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Abstract

Complete row and column symmetry breaking in constraint
satisfaction problems using the lex leader method is gener-
ally prohibitively costly. Double lex, which is derived from
lex leader, is commonly used in practice as an incomplete
symmetry-breaking method for row and column symmetries.
This technique uses a row-wise ordering to construct the lex
leader. For this reason, it is generally counterproductive to
choose a search ordering that is not also row-wise. It seems
logical that the search order should be used to pick the sym-
metry breaking technique, rather than the other way around.
This paper surveys other possible orderings and investigates
one particular ordering, snake ordering. From this we derive
a corresponding incomplete set of symmetry breaking con-
straints, snake lex. We present experimental data comparing
double lex and the snake lex, showing that snake lex is sub-
stantially faster than double lex in many cases.

Introduction
Constraints offer a powerful means of solving a wide variety
of combinatorial problems. Constraint solving of a combi-
natorial problem, such as planning or scheduling, proceeds
in two phases. First, the problem is modelled as a set of de-
cision variables and a set of constraints on those variables
that a solution must satisfy. A decision variable represents
a choice that must be made in order to solve the problem.
The domain of potential values associated with each deci-
sion variable corresponds to the options for that choice. The
second phase consists of using a constraint solver to search
for solutions to the model: assignments of values to decision
variables satisfying all constraints.

A variable symmetry in a constraint model is a bijective
mapping from the set of variables to itself that maps (non-
)solutions to (non-)solutions. The set of (non-)solutions we
can reach by applying all symmetry mappings to one (non-
)solution forms an equivalence class. It can be advantageous
to restrict search to one member (or a reduced set of mem-
bers) of each equivalence class, because this can dramati-
cally reduce the search space. This is known as symmetry
breaking.

One symmetry breaking technique for variable symme-
tries is the lex leader method, which adds a constraint per
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symmetry so as to allow only one member of each equiva-
lence class (Crawford et al. 1996). The lex leader method
can produce a huge number of constraints and sometimes
adding them to a model can prove counterproductive. One
commonly-occurring case is when trying to break symme-
tries in a matrix, where any row (or column) can be permuted
with any other row (or column). We call these symmetries
row and column symmetries (Flener et al. 2002).

When breaking all symmetries proves too difficult, it is
often possible to achieve good results by breaking a smaller
set of symmetries: incomplete symmetry breaking. One
method to do this for row and column symmetries is double
lex (Flener et al. 2002), which imposes an ordering on the
rows, and an ordering on the columns. Whilst this method is
not complete, in practice it can help to reduce search nodes
and, ultimately, reduce solve times. Double lex is derived
from a reduction of a complete set of lex constraints cre-
ated with a row-wise ordering as the canonical member of
each equivalence class. This means that we generally have
to use a row-wise search order to achieve good results. It
would be advantageous to be able select a variable ordering
that is specific to the problem being solved, rather than being
forced to use a particular search order because of the choice
of symmetry breaking method.

This paper surveys a number of possible lex leader order-
ings for row and column symmetries, and selects one that
looks promising to investigate further. We create a new set
of incomplete symmetry breaking constraints from differ-
ent variable ordering. In most cases that we have examined
this new ordering proves to deliver substantially better re-
sults than double lex.

Background
A constraint satisfaction problem is a triple (X , D, C),
where X is a finite set of variables. For each variable x ∈ X
there is a finite set of values D(x) (its domain). The finite
set C consists of constraints on the variables. Each constraint
c ∈ C is defined over a sequence, X ′, of variables in X . A
subset of the Cartesian product of the domains of the mem-
bers ofX ′ gives the set of allowed combinations of values. A
complete assignment maps every variable to a member of its
domain. A complete assignment that satisfies all constraints
is a solution.

A variable symmetry of a CSP is a bijection f : X → X



such that {〈xi, ai〉 : xi ∈ X , ai ∈ D(xi)} is a solution
if and only if {〈f(xi), ai〉 : xi ∈ X , ai ∈ D(f(xi))} is
a solution. The set of all variable symmetries of a CSP is
closed under composition of functions and inversion, and so
forms a group, called the variable symmetry group of the
CSP.

Row and column symmetries appear commonly in CSP
models that contain matrices (Colbourn and Dinitz 1996;
Hammons et al. 1994; Huczynska 2009; Meseguer and Tor-
ras 1999). When it is possible to map any ordered list of dis-
tinct rows to any other such list of the same length, with the
same being true for columns, then there is complete row and
column symmetry. For an n by m matrix there are n! ×m!
symmetries.

