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Abstract

Constraint Programming is an attractive approach for solving
AI planning problems by modelling them as Constraint Sat-
isfaction Problems (CSPs). However, formulating effective
constraint models of complex planning problems is challeng-
ing, and CSPs resulting from standard approaches often re-
quire further enhancement to perform well. Common subex-
pression elimination is a computationally cheap and general
technique for improving CSPs, which can lead to a great re-
duction in instance size, solving time and search space. In this
work we identify general causes of common subexpressions
from three modelling techniques often used to encode plan-
ning problems into constraints. We present four case studies
of constraint models of AI planning problems. In each, we
describe the constraint model, highlight the sources of com-
mon subexpressions, and present an empirical analysis of the
effects of eliminating common subexpressions.

1. Introduction
AI planning is an active, long-established research area, with
a wide applicability to such diverse tasks as automating data-
processing procedures, game-playing, and large-scale logis-
tics problems. The classical AI Planning problem is to find
a sequence of actions (a plan) to transform an initial world
state into a goal world state. We consider solving AI Plan-
ning problems using constraint solving, a powerful tech-
nique for tackling hard combinatorial problems. Constraint
solving proceeds in two phases. First, the problem is mod-
elled as a set of decision variables, and a set of constraints on
those variables that a solution must satisfy. Second, a con-
straint solver is used to search for solutions to the model:
assignments of values to variables satisfying all constraints.

Common subexpression elimination is a cheap, general
technique for transforming a constraint model into one
which requires less effort to solve. It has been shown to
lead to a great reduction in instance size, solving time, and
search space (Gent, Miguel, & Rendl 2008). In this paper
we identify general causes of common subexpressions from
three modelling techniques often used to encode planning
problems into constraints. We present four case studies of
constraint models of AI planning problems. In each, we de-
scribe the constraint model, highlight the sources of com-
mon subexpressions, and present an empirical analysis of
the effect of eliminating common subexpressions.

2. Background
Constraint modelling and solving of planning problems has
been studied in the context of many systems, such as CPlan
(van Beek & Chen 1999), the planning & scheduling frame-
work in (Garrido 2006), the temporal POCL planner CPT
(Vidal & Geffner 2006) or the distributed multi-agent sys-
tem in (Sapena et al. 2008). Hence, there exist many dif-
ferent approaches on how to model a planning problem as a
CSP. (Barták & Toropila 2008) describe three different con-
straint models for planning which are derived from different
successful modelling approaches. They all share the same
basic set of constraint variables:
• v × (n + 1) state variables V s

i , representing the state of
the world at step s, where v is the number of properties
of a state, n the length of the plan, i ranges over the state
properties (i.e. from 0 to v) and s ranges from 0 to n.

• n action variables As, representing the action chosen at
step s, where s ranges from 0 to n− 1

State and action variables are connected by logical con-
straints that summarise the chosen action’s preconditions
and effects on the state variables, as well as frame axioms
(i.e. constraints that enforce that certain state properties stay
the same during a state transition). Each of the three mod-
els differ in how preconditions, effects and frame axioms are
represented.

1. Basic Model The basic model describes preconditions
and effects by the two constraints

(As = act) ⇒ Pre(act)s ∀act ∈ Dom(As) (1)
(As = act) ⇒ Eff(act)s+1 ∀act ∈ Dom(As) (2)

stating that if action act is chosen at step s, then pre-
condition Pre(act)s and effect Eff(eff)s+1 have to hold.
Pre(act)s and Eff(act)s+1 are a conjunction of conditions
where appropriate state variables are set to act’s precon-
ditions at step s, and effects in step s+1, respectively. The
frame axiom

As ∈ NonAffAct(Vi) ⇒ (V s
i = V s+1

i ),∀i ∈ (0, v-1) (3)

states that if action As has no effect on state property i
then V s

i and V s+1
i are equal.

