efficiency though for some 
simpler problems the runtime is worse due to the 
computational complexity of singleton consistency that 
outweighs the positive effect of search space reduction in 
these problems. The influence of particular enhancement to 
efficiency is studied in more details in (Barták and 
Toropila, 2009). Adding the redundant constraints in the 
style of partial-order planning further improved efficiency 
for the harder problems and we can solve more problems 
than with the original constraint model. Moreover, the 
overhead of propagating through the redundant constraints 
is not significant though for some simpler problems it 
makes the runtime worse than for the original model. 

Conclusions 
The paper studies the constraint models for traditional 
sequential planning. We presented the base model from 
(Barták and Toropila, 2008) that already significantly 
outperformed a sequential version of CSP-PLAN. This 
model was enhanced by some traditional techniques used 
in planning and constraint satisfaction (Barták and 
Toropila, 2009). A completely new contribution of this 
paper is the introduction of the redundant constraints in the 
style of partial-order planning. This dual model further 
improves the time efficiency. It is important to mention 
that all constraint models are generated fully automatically 
from the declarative description of the planning problem 
(we have a semi-automated translation from PDDL to this 
Prolog-like problem description). Moreover, thanks to the 
constraint satisfaction technology, the models are ready to 
go beyond logical reasoning and various numerical 
preconditions and effects can be naturally integrated. 
 As a future work, we plan to improve the filtering power 
of the channeling constraints as we believe that even 
stronger integration and hence pruning may be achieved. 
We will also focus on improving the search strategy; in 

particular, it might be interesting to do search (at least 
partially) in the dual part of the model. 
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