For a symmetry group of size s the lex leader method pro-
duces a set of s − 1 lex constraints to a provide complete
symmetry breaking. We first decide on a canonical order for
the variables in X , then post constraints such that this order-
ing is less than or equal to the permutation of the ordering by
each of the symmetries. Consider the following 2×2 matrix
with complete row and column symmetry, where xi ∈ X :

x11 x12

x21 x22

If we choose a row-wise canonical variable ordering, in
this case x11x12x21x22, then we can generate the following
3 lex constraints to break all the symmetries.

row swap: x11x12x21x22 ≤lex x21x22x11x12

column swap: x11x12x21x22 ≤lex x12x11x22x21

both swapped: x11x12x21x22 ≤lex x22x21x12x11

Although this example is trivial, breaking all row and
column symmetries by adding lex constraints is generally
counter-productive since we have to add (n!×m!)− 1 sym-
metry breaking constraints to the model. Double lex (Flener
et al. 2002) is a commonly used incomplete symmetry
breaking method for row and column symmetries. This
method involves ordering the rows of a matrix and (indepen-
dently) ordering the columns. This produces only n+m−2
symmetry breaking constraints, shown below for the 2 × 2
example:

x11x12 ≤lex x21x22

x11x21 ≤lex x12x22

The double lex constraints can be derived from the lex
leader generated based upon a row-wise canonical variable
ordering. One method of doing so is to use reduction rules 1,
2 and 3′ as given in (Frisch and Harvey 2003) and (Grayland
et al. 2009). Let α, β, γ, and δ be strings of variables, and x
and y be individual variables. The reduction rules are:

1 If α = γ entails x = y then a constraint c of the form
αxβ ≤lex γyδ may be replaced with αβ ≤lex γδ.

2 Let C = C ′ ∪ {αx ≤lex γy} be a set of constraints. If
C ′ ∪ {α = γ} entails x ≤ y, then C can be replaced with
C ′ ∪ {α ≤lex γ}.

3′ Let C = C ′ ∪ {αxβ ≤lex γyδ} be a set of constraints. If
C ′ ∪ {α = γ} entails x = y, then C can be replaced with
C ′ ∪ {αβ ≤lex γδ}.

Although Rule 1 is subsumed by Rule 3′, it is often useful
to apply Rule 1 as a preprocess for efficiency reasons, since
it reasons over an individual constraint.

An algorithm to implement these rules is described in
(Öhrman 2005). We first create a list L = {l1, . . . , ls} of
lex constraints. Let l ∈ L be

x11 . . . x1m ≤lex x21 . . . x2m.

Then l is a sequence of m pairs, pi = (x1i, x2i). The most
significant pair is p1, and the least significant is pm.

We now construct a directed graphG, with nodes labelled
by variables, and directed edges representing pairs, where
the pair xi ≤ xj is a directed edge from xi to xj . Starting
with l1 ∈ L, we select the least significant pair in that lex
constraint (x1m, x2m). For i < m we add directed edges
(x1i, x2i) and (x2i, x1i), representing equality between the
two variables, for each more significant pair in l1. For 2 ≤
j ≤ s we also add a single directed edge representing the
inequality between the most significant pair of each lj ∈ L.
We define these pairs as active. Furthermore, the tth pair in
the lex constraint l is active if the jth pairs, for 1 ≤ j < t,
are equal and the tth pair is not equal.

The transitive closure G′ of G is then computed. We now
test whether equality is implied in the active pair for any
constraint l′ 6= l1 (by a pair of directed edges). If so, we
consider the next pair in l′. We continue to move one pair
to the right until we find an example where the pair is not
equal, or we reach the end of the constraint l′. In the former
case, we add an edge representing this new pair to G′. The
transitive closure of G′ is then computed to attain G′′.

This process is repeated until no new edges are added to
the graph. We now check if there exists a directed edge
(x1m, x2m). If there does, then x1m ≤ x2m is implied, and
the pair can be removed by Rule 2. This process is repeated
for the next least significant pair, and successive least signif-
icant pairs if one is removed, for every constraint in L.

The algorithm for Rule 3′ is similar, except that we test
every pair in a constraint, not just the least significant, and
we look for equality rather inequality for removal.