2. Supporting-actions Model The second model repre-
sents supporting actions (Do & Kambhampati 2000) by



adding variables Ss
i that indicate the action responsible

for the value of state property i. Preconditions are for-
mulated as in (1) but effects (4) and frame axioms (5) are
stated as follows (and val is a state value):

(Ss
i = act) ⇒ (V s

i = val) ∀act ∈ Dom(Ss
i ) (4)

(Ss
i = no-op) ⇒ (V s

i = V s+1
i ) (5)

3. Successor-state Model In the third model, effects and
frame axioms are merged into so-called successor-state
constraints (Lopez & Bacchus 2003). Successor state
constraints state that a state variable has value val at step
s only if either an action has changed it or it was the same
in the previous step, formally

V s
i = val ↔ (6)

(As−1 ∈ C(i, val)) ∨ (V s−1
i =val ∧As−1 ∈ N(i))

where C(i, val) is the set of actions that effect V s
i = val

and N(i) is the set of actions that do not affect Vi.

Throughout, we consider the number of steps of the plan
to be a parameter to the constraint model. Hence, to find
an optimal solution to a given planning problem, one would
iteratively increase the value of the steps parameter of the
corresponding constraint model until a solution is found.

Constraint models can be enhanced automatically by
eliminating common subexpressions (Gent, Miguel, & Rendl
2008). Two (sub)expressions are common if they are the
same under all satisfying variable assignments. For instance,
the two constraints A∧(x=0) and B⇒(x=0) contain the
common subexpression x=0. Common subexpressions are
eliminated during flattening, i.e. the decomposition of com-
plex expressions into simpler expressions (to adapt them to
the target solver). For instance, A∧(x=0) is typically flat-
tened to the constraints aux1↔(x=0) and A ∧ aux1 where
the newly introduced variable aux1 is called auxiliary vari-
able. Hence, when flattening B⇒(x=0), we can reuse aux1

instead of introducing another auxiliary variable aux2↔x=0
and B⇒aux2. Representing each occurrence of an expres-
sion with the same auxiliary variable (instead of introducing
several variables for the same expression) is automatically
and computationally cheap performed by common subex-
pression elimination.

3. Sources of Common Subexpressions in
CSPs of Planning Problems

In this section we present the general sources of common
subexpressions in constraint models of planning problems,
obtained by state-of-the-art modelling techniques as de-
scribed in the background section.

Common subexpressions in CSPs of planning problems
originate in constraints corresponding to effects, precondi-
tions and frame axioms. Our hypothesis is that a model con-
tains common subexpressions if two or more actions share
conditions in preconditions, effects or frame axioms.

1.Common Subexpressions in the Basic Model In the
basic model, preconditions and effects are expressed by
Equation (1) and (2), respectively. Assume two actions
act1 and act2 share conditions in their preconditions, e.g.
Pre(act1)s = a∧b∧c and Pre(act2)s = b∧d share condition
b, where a, b, c, d are arbitrary conditions. Then the precon-
dition constraint in Equation (1) will share arguments, hence
contain common subexpression b:

(As = act1) ⇒ (a ∧ b ∧ c)s (case A)
(As = act2) ⇒ (b ∧ d)s

The same holds if act1 and act2 share a condition in ef-
fects Eff(act1) and Eff(act2), when representing effects by
Equation (2). Hence if two actions share a condition in in
their preconditions/effects, then the corresponding precon-
dition/effect constraints (Equation (1) and (2)) will always
contain a common subexpression.

The frame axioms in the basic model are given by Equa-
tion (3). If two actions act1 and act2 have the same frame
axiom, then both frame axiom constraints will share the
common subexpression (V s

i =V s+1
i ): (case B)

(As=act1)⇒(V s
i =V s+1

i ), (As=act2)⇒(V s
i =V s+1

i )

Therefore, if two actions share frame axioms then this will
always result in a common subexpression in the frame ax-
ioms according to Equation (3).

2.Common Subexpressions in the Supporting-actions
Model Preconditions in the supporting-actions model are
formulated as in the basic model (see (case A)). The effect
formulation uses supporting actions in Equation (4). Hence
if two actions act1 and act2 share conditions in their effect,
the effect constraints from (4) will be

(Ss
i = act1) ⇒ (V s

i = val) (case C)
(Ss

i = act2) ⇒ (V s
i = val)

where the common subexpression V s
i = val is the effect

shared by act1 and act2. Note, that shared frame axioms
will not result in common subexpressions, in contrast to the
basic model. The reason for this is that the supporting ac-
tion Ss

i in the frame axiom constraint (Equation (5)) does
not consider the actual action that leaves the state variables
unchanged (i.e. effectively, the supporting action represen-
tation ‘eliminates’ this kind of common subexpressions by
introducing ‘no-op’).

