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Abstract

In this paper, we propose a new approach for solving the
SAT problem. This approach consists in representing SAT
instances thanks to an undirected graph issued from a poly-
nomial transformation from SAT to the CLIQUE problem.
Considering this graph, we exploit well known properties of
chordal graphs to manipulate the SAT instance. Firstly, these
properties allow us to define a new class of SAT polynomial
instances. Moreover, they allow us to rewrite SAT instances
in disjunctions of smaller instances which could be signifi-
cantly easier to solve.

Introduction
To solve the SAT problem, classical approaches have shown
their interest asminisat (en and orensson 2003), but also
their bounds. So, we propose here a new approach which
is really different from classical approaches, hoping thatthis
new viewpoint could open a new way for solving of SAT in-
stances. This approach considers a SAT instance given by a
CNFF and will rewrite it in a formulaF1 ∨ F2 ∨ . . . ∨ FN

which is satisfiable if and only ifF is satisfiable. Here, we
guarantee that each sub-formulaFi will be easier to solve
(smaller) than the original CNFF . The process used here
to rewrite F in F1 ∨ F2 ∨ . . . ∨ FN can be applied re-
cursively. This rewriting is obtained in exploiting a graph
induced by the CNFF : vertices corresponds to the liter-
als of clauses while edges are defined in joining compati-
ble literals (neither opposite literals nor literals issued from
the same clause). This graph defines a way for a polyno-
mial transformation from SAT to the CLIQUE problem of
graph theory. Based on this transformation, we can exploit
recent results obtained onPerfect Graphsto present a new
class of SAT polynomial instances. Moreover, we show that
the restriction ofPerfect Graphsto one of its sub-classes,
namely,Chordal Graphs(aslo calledTriangulated Graphs)
allows efficient handling of SAT formulas by means of their
graphical representation. Precisely, the rewriting ofF in
F1∨F2∨. . .∨FN is obtained in exploiting methods realizing
triangulation of graphs. This field of graphs algorithms has
been intensively studied during the last fifty years and then
we know for it efficient algorithms. Note that our approach
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which is based on graph triangulation is different from the
work already realized in the neighbouring domain of CSPs
(as for example with the tree-clustering method (Dechter
and Pearl 1989)), and then it is not an adaptation of this kind
of works for the SAT problem. Our approach offers then a
new and original way for solving SAT.

The rest of this paper is organized as follows: the first
section recalls notations on SAT and introduces the relation
between SAT and the CLIQUE problem. The following sec-
tion presents recent results onPerfect Graphsand classical
results onChordal Graphswhich are usable for the CLIQUE
problem and then for SAT. The next section introduces the
approach for rewriting formulas. Finally, the last section
concludes this paper.

From SAT to CLIQUE

Preliminaries

We consider the SAT problem which is defined by a partic-
ular Boolean formula given by a pairF = (X,C). F is a
Boolean formula overX, and is defined by a conjunction
of clauses, that is,F = C1 ∧ C2 ∧ . . . Cm. Here,X is
a finite set of Boolean variables{x1, x2, . . . xn}. A truth
assignmentfor X is a functionA : X → {0, 1}n (0 for
Falseand 1 forTrue). If x is a variable,x and¬x areliterals
over X. Moreover, we say thatx and ¬x are opposite
literals. The literal¬x is true if and only ifx is false.C is
a set of clauses{C1, C2, . . . Cm}. A clauseCi overX is a
disjunctionli1 ∨ li2 ∨ . . . lini

of literals. A truth assignment
satisfies a clauseCi if at least, one literallij

is true. So,
a truth assignmentA satisfies a formulaF if and only if
A satisfies each clause inF . In this case, we say thatF
is satisfiable. Such a truth assignment is generally called
modelof F . We can consider partial truth assignments, that
is functions which are partially defined onX. By extension,
we call alsopartial modela partial truth assignment which
satisfies all clauses. Given a Boolean formulaF , in the
sequel,LF will denote the set of literals appearing inF .

Example 1Consider the formulaF = C1∧C2∧C3∧C4

defined overX = {a, b, c} where :

• C1 = (a∨b∨c) = (l11
∨ l12

∨ l13
) wherel11

= a, l12
= b

andl13
= c.