As an example of how a reduction works, consider the
complete lex constraint

x11x12x21x22 ≤lex x12x11x22x21.

If the need arises to enforce the second clause in this con-
straint, x12 ≤ x11, then the variables in the first pair,
x11 ≤ x12, must be equal. If x11 = x12 then x12 = x11. We
can therefore remove the second clause by Rule 3′. We can
apply a similar reduction to the fourth clause, by considering
the third. The final reduced constraint is

x11x21 ≤lex x12x22.

Double lex is shown in (Flener et al. 2002) to perform fa-
vorably against both complete lex leader symmetry breaking
and no symmetry breaking. Unfortunately, double lex does
not work well in every case.

It is well known that the search order chosen to solve the
problem can have a dramatic effect on the solve time. Since
double lex is generated using a row-wise lex leader, it is gen-
erally necessary to use a row-wise search ordering. In many



Figure 1: Results for a 2× n matrix

n Canonical Ordering Pairs
4 x11x12x13x14x21x22x23x24 109
4 x11x21x22x12x13x23x24x14 30
5 x11x12x13x14x15x21x22x23x24x25 655
5 x11x21x22x12x13x23x24x14x15x25 54

cases, using a row-wise search order would not be the best
option if double lex had not been used to break the symmetry
in the model.

In search of an alternative ordering
Recall from the background that double lex is derived from
the complete set of lex constraints based on a row-wise
canonical ordering. This row-wise ordering may not cor-
respond well to the problem. Indeed, there may exist other
canonical orderings which can produce incomplete sets of
constraints able to outperform double lex. In order to sur-
vey various canonical orderings, we first present a way to
compare them.

As described in the previous section, a lex constraint of
the form

x1x2 . . . xm ≤lex y1y2 . . . ym

consists of m pairs of variables. We compare canonical
orderings by counting the pairs that remain after reducing
the entire set of lex leader constraints by Rules 1, 2 and 3’.
Fewer remaining pairs suggests that the canonical ordering
may perform better: all reduced sets of lex constraints for
the same symmetries are logically equivalent, so a reduced
set that uses fewer pairs may give better propagation.

First, all of the 720 variable orderings of a 2× 3 matrix

x11 x12 x13

x21 x22 x23

were tested. The algorithms described in (Öhrman 2005)
and (Grayland et al. 2009) were used to reduce the lex con-
straints. The smallest number of pairs remaining after re-
duction was 15, with 108 possible canonical orderings. The
canonical ordering x11x21x22x12x13x23 reduces to 15 pairs
and is interesting because it has a regular form. Standard
row-wise canonical ordering, x11x12x13x21x22x23, resulted
in 23 pairs. Examining the complete set of results in Fig 2
shows that by this measure row-wise is one of the worst pos-
sible canonical orderings.

This experiment shows that not only is it likely that a bet-
ter alternative to double lex could exist, but that row-wise
may be one of the worst canonical orderings.

Similar experiments were performed on 2× n matrices.

x11 x12 x13 x14

x21 x22 x23 x24
and x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

All 8! possible canonical orderings for the 2 × 4 matrix
were tested and 100 random canonical orderings were tested
for the 2 × 5 matrix. Additionally we tested the row-wise

Figure 2: Distribution of pairs remaining after reduction for
a 2× 3 matrix on all orderings.
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Figure 3: Distribution of pairs remaining after reduction for
a 2× 4 matrix on all orderings.
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canonical ordering, and the interesting canonical ordering
from above on the 2× 5.

Some sample results are given in Figure 1, where con-
ventional row-wise canonical ordering is the first one listed
in each case and the other is the canonical ordering which
reduced to 15 pairs in the 2× 3 case. previously.

The canonical ordering that begins x11x21x22x12x13x23

(shown in bold in Figure 1) has fewer pairs after reduction
than the row-wise canonical ordering, and it has a relatively
simple pattern to describe. The canonical ordering starts at
the top left element of a matrix then moves down the col-
umn. It then moves to the neighbouring element in the next
column and then up that column. This pattern continues un-
til all variables have been listed. We call this snake ordering:
in each case we see that snake ordering results in signifi-
cantly fewer pairs after reduction than row-wise canonical
ordering.