3.Common Subexpressions in the Successor-state Model
While preconditions are formulated using Equation (1) as in
the basic model (see (case A)), effects and frame axioms are
merged into one constraint, stated in Equation (6). If the
condition of an action, act1, effects two state properties V s

i
and V s

j , then subexpression As = act1 is occurs twice in the
successor-state constraint, as illustrated in (case D):

V s
i = val1 ↔ (case D)

(As−1=act1∨As−1=act2) ∨ (V s−1
i =val1 ∧As−1 ∈ N(i))

V s
j = val2 ↔

(As−1=act1∨As−1=act3) ∨ (V s−1
j =val2 ∧As−1 ∈ N(i))



Eliminating a common subexpression, i.e. representing
each occurrence by the same auxiliary variable during flat-
tening, saves (at least) one variable and one constraint per
occurrence, which reduces the resulting constraint instance.
The consequence of this reduction is a significant speed-up
in solving time. Note that the process of common subexpres-
sion elimination does not add any significant computational
effort (Rendl et al. 2009).

In the following sections, we discuss four planning prob-
lems where, when modelled as CSPs, common subexpres-
sions arise. All CSPs are modelled by hand, following one
of the three approaches discussed in the background section.
In the first two examples, the degree of overlap among pre-
conditions, effects and frame conditions is small, and there
are correspondingly few common subexpressions. In the
later examples the opposite is true. The case studies de-
pict the scalability of common subexpressions elimination
on planning CSPs: the more complex the nature of the plan-
ning problem, the more common subexpressions arise and
the more we can enhance it. Hence this enhancement partic-
ularily addresses complex planning problems.

4. Case Study: Sokoban
The well known Sokoban puzzle/game (see Fig. 1) is played
in a 2D virtual warehouse. The problem is to find a sequence
of horizontal and vertical moves for the sokoban such that
every crate is in a goal cell. The sokoban can push a single
crate one cell in the direction that he moves. Neither the
sokoban nor the crates can move onto a wall cell, and no
two objects (sokoban or crate) can occupy the same cell.

Sokoban Constraint Model
The action variable moves represents the direction that the
sokoban moves at step s. The domain of moves contains
four elements, representing the four directions in which the
sokoban can move. The state is represented by variables

• sokPosns: the position of the sokoban at step s

• cratePosnss
i : the position of crate i at step s

Both state variables range over the cells of the warehouse,
that are enumerated row-wise from left to right. Note, that
another possibility would be to have a pair of variables rep-
resenting the coordinate position of the sokoban/crate, but
our formulation allows us to model moving the sokoban and
pushing the crates very simply, as described below.

Figure 1: A Sokoban instance. The single circle repre-
sents the sokoban and the four circles symbolise the crates.
Shaded squares are the goal positions of the crates. From
http://users.bentonrea.com/˜sasquatch/sokoban/

given w, n, pInit, stps:int

given walls:matrix indexed by [WINDICES] of int(0..n-1)

given crates:matrix indexed by [CINDICES]of int(0..n-1)

given goals:matrix indexed by [CINDICES] of int(0..n-1)

letting MOVES be domain int(-w,-1,1,w)

letting STEPS be domain int(0..stps-1)

find sokPosn:matrix indexed by [STEPS] of int(0..n-1)

find cratePosns:matrix indexed by [STEPS,CINDICES]

find move:matrix indexed by [int(0..stps-2)] of MOVES

find crateMoved:matrix indexed by [STEPS] of bool
such that

1 sokPosn[0] = pInit,

2 forall c:CINDICES.cratePosns[0,c] = crates[c],

3 forall s:STEPS. forall wall:WINDICES.

sokPosn[s] != walls[wall],

4 forall s:STEPS. forall c:CINDICES. forall wall:WINDICES.

cratePosns[s,c] != walls[wall],

5 forall s:STEPS. alldifferent(cratePosns[s,..]),

6 forall c:CINDICES. exists g:CINDICES.

cratePosns[stps-1,c] = goals[g]

7 forall s:int(0..stps-2).

sokPosn[s+1] = (sokPosn[s] + move[s]),

8 forall s:int(0..stps-2).forall c:CINDICES.