• C2 = (¬a ∨ ¬b) = (l21
∨ l22

) where l21
= ¬a and

l22
= ¬b.

• C3 = (¬a ∨ ¬c) = (l31
∨ l32

) where l31
= ¬a and

l32
= ¬c

• C4 = (a ∨ ¬b ∨ c) = (l41
∨ l42

∨ l43
) wherel41

= a,
l42

= ¬b andl43
= c.

A model for F is then the truth assignment
A = {(a, 1), (b, 0), (c, 0)}. A partial model can be
A′ = {(a, 0), (c, 1)}. In this case, all extensions ofA′

to other variables inX are models ofF . Note that we
can assimilate sets of literals to truth assignments. For
example, A = {(a, 1), (b, 0), (c, 0)} is similar to the
ordered set of literals(a,¬b,¬c), which corresponds to
the set{l11

= a, l22
= ¬b, l33

= ¬c, l41
= a} or the set

{l11
= a, l22

= ¬b, l32
= ¬c, l42

= ¬b} ; this assignment is
also denoted(l11

, l22
, l32

, l42
). In that case, we can observe

that a set of literals is a model if and only if at least one
literal of this set appears in each clause. Note that in this
example,LF = {l11

, l12
, l13

, l21
, l22

, l31
, l32

, l41
, l42

, l43
}.

A literal can occur many times: once for each clause
containing it (example:l11

= l41
= a). So we consider

several literals (one per clauses) when a literal appears in
several clauses.

Now, we define a sub-formula induced by a subset of lit-
erals.

Definition 1 Given a Boolean formulaF = (X,C) and
L ⊆ LF , the sub-formula ofF induced byL, denotedL(F ),
is the formulaF restricted to literals belonging toL.

Consider the formula F of Example 1, and
L = {l11

, l13
, l21

, l22
, l32

, l42
, l43

}. We obtain the sub-
formula L(F) = (a ∨ c) ∧ (¬a ∨ ¬b) ∧ (¬c) ∧ (¬b ∨ c).
One can remark that if in a subsetL of L(F), no lit-
eral of a clause appears, then the sub-formulaL(F)
includes the empty clause and thenL(F) is not sat-
isfiable. E.g. with L′ = {l11

, l13
, l21

, l22
, l42

, l43
},

L′(F) = (a ∨ c) ∧ (¬a ∨ ¬b) ∧ � ∧ (¬b ∨ c) (where�

denotes the empty clause) because no literal of the clause
C3 appears inL′.

More generally, it is easy to see that ifL(F ) is satisfiable,
then necessarily,F is satisfiable. Formally:

Theorem 1 Given Boolean formulaF = (X,C) andL ⊆
LF , if L(F ) is satisfiable with a model(l1, l2, . . . lm), then
F is satisfiable by the same model(l1, l2, . . . lm).

Proof: If L(F ) is satisfied by the set of literals
{l1, l2, . . . lm}, at least one literal of this set appears
in each clause ofL(F ). Since, each clause ofL(F )
is a sub-clause of a clause inF , necessarily, there is
at least one literal ofL which appears in each clause of
F , and consequently,(l1, l2, . . . lm) is also a model forF . �

In Example 1, withL = {l11
, l13

, l21
, l22

, l32
, l42

, l43
},

the sub-formulaL(F) = (a∨c)∧(¬a∨¬b)∧(¬c)∧(¬b∨c)
is satisfied with the modelA = {(a, 1), (b, 0), (c, 0)} corre-
sponding to(l11

= a, l22
= ¬b, l32

= ¬c, l42
= ¬b), which

is also a model forF .

Polynomial transformation from SAT to CLIQUE

We define here a graphical representation of SAT instances
calledCL-Graphs(for Clauses-Literals-Graphs). This rep-
resentation is based on a polynomial transformation from
SAT to the CLIQUE problem which is well known. Never-
theless, we need here to describe it in detail.