A further experiment was carried out on

x11 x12 x13

x21 x22 x23

x31 x32 x33

to determine whether snake lex has fewer pairs than row-
wise canonical ordering in a larger example, and the results
are given in Figure 5. Again, row-wise canonical ordering
is in row 1 and snake ordering is in bold. Once again snake
ordering has fewer remaining pairs than row-wise canonical
ordering, although not by such a large margin as the 2 × n
cases. This suggests that the matrix dimensions are signifi-
cant.

Figure 4: Distribution of pairs remaining after reductions for
a 2 × 5 matrix on 100 random orderings and the two from
Figure 1.
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Figure 5: Results for a 3× 3 matrix

Ordering Pairs
x11x12x13x21x22x23x31x32x33 92

x11x21x31x32x22x12x13x23x33 88

The results from Figures 2, 3 and 4 suggest that snake
ordering is worth investigating further. However, the number
of pairs may not be an accurate measure of performance. In
the next section, we construct a reduced set of constraints
for partial symmetry breaking based on the snake lex, and in
the following section we present experimental results using
our reduced set of constraints.

Snake Lex
Recall that double lex is derived from a reduction of a com-
plete set of lex constraints with a row-wise canonical order-
ing. In this section, we derive a small, easily-described set
of constraints for the snake ordering, called snake lex. First
we give a formal definition of columnwise snake ordering.
Row-wise snake ordering is defined similarly.

Definition 1 Let X = (xij)n×m be a matrix of variables.



The columnwise snake ordering on variables is

x11, x21, . . . , xn1, xn2, . . . , x12, . . . , x1m, . . . xnm,

if m is odd, and

x11, x21, . . . , xn1, xn2, . . . , x12, . . . , xnm, . . . x1m

if m is even. That is, snake order on variables starts at row
1, column 1. It goes down the first column to the bottom,
then back up along the second column to the first row. It
continues, alternating along the columns until all variables
have been ordered.

The following matrix describes the columnwise ordering
with an odd number of columns:

1 2n 2n+ 1 . . . (m− 1)n+ 1
2 2n− 1 2n+ 2 (m− 1)n+ 2
3 2n− 2 2n+ 3 (m− 1)n+ 3
...

...
...

...
n n+ 1 3n . . . mn

The pattern for an even number of columns is similar, except
that the final column will read upwards rather than down.
Definition 2 Let X (xij)n×m be a matrix of variables. The
columnwise snake lex set of constraints, C, is defined as fol-
lows. C contains 2m− 1 column constraints, beginning

c1 x11x21 . . . xn1 ≤lex x12x22 . . . xn2

c2 x11x21 . . . xn1 ≤lex x13x23 . . . xn3

c3 xn2x(n−1)2 . . . x12 ≤lex xn3x(n−1)3 . . . x13

c4 xn2x(n−1)2 . . . x12 ≤lex xn4x(n−1)4 . . . x14

...
and finishing with

c2m−1 x1(m−1) . . . xn(m−1) ≤lex x1m . . . xnm

if m is odd and
c2m−1 xn(m−1) . . . x1(m−1) ≤lex xnm . . . xnm

if m is even. C contains n − 1 row constraints. If m is odd
then these are
r1 x11x22x13 . . . x1m ≤lex x21x12x23 . . . x2m

r2 x21x32x23 . . . x2m ≤lex x31x22x33 . . . x3m

...
rn−1 x(n−1)1 . . . x(n−1)m ≤lex xn1 . . . xnm.

If m is even then these are:
r1 x11x22x13 . . . x2m ≤lex x21x12x23 . . . x1m

r2 x21x32x23 . . . x3m ≤lex x31x22x33 . . . x2m

...
rn−1 x(n−1)1 . . . xnm ≤lex xn1 . . . x(n−1)m.

The following theorem shows that columnwise snake lex
is derived from the columnwise snake lex leader, and is
therefore sound.
Theorem 1 The columnwise snake lex constraints are
sound.
PROOF We show that each constraint can be derived from a
constraint in the full set of lex leader constraints by applying
Rule 1 and then using only a prefix.

In each case the left hand side of the unreduced lex leader
constraint is

x11x21 . . . xn1xn2x(n−1)2 . . . x12x13 . . . xn3xn4 . . .