Definition 2 Given a SAT formula defined byF = (X,C),
the CL-Graph ofF is an undirected graphG(F ) =
(VF , EF ) where :

• VF = {vij
: lij

is a litteral of the clauseCi ∈ C}

• EF = {{via
, vjb

} : i 6= j, andlia
andljb

are not opposite
literals }

In other words,VF is exactly the set of literalsLF , that
is each literal of each clause corresponds to a vertex and
two vertices are connected by an edge, if they do not appear
in the same clause and if they are not opposite literals. So,
nF = |VF | of vertices inG(F ) is equal to the sum of the size
of the clauses in the formulaF . Consequently, the number
of edgese = |EF | is bounded bynF (nF −1)/2. So, the size
of the graphG(F ) is polynomial w.r.t. the size ofF . More-
over, given a formulaF , the time cost to computeG(F )
is polynomial. Note that this transformation corresponds to
themicro-structure(Jégou 1993) of theLiteral Encodingof
SAT instances proposed in (Walsh 2000). Moreover, this
transformation is different from the one used in (Surynek
2007).
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Figure 1: The CL-GraphG(F) associated to the Boolean
formulaF of example 1.

We now recall the definition of the CLIQUE problem. A
clique of a graphG = (V,E) is a setV ′ ⊆ V of vertices
such that two vertices inV ′ are joined by an edge inE.

• CLIQUE Problem

• Instance: An undirected graphG = (V,E) and a positive
integerk ≤ |V |.

• Question: DoesG contain a cliqueV ′ of sizek or more?

This problem has been shown to be NP-complete by Karp
in 1972 (Karp 1972). Note that theclique numberof a
graphG, denotedω(G) is the size of the largest clique inG.
The next theorem indicates that the transformation from a
Boolean formulaF into its CL-GraphG(F ) defines a trans-
formation from SAT to CLIQUE.

Theorem 2 A Boolean formulaF = (X,C) is satisfiable
if and only if its CL-GraphG(F ) contains a clique of size
m = |C|.



Proof: F = (X,C) is satisfiable if and only if there is a
truth assignmentA which satisfies each clause. Consider
such an assignment and the associated ordered set of literals
(l1, l2, . . . lm) where li is a literal of the clauseCi which
satisfies this clause andm is the number of clauses inF .
Necessarily, there are no opposite literals in(l1, l2, . . . lm).
So, in G(F ), all the vertices corresponding to literals
in (l1, l2, . . . lm) form a clique{l1, l2, . . . lm} of size m
because they are not opposite and they cannot appear in the
same clause. Now, consider a clique of sizem in G(F ).
Necessarily, there is at least one vertex issued from each
clause (because vertices issued from a same clause are not
connected). Moreover, since all vertices are connected, itis
not possible to have two opposite literals in the clique. So,
this clique corresponds to a set of compatible literals which
appear in all the clauses. Then, the assignment associated to
this set of literals is a model forF . �

Figure 2 shows an illustration of such an association be-
tween a clique of the CL-Graph of the formula of example 1
and a model of this formula.
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Figure 2: A clique of size 4 in the CL-Graph associated to a
model of the formulaF .

In the next section, we show how this polynomial trans-
formation from SAT to CLIQUE can be exploited using re-
sults from graph theory.

Perfect CL-Graphs: New SAT Polynomial
Instances

Perfect Graphs
ThePerfect Graphswere discovered by Claude Berge at the
begining of the sixties (see (Golumbic 1980) for an intro-
duction to perfect graphs). To define perfect graphs, we
must recall the notion ofchromatic numberof a graphG,
denotedχ(G). This number is defined as the smallest num-
ber of colors that can be assigned to vertices ofG in such
a way that every two adjacent vertices receive two distinct
colors. Trivially, the chromatic number of every graph is at
least its clique number, that isω(G) ≤ χ(G). Finally, a
graphG is perfectif, for each of its induced subgraphsG′,
χ(G′) = ω(G′). The interest for perfect graphs is today
really important because these graphs possess nice mathe-
matical properties that could be exploited from a practical
viewpoint (e.g. CLIQUE can be solved in polynomial time
on these graphs (Grotschel, Lovasz, and Schrijver 1988)).
Some important questions were asked during the sixties by
C. Berge, as for example the ”Strong Perfect Graph Con-
jecture”. To define this conjecture, we recall that ahole is a
chordless cycle of length at least four while anantiholeis the

complement of such a cycle. Moreover, holes and antiholes
areodd or evenaccording to the parity of their number of
vertices. Finally, a graph is aBerge Graphif it contains no
odd hole and no odd antihole. ”Strong Perfect Graph Con-
jecture” has been recently solved and can be now defined as
a theorem:

Theorem 3 (Chudnovsky et al. 2006) Berge Graphs are ex-
actly Perfect Graphs.

Independantly from this work, (Chudnovsky et al. 2005)
have shown that Berge Graphs can be recognized in polyno-
mial time. Its running time isO(n9) wheren is the number
of vertices in the considered graph. Since finding a maximal
clique size in a perfect graph is possible in polynomial time
(Grotschel, Lovasz, and Schrijver 1988), then the CLIQUE
problem can be now polynomialy solved on perfect graphs:
you test if the considered graph is a Berge graph (a perfect
graph by theorem 3), and if it is ok, you find one of its max-
imal cliques. For us, this kind of result has consequences
which are formalized by the next theorem:

Theorem 4 If the CL-GraphG(F ) of a Boolean formula
F = (X,C) is a Perfect Graph, then recognizing and check-
ing the satisfiability ofF is polynomial.

The practical application of this result is of limited inter-
est. Firstly, the CL-GraphG(F ) of a given formulaF is not
necessarily a perfect graph (unlessP = NP ). Moreover,
exploiting perfect graphs from a practical viewpoint is not
obvious because at present, we do not have efficient tools
to manipulate them (recall the complexity of recognizing
Berge graphs!). So, to exploit their properties, we can re-
strict our study on a well known sub-class of perfect graphs
calledChordal Graphs, which was one of the first classes
of graphs to be recognized as being perfect and because nu-
merous efficient algorithms has been developped for them
during the last forty years. Finaly, note that using Perfect
Graphs to define sets of polynomial instances has been re-
cently proposed in the field of CSP in (Salamon and Jeavons
2008) who extends to perfect graphs a work introduced on
Chordal graphs in (J́egou 1993).

Chordal Graphs
Chordal graphs(also calledTrianguled graphs) have been
introduced in graph theory and were shown to be an inter-
esting sub-class of perfect graphs ((Golumbic 1980) offers
also an easy introduction to chordal graphs). They possess
combinatorial properties which can be exploited from an al-
gorithmic viewpoint.

Definition 3 An undirected graphG = (V,E) is chordal
(or triangulated) if each cycle of length at least 4 has a
chord, that is an edge joining two non-consecutive vertices
in the cycle.

There is another definition of chordal graphs which is
based on the notion of ordering of vertices.

Definition 4 An undirected graphG = (V,E) is chordal
(or triangulated) if it has a perfect elimination order (p.e.o),
i.e. a vertex orderσ = (v1, . . . , vn) such that, for any vertex
vi, the vertices in the neighborhood ofvi which followvi in
σ form a clique.
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Figure 3: A chordal graph. The labeling of the vertices cor-
responds to a possible p.e.o.

Numerous works were realized during the last fifty years
around chordal graphs. We recall some of them, related to
the basic properties of chordal graphs. The first one is re-
lated to the number of maximal cliques, where a maximal
clique is a clique which is not included in a larger clique.
Note that for the general case, this number can be exponen-
tial in the number of vertices.

Theorem 5 (Fulkerson and Gross 1965) The number of
maximal cliques in a chordal graph is at most equal to its
number of vertices.

Another interesting property is related to the fact that
when CLIQUE is restricted to chordal graphs, then the com-
plexity of this problem is polynomial.

Theorem 6 (Gavril 1972) Finding all maximal cliques in
a chordal graph is linear w.r.t. its size. So, the restriction
of the CLIQUE problem to chordal graphs can be solved in
linear time.

Finally, chordal graphs can be recognized in polynomial
time, and the most efficient algorithm called MCS is due to
Tarjan and Yannakakis (Tarjan and Yannakakis 1984).

Theorem 7 The cost of recognizing chordal graphs is linear
w.r.t. their size.

By exploiting the polynomial transformation from SAT to
CLIQUE, we can easily define a new set of SAT instances
which can be solved in polynomial time.

Theorem 8 If the CL-GraphG(F ) of a Boolean formula
F = (X,C) is chordal, then recognizing and checking the
satisfiability ofF is polynomial.