We first consider the column constraints, ck. First let k ≡
1 mod 4 and a = (k + 1)/2. The symmetry which swaps
columns k and k + 1 and fixes everything else gives
Ax1ax2a . . . xnaB ≤lex Cx1(a+1)x2(a+1) . . . xn(a+1)D,

where A,B,C and D are strings of variables and A = C.
Rule 1 removes A and C, and then considering only the first
n pairs gives constraint ck. If k ≡ 2 mod 4 then let a =
k/2, replace a+1 by a+2 on the right hand side, and apply
the same argument.

Next let k ≡ 3 mod 4 and a = (k+ 1)/2. The symmetry
which swaps columns k and k + 1 and fixes everything else
gives a constraint of the form

Axnax(n−1)a . . . x1aB ≤
Cxn(a+1)x(n−1)(a+1) . . . x1(a+1)D,

where A,B,C and D are strings of variables and A = C.
Again, using Rule 1 on A and C, and then taking only a
prefix gives constraint ck. If k ≡ 0 mod 4 then let a = k/2,
replace a+ 1 by a+ 2 on the right hand side, and apply the
same argument.

Consider now the rows. There is a symmetry that inter-
changes rows a and a + 1 and fixes everything else. The
unreduced lex leader constraint for this symmetry is:
x11 . . . xa1x(a+1)1 . . . xn1xn2 . . . x(a+1)2xa2 . . . ≤lex

x11 . . . x(a+1)1xa1 . . . xn1xn2 . . . xa2x(a+1)2 . . .

Rule 1 deletes all pairs of the form (xij , xij) to obtain:

xa1x(a+1)1x(a+1)2xa2xa3x(a+1)3x(a+1)4xa4 . . . ≤lex

x(a+1)1xa1xa2x(a+1)2x(a+1)3xa3xa4x(a+1)4 . . .

Rule 1 simplifies xaix(a+1)i ≤lex x(a+1)ixai to xai ≤
x(a+1)i, and similarly for x(a+1)ixai ≤ xaix(a+1)i, result-
ing in constraint rk:
xa1x(a+1)2xa3x(a+1)4 . . . ≤lex x(a+1)1xa2x(a+1)3xa4 . . .

Since each of the snake lex constraints is derived by first
applying Rule 1 to a lex leader constraint and then taking
only a prefix, the snake lex constraints are sound. 2

There are similarities between the columnwise snake lex
and double lex constraints on columns. Columnwise snake
lex constrains the first column to be less than or equal to
both the second and the third columns. It also constrains
the reverse of the second column to be less than or equal
to the reverse of the third and fourth columns. This pattern
continues until the penultimate column is compared with the
last.

As an example, consider a 4× 3 matrix. Double lex con-
strains adjacent columns (left), while snake lex produces the
set of constraints on the columns on the right:

x11x21x31 ≤lex x12x22x32,
x12x22x32 ≤lex x13x23x33,
x13x23x33 ≤lex x14x24x34.
x11x21x31 ≤lex x12x22x32,
x11x21x31 ≤lex x13x23x33,
x32x22x12 ≤lex x33x23x13,
x32x22x12 ≤lex x34x24x14,
x13x23x33 ≤lex x14x24x34.



Generally, given m columns and n rows, double lex adds
m − 1 constraints on columns, each with n pairs. Snake
lex adds 2m − 1 constraints on columns, each with n pairs.
We could increase the number of double lex constraints on
columns by allowing each column to be less than or equal
to the column two to it’s right, it has however already been
shown that this has no effect on propagation (Carlsson and
Beldiceanu 2002).

We next consider the rows. Double lex gives the following
for our sample matrix:

x11x12x13x14 ≤lex x21x22x23x24,
x21x22x23x24 ≤lex x31x32x33x34.

The snake lex method is slightly more complicated, but
gives the same number of constraints. We take the first two
rows and zig zag between them to produce a string of vari-
ables starting at row 1, column 1, and a second string start-
ing at row 2, column 1. We then constrain the first of these
strings to be lexicographically less than or equal to the sec-
ond one. Next we produce a similar constraint between rows
i and i+1 for all i. The set of constraints for our 3×4 matrix
are:

x11x22x13x24 ≤lex x21x12x23x14,
x21x32x23x34 ≤lex x31x22x33x24.

Generally, double lex and snake lex both add n − 1 row
constraints, each with m pairs.

Thus far, we have considered columnwise snake ordering.
We can also consider row-wise snake ordering, which may
be useful if, for example, the rows are more heavily con-
strained (by the problem constraints) than the columns. To
do so we simply transpose the matrix and then order as be-
fore. The transpose of our example 3×4 matrix is shown be-
low (left), along with the corresponding constraints (right):

x11 x21 x31

x12 x22 x32

x13 x23 x33

x14 x24 x34

x11x12x13x14 ≤lex x21x22x23x24,
x11x12x13x14 ≤lex x31x32x33x34,
x24x23x22x21 ≤lex x34x33x32x31,

x11x22x31 ≤lex x12x21x32,
x12x23x32 ≤lex x13x22x33,
x13x24x33 ≤lex x14x23x34.

Note that the double lex constraints do not change for this
transposition, hence double lex is insensitive to switching
between a row-wise and columnwise search ordering.

Experimental Results
We used four benchmark problem classes to compare snake
and double lex empirically. All models used exhibit row and
column symmetry. Preliminary experimentation revealed
the superiority of row-wise snake lex on the tested instances,
which we therefore used throughout. This is correlated with
the rows being significantly longer than the columns in 3 of
4 classes. For each class we carried out four experiments per
instance. We tested double lex and snake lex, each with row-
wise and then snake static variable heuristics, separating the

Lex Method Double Snake
Search Order Row Snake Row Snake

(v, k, λ)
(7, 3, 5) 8.02 8.38 7.42 6.78
(7, 3, 6) 70.47 75.86 61.93 50.47
(7, 3, 20) 0.52 0.47 0.02 0.02
(7, 3, 30) 2.80 2.53 0.03 0.02
(7, 3, 40) 9.14 8.58 0.03 0.03
(7, 3, 45) 16.09 14.94 0.04 0.03
(7, 3, 50) 25.11 23.70 0.06 0.05

Figure 6: A comparison of search times, in seconds, on the
BIBD problem. The searches above the double line are for
all solutions, whilst those under are for one solution.

effects of the search order from those of symmetry break-
ing. Each time given is the mean of five trials the results for
each benchmark are presented after a brief description of the
problem class.

The first problem class chosen is a standard benchmark,
the balanced incomplete block design problem. A bal-
anced incomplete block design (BIBD) (Meseguer and Tor-
ras 1999) is a v × b Boolean matrix, with the columns sum-
ming to k, the rows summing to r, and exactly λ positions
where two rows both have a 1, for any pair of rows. For
example, here is a BIBD with parameters (7, 7, 3, 3, 1):

1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 0 1
0 1 0 0 1 1 0
0 0 1 1 0 1 0
0 0 1 0 1 0 1

The parameters v, k and λ of the BIBD fix the values of b and
r, so the problem is to find all (or one) BIBDs with specified
values of (v, k, λ). Given a (non-) solution, it is possible
to freely permute all of the rows of the matrix to get other
(non-) solutions, and it is also possible to freely reorder the
rows, thus double lex may be used to reduce search.

The results in Figure 6 show that snake lex outper-
forms double lex in every tested case. In the cases where
it was possible to find all solutions, snake lex gives a
faster node time than double lex, and generally finds fewer
symmetrically-equivalent solutions. The single solution
cases show a speed up over double lex of several orders of
magnitude. This is possibly due to the λ constraint being
better suited to a snake search order, which in turn is aided
by the presence of the snake lex symmetry breaking con-
straints and also the fact that the matrix has many more rows
than columns.

A second problem class is the equidistant frequency per-
mutation array problem (EFPD) (Huczynska 2009). An
EFPD is a c × qλ matrix, with entries taken from a set of
q symbols. Each symbol occurs λ times in each row of the
matrix. Each row is a codeword from an error correcting
code, and the Hamming distance (the number of positions



Lex Method Double Snake
Search Order Row Snake Row Snake

(q, λ, d, c)
(3, 3, 5, 9) 4.1 4.3 3.6 2.9
(3, 4, 5, 9) 26.1 27.1 15.9 11.5

(3, 5, 5, 10) 45.9 53.5 29.6 20.0
(3, 6, 5, 10) 68.9 76.8 39.7 27.4
(3, 7, 5, 11) 94.5 103.0 54.5 35.0
(3, 8, 5, 12) 124.6 123.4 71.0 43.1

Figure 7: A comparison of search times, in seconds, on the
EFPD problem. In each case there are no solutions.

with different symbols) between any two codewords is d.
On input (q, λ, d, c) the problem is to find one (or all) EF-
PDs with those parameters. In order to give a fair compar-
ison between the four combinations of search order and lex
constraints, we picked six test cases where it is known that
there are no solutions. This means that we are not examin-
ing the case where we did best in the previous experiment,
that of finding the first solution, but instead exhausting the
search space.