Proof: Given a Boolean formulaF = (X,C), we compute
its CL-GraphG(F ). Then we verify if this graph is chordal
using a polynomial time algorithm as MCS. Finally, we use
theorem 6 in computing its maximal cliques and checking if
there is at least one clique of size|C|. The total cost is at
most|LF |

2 = |VF |
2 = n2

F that is polynomial w.r.t the size
of the formulaF . �

From Any Graphs to Chordal Graphs

Unfortunately, the CL-GraphG(F ) of a given formulaF is
not necessarily chordal (unlessP = NP ). E.g. for example
1, the sequence(a = l11

, a = l41
, c = l13

, c = l43
, a = l11

)
is a cycle of length 4 without chord inG(F). So the graph in
figure 1 is not chordal. Nevertheless, even if a graph is not
chordal, we can exploit properties of chordal graphs. This

kind of work has already been realized in the field of con-
straint networks, that is CSPs. For example, the decompo-
sition of constraint networks is generally based on the ex-
ploitation of chordal graphs. A well known approach, called
tree-clustering (Dechter and Pearl 1989) considers a con-
straint network, and realizes a clustering of variables. Inthat
work, vertices of the graphs correspond to Boolean variables
while edges are given by clauses. Two variables are joined
by an edge if they appear simultaneously in the same clause.
Our approach here is closer to the one of (Jégou 1993) who
considers as vertices values of domains of CSPs variables
while edges correspond to the compatibility between values
of different domains. Although these approaches do not con-
sider the same graph, they apply the notion oftriangulation
of graph.

Definition 5 Given an undirected graphG = (V,E) which
is not chordal, a triangulationTr of G consists in adding a
setE′ of edges such that the graphTr(G) = (V,E ∪E′) =
(V, T ) whereT = E ∪ E′ is chordal.

Figure 4 shows a possible triangulation of the graph of
Figure 1.
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Figure 4: The triangulation (doted lines represent added
edges) of the CL-Graph given in figure 1.

After a triangulation, it is easy to find maximal cliques in
Tr(G) and we know that all maximal cliques inG = (V,E)
appear in at least one maximal clique ofTr(G). This ap-
proach allows us to simplify the problem of finding maximal
cliques ofG since we can limit the search to sub-problems
induced by maximal cliques ofTr(G) while initially, the
whole graphG must be considered. Intuitively, we can see
that intially, the complexity wasexp(|V |) while now, the
complexity is limited toexp(M) whereM is the maximum
size of maximal cliques inTr(G), whereM ≤ |V |. Note
that the valueM verifiesM ≤ w + 1 wherew is thetree-
width of the graphG (Robertson and Seymour 1986). Un-
fortunately computing an optimal triangulation, that is a tri-
angulation which minimizes the valueM to getM = w+1,
is known to be a NP-hard problem (Arnborg, Corneil, and
Proskuroswki 1987). So, many works deal with this prob-
lem and then several approaches and algorithms were pro-
posed for triangulation. In any case, they aim at minimizing
either the number of added edges, or the size of the cliques
in the triangulated graph. We can distinguish four classes of
approaches:

1. Optimal triangulations. As the problem is NP-hard, no
polynomial algorithm is known yet. Hence, the proposed
algorithms have an exponential time complexity. Unfor-
tunately, their implementations do not have much interest



from a practical viewpoint. For instance, the algorithm
described in (Fomin, Kratsch, and Todinca 2004), whose
time complexity isO(n4.(1.9601n)) (wheren = |V |),
has never been implemented due to the weak expected
interest in practice (Todinca 2005). Moreover, a recent
work (Gogate and Dechter 2004) has shown that the al-
gorithm proposed in (Shoikhet and Geiger 1997) cannot
solve small graphs (50 vertices and 100 edges).

2. Approximation algorithms. These algorithms approxi-
mate the optimum by a constant factor. Their complexity
is often polynomial in the tree-width (Amir 2001). How-
ever, this approach seems unusable. Indeed, the last algo-
rithm proposed in (Amir 2001) has a time complexity in
O(n3. log4(n).k5. log(k)) with a hidden constant greater
than 850 (Bouchitt́e et al. 2004). Moreover, according to
(Amir to appear), it requires a runtime between 6 minutes
and 6 days depending on the considered instance while a
naive heuristic triangulation obtains better results (w.r.t.
the tree-width) in at most two minutes.