In Figure 7 the solve time decreases by around 30% when
the lex method is changed from double lex to snake lex,
and then decreases by a further 30% when the search or-
der is changed to snake order. Notice also that the search
time increases when double lex is used in conjunction with
the snake order, suggesting both that it is important for the
search order to mirror the constraints, and that it is the snake
lex constraints that are causing the improved solve times.
We believe that once again this is due to the problem’s con-
straints.

A third problem class is the fixed length error correct-
ing codes (FLECC) (Hammons et al. 1994) problem.
The Lee distance between two codewords [a1, . . . , ad] and
[b1, . . . , bd] over the alphabet {0, 1, . . . , q − 1} is

d∑
i=1

min{(ai − bi) mod q, (bi − ai) mod q}.

Thus for example over the alphabet [0, 1, 2, 3] the distance
between [1, 2, 1, 3] and [0, 3, 2, 1] is 1 + 1 + 1 + 2 = 5. On
input a triple (q, d, c) the FLECC problem is to find a d× q
matrix, with each of q symbols appearing once in each row,
and Lee distance c between each pair of rows. As with the
BIBD test case both all solution and single solution prob-
lems were tested.

The results in Figure 8 show snake lex performing 30
times faster than double lex, in the single solution case, sim-
ilar to the results in Figure 6. In the all solutions case, the
snake lex (with either order) requires on average less than
half the time that the double lex with row-wise order uses,
and the speedup seems to be increasing as the instances get
bigger.

The final experiment involved solving the Howell design
(Colbourn and Dinitz 1996) problem. A Howell design is
an s by s matrix M , whose coefficients are unordered pairs
of symbols from a set S of size n. Each of the n(n − 1)/2

Lex Method Double Snake
Search Order Row Snake Row Snake

(q, d, c)
(9, 5, 5) 23.34 8.23 13.09 0.83
(8, 6, 4) 0.73 0.74 0.53 0.52

(15, 5, 22) 0.77 0.72 0.41 0.39
(20, 5, 30) 3.28 3.28 1.31 1.30
(25, 5, 40) 3.88 4.00 1.44 1.42
(30, 5, 50) 4.56 4.83 1.86 1.70

Figure 8: A comparison of search times, in seconds, on
the FLECC problem. The test case above the double line
searches for a single solution, whilst those under search for
all solutions.

Lex Method Double Snake
Search Order Row Snake Row Snake

(s, n)
(4, 9) 0.98 0.97 1.19 1.23

(5, 11) 28.18 27.22 29.65 30.27
(6, 13) 1148.3 1153.8 1179.6 1352.9

Figure 9: A comparison of search times, in seconds, on in-
soluble instances of the Howell design problem.

pairs occurs at most once. Every row and every column of
M contain at least one copy of every symbol from S. There
exists an empty symbol which can be used as many times as
necessary, provided all other constraints are met. A series of
instances that were known to be insoluble (due to arithmetic
constraints on the parameters) were tested.

Figure 9 shows that, in this case, snake lex is slightly
slower than double lex. One reason for this could be that
Howell Designs are square. It is also the case that the
amount of symmetry involved is very small. With the ex-
ception of the empty symbol, every entry in the matrix is dis-
tinct. Thus with minor modifications to the model, Puget’s
all different symmetry breaking lex constraints (Puget 2005)
could be used to break the symmetry. The empty symbol
appears very infrequently, so the effort used to treat all of
its occurrences as symmetric and then break the symmetries
may be unnecessary. This experiment shows that snake lex
is not a silver bullet for row and column symmetry breaking.

Discussion
This paper highlights the need for further investigation into
incomplete row and column symmetry breaking. We have
demonstrated that double lex can be outperformed by snake
lex in many instances and indeed, there may be another vari-
able ordering that can create a small set of constraints ca-
pable of beating both. Future research will investigate the
production on the fly of tailored sets of lex constraints, de-
pending on a variable ordering specified by a modeler. The
initial direction of future work will be to examine the other
lex leaders found to have a small number of pairs upon re-
duction comparing them to both double lex and the snake



lex and to investigate whether the shape of the matrix affects
solve times, particularly with square matrices.
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