3. Minimal triangulation. A minimal triangulation com-
putes a setE′ such thatG′ = (X,E ∪ E′) is triangu-
lated and for every subsetE” ( E′, the graphG” =
(X,E ∪ E”) is not triangulated. Note that a minimal
triangulation is not necessarily optimal (minimum). The
main interest of this approach is related to the existence
of polynomial algorithms. For instance, the algorithms
LEX-M (Rose, Tarjan, and Lueker 1976) and LB (Berry
1999) have a time complexity inO(ne′) wheree′ is the
number of edges inG′.

4. Heuristic triangulation. These methods generally build
a perfect elimination order by adding some edges to the
initial graph. They often achieve this work in polynomial
time (generally betweenO(n+ e′) andO(n(n+ e′))) but
they do not provide any minimality warranty. Nonethe-
less, in practice, they can be easily implemented and
their interest seems justified (Kjaerulff 1990). Actually,
Kjærulff has observed that these heuristics compute trian-
gulations reasonably close to the optimum. The two most
interesting heuristics are finally MCS and min-fill. MCS
relies on the order computed by the algorithm of (Tarjan
and Yannakakis 1984) which recognizes the triangulated
graphs. Min-fill orders the vertices from 1 ton by choos-
ing as next vertex one which leads to add a minimum of
edges when completing the subgraph induced by its un-
numbered neighbors.

Based on these results, in this paper, we will only use
heuristic triangulations. In the next section, we analyze the
triangulation of CL-Graphs to show how this operation can
be exploited to rewrite SAT formulas.

Rewriting SAT instances
Consider a Boolean formulaF , its CL-GraphsG(F ) =
(VF , EF ) and Tr(G(F )) = (VF , T ) a triangulation of
G(F ). We defineK = {K1,K2, . . . KN}, the set of max-
imal cliques of(VF , T ) whereN ≤ nF = |VF | (theorem
5).

The most interesting property is now related to the fact
that each satisfying assignment ofF is covered by a maxi-
mal clique of(VF , T ) and then appears at least in one ele-
mentKi of K. Formally:

Theorem 9 Given a Boolean formulaF = (X,C), a trian-
gulation Tr(G(F )) = (VF , T ) of G(F ) = (VF , EF ) and
the setK = {K1,K2, . . . KN} of the maximal cliques of
(VF , T ), if (l1, l2, . . . lm) is a model ofF , then∃Ki ∈ K
such that{l1, l2, . . . lm} ⊆ Ki.

Proof: Consider(l1, l2, . . . lm) a satisfying assignment of
F . By theorem 2, we know that{l1, l2, . . . lm} is a clique of
sizem in G(F ) = (VF , EF ). SinceEF ⊆ T , each clique
of G(F ) is a clique ofTr(G(F )) = (VF , T ). Then, there is
at least one maximal cliqueKi of (VF , T ) which contains
the clique{l1, l2, . . . lm}. �

For Example 1 and the triangulation of the CL-Graph of
formulaF given in figure 4, we obtain 4 maximal cliques :
• K1 = {a = l11

,¬b = l22
,¬c = l32

, a = l41
,¬b =

l42
, c = l43

}.

• K2 = {b = l12
,¬a = l21

,¬a = l31
,¬c = l32

, a =
l41

, c = l43
}.

• K3 = {c = l13
,¬a = l21

,¬b = l22
,¬a = l31

, a =
l41

,¬b = l42
, c = l43

}.

• K4 = {¬a = l21
,¬b = l22

,¬a = l31
,¬c = l32

, a =
l41

,¬b = l42
, c = l43

}.
This formula has exactly 3 models : A1 =

{(a, 1), (b, 0), (c, 0)}, A2 = {(a, 0), (b, 0), (c, 1)} and
A3 = {(a, 0), (b, 1), (c, 1)}. We can see that for each model,
there is a maximal cliqueKi that includes the clique corre-
sponding to the model:
• Two cliques forA1

– {a = l11
,¬b = l22

,¬c = l32
, a = l41

} ⊂ K1 and
– {a = l11

,¬b = l22
,¬c = l32

,¬b = l42
} ⊂ K3.

• Four cliques forA2:

– {c = l13
,¬a = l21

,¬a = l31
,¬b = l42

} ⊂ K3 and
– {c = l13

,¬a = l21
,¬a = l31

, c = l43
} ⊂ K3 and

– {c = l13
,¬b = l22

,¬a = l31
,¬b = l42

} ⊂ K3 and
– {c = l13

,¬b = l22
,¬a = l31

, c = l43
} ⊂ K3.

• One clique forA3 : {b = l12
,¬a = l21

,¬a = l31
, c =

l43
} ⊂ K2.

With this example, one can see that the converse of the
theorem 9 is not true since there is no model included in the
maximal cliqueK4.

We can observe that since eachKi is a subset of liter-
als, for each maximal cliqueKi, we can define an associ-
ated sub-formula denotedFi such thatFi = Ki(F ). Here,
Ki(F ) is the formula induced byF in considering only liter-
als of clauses appearing inKi. So by theorem 1, we obtain:

Theorem 10 Given a Boolean formulaF = (X,C), a tri-
angulationTr(G(F )) = (VF , T ) of G(F ) = (VF , EF ) and
the setK = {K1,K2, . . . KN} of the maximal cliques of
(VF , T ), thenF |= F1 ∨ F2 ∨ . . . ∨ FN whereFi = Ki(F )
and moreover,F1 ∨ F2 ∨ . . . ∨ FN |= F .



Proof: By theorem 9, each model(l1, l2, . . . lm) of F
corresponds to a clique in a subsetKi. So, it is necessarily
a model ofFi = Ki(F ). Conversely, consider a model
(l1, l2, . . . lm) of Fi. SinceFi is a sub-formula ofF , by
theorem 1,(l1, l2, . . . lm) is a model ofF . �

So, this theorem allows us to define an algorithm for
rewriting a Boolean formulaF in another. Firstly, define the
CL-GraphG(F ) of F . Consider a triangulationTr(G(F ))
of G(F ). List the maximal cliques (setK) of Tr(G(F )).
Finally, define the disjunction of sub-formulas induced by
K.

If we consider the formulaF given in Example 1, we ob-
tain a formulaF1∨F2∨F3∨F4 semantically equivalent to
F , defined by the disjunction of four sub-formulas, one by
maximal clique:

• F1 = a ∧ ¬b ∧ ¬c ∧ (a ∨ ¬b ∨ c).

• F2 = b ∧ ¬a ∧ (¬a ∨ ¬c) ∧ (a ∨ c).

• F3 = c ∧ (¬a ∨ ¬b) ∧ ¬a ∧ (a ∨ ¬b ∨ c).

• F4 = �∧(¬a∨¬b)∧(¬a∨¬c)∧(a∨¬b∨c) (� denotes
the empty clause)

The interest of such a rewriting is motivated by some
hopes:

• Each formulaFi of the disjunction can be significantly
easier thanF (numerous clauses are significantly reduced,
with sometimes unit clauses or empty clauses). In ex-
ample 1, the sub-formulaF4 can be suppressed since it
contains the empty clause. Moreover, other sub-formulas
contain several unit clauses.

• This approach can be exploited using a parallel approach,
in solving each sub-formula.

Moreover, after a first application of theorem 10, we ob-
tain a semantically equivalent formula. We can simplify the
obtained disjunctive formula by applying a unit propagation
on each sub-formulaFi to obtain then a simpler formula
which preserves satisfiability ofF as indicated in the next
theorem:

Theorem 11 Given a Boolean formulaF = (X,C), a tri-
angulationTr(G(F )) = (VF , T ) of G(F ) = (VF , EF ) and
the setK = {K1,K2, . . . KN} of the maximal cliques of
(VF , T ), then:

[F is satisfiable] iff [UP (F1)∨. . .∨UP (FN (F )) is satisfiable]
whereFi = Ki(F ) and UP (Fi) is the Boolean formula
obtained by applying unit propagation to the formulaFi.

The proof of this theorem is a straightforward application
of theorem 10 and basic properties of unit propagation.

On the formula given in Example 1, we obtain a formula
semantically equivalent based on the disjunction of three
sub-formulas, one for each maximal clique which do not in-
duced an empty clause (asF4 does), that isF1 ∨ F2 ∨ F3:

• UP (F1) produces the empty formula (not the empty
clause) satisfied by the assignment(a = 1, b = 0, c = 0)

• UP (F2) produces the empty formula satisfied by the as-
signment(a = 0, b = 1, c = 1)

• UP (F3) produces the empty formula satisfied by the par-
tial assignment(a = 0, c = 1)

Now, we can summarize the approach:

1. Compute the CL-GraphG(F ) of F

2. TriangulateG(F ) to obtainTr(G(F ))

3. List the maximal cliquesK = {K1,K2, . . . KN} of
Tr(G(F ))

4. Define the rewritten formulaK1(F ) ∨ K2(F ) ∨ . . . ∨
KN (F )

5. Run unit propagation on each subformulaFi = Ki(F ) to
get eachUP (Fi)

We show that the time complexity of the rewriting scheme
is polynomial, assuming that we apply a polynomial time
heuristic triangulation:

Theorem 12 The time cost of the rewriting scheme is
O(n2

F ) if we consider a heuristic triangulation.

Proof: Actually, Step 1 is computable linearly in the size of
F for the vertices, that isO(nF ) while creating edges is then
bounded byO(n2

F ) = O(n(n − 1)/2) sincenF (nF − 1)/2
is the maximum number of edges. The second step can be
realized in linear time w.r.t. the size of the CL-Graph, thatis
O(n2

F ) if we consider an heuristic algorithm as MCS. Step
3 is also computable linearly in the size of the CL-Graph,
that is inO(n2

F ), finding thenN ≤ nF maximal cliques.
The fourth step can be realized inO(nF .N) since we define
N sub-formulas each one containing at mostnF literals (as
the input formulaF ). Finally, it is well known that unit
propagation can be linearly realized. So the last step which
consists in realizingN unit propagations can be realized in
O(nF .N).�

We defined a first scheme of rewriting where each part
FPi = UP (Fi) in the rewritten formula is a sub-formula of
F . If no sub-formula is trivially satisfiable (this can be stated
by unit propagation), the process we described can easily be
applied recursively to each sub-formulaFPi. After one level
of rewriting, we obtainFP = FP1 ∨ FP2 ∨ . . . ∨ FPN1

whereN1 ≤ N if we delete sub-formulaFPi containing
at least one empty clause. At the second level, we consider
independently eachFPi and then we apply the same rewrit-
ing done for the first step. This recursive application can
be continued on several levels. Theorems 10 and 11 can be
considered to prove the validity of this recursive approach.
By this way, we have the guarantee that each sub-formula
will be smaller than the one from which this sub-formula
was obtained. From a complexity viewpoint, the number of
sub-formulas for a given formula is bounded by its size (at
mostnF ). So, for a rewriting running onl levels (rewriting
is recursively applliedl times), we obtain at mostnl

F sub-
formulas, which is a roughly upper bound. Since the time
cost for rewriting a sub-formula isO(n2

F ), the total cost is
then bounded byO(n2

F .nl
F ).



Conclusion
In this paper, we exploited the relation between SAT and
the CLIQUE problem, studying a polynomial transforma-
tion from SAT to CLIQUE. Particularly, we have seen that
thanks to such a transformation, we can exploit old and
recent results issued from graph theory, related to Perfect
Graphs. For example, we defined new sets of polynomal
SAT instances. We have focussed our study on a particular
class of Perfect Graphs, called Chordal Graphs, which can
be used for practical cases. Precisely, we have introduced
a new approach for rewriting CNF formulas in easier SAT
formulas, using graphs algorithms.

We have different ways to extend this work. The most
important is related to study the practical interest of such
an approach. For example, we must show the classes of
benchmarks which are well adapted to this kind of approach.
Moreover, we must estimate the practical efficiency of such
an approach on different classes of benchmarks. For that, we
need to adapt triangulation algorithms to the particular struc-
tures and properties of CL-Graphs. For example, CL-Graphs
are generally dense graphs the size of which can be impor-
tant. So, it could be interesting to implement these graphs
and their algorithms in manipulating their (sparse) comple-
mentary graphs. Moreover, literals issued from the same
clause form anindependent set(sub-graph without edge),
and this basic property could be exploited to obtain better
triangulations.
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