(sokPosn[s+1] = cratePosns[s,c]) =>

(cratePosns[s+1,c] = cratePosns[s,c] + move[s]),

9 forall s:int(0..stps-2). forall c:CINDICES.

((sokPosn[s+1] = cratePosns[s,c]) ∨
(cratePosns[s+1,c] = cratePosns[s,c])),

10 crateMoved[0] = 0,

11 forall s:int(1..stps-1).crateMoved[s] =

(exists c:CINDICES.sokPosn[s] = cratePosns[s-1,c]),

12 forall s1:int(0..stps-2). forall s2:int(s1+1..stps-1).

(sokPosn[s1] = sokPosn[s2]) =>

((sum s3:int(s1..s2).crateMoved[s3]) > 0),

Figure 2: Constraint model of Sokoban in ESSENCE′.

Each problem instance is instantiated by a set of parame-
ters that scale the warehouse. The parameters are the width
w of the grid, the total number n of cells, the initial positions
of the sokoban (pInit) and crates, the goal positions for the
crates, and the positions of the walls.

Our constraint model is shown in Fig. 2. The first con-
straints, (1) and (2), initialise the state variables. Constraints
(3) and (4) prevent either the sokoban or the crates from ever
entering a wall cell. Constraint (5) prevents any two crates
from being co-located (that the sokoban can never occupy
the same cell as a crate is implied by the push constraints
below). The goal is captured by constraint (6).

The effect of a move of the sokoban is a change of its (and
possibly the crate’s) position. Given the row-wise enumer-
ation of the cells, a move left (right) decreases (increases)
the cell index by 1, while a move up (down) decreases (in-
creases) the cell index by w. Hence, movement can be mod-
elled as a simple summation (7). Note that this is a sim-
plification of an otherwise more expensive effect constraint.
Furthermore, pushing crates can be modelled in the same
way, by adding the precondition that the sokoban occupies
the same cell at step s + 1 as a crate at step s (8). Following
the successor-state formulation (Equation 6), we ensure that
crates are either pushed or stay in the same cell (9).



Finally, we exploit that, if no crate is pushed, it is pointless
for the sokoban to re-visit the same cell. We introduce a
Boolean variable per time step (crateMoved), which is true if
some crate is pushed (10,11). Then, we allow the sokoban to
revisit the same cell only if some crate moved in the interim
(12).

Common Subexpressions in Sokoban
The simple effect constraints and frame axioms lead to a
small number of common subexpressions in Sokoban. The
only source of common subexpressions is the precondi-
tion of the sokoban pushing a crate c at step s, stated by
sokPosn[s+1] = cratePosns[s,c] This condition oc-
curs in constraint (8) that describes the effect of pushing a
crate, in the successor-state constraint (9), and in the implied
constraint (11) that restricts the sokoban to go in circles only
when moving a crate. In summary, we have (s− 1)*c com-
mon subexpressions where s is the length of the plan and c
the number of crates.

5. Case Study: Settlers
The Settlers problem, introduced in the third International
Planning Competition (Long & Fox 2003), is loosely based
on the German board game ‘Die Siedler von Catan’. Each
instance has a goal of constructing various buildings across
a set of cities. Different cities have access to different raw-
materials hence some goods have to be transported between
cities in order to construct the required buildings. There are
three ways of transporting goods: by cart, train and ship.
There are different costs(labour) associated with creating
and operating these forms of transport.

Settlers Constraint Model
In Settlers, actions are the production and transport of goods.
The action variables are

• productions
i,g: units of good g produced in city i at step s

• exportsi,g: the units of good g exported from city i at step s

• importsi,g: the units of good g imported to city i at step s.

Every action variable ranges over the quantity that has been
produced/transported. For reasons of brevity, we focus on
the main state variables:

• buildingBuiltInCitys
i,b: true if building b exists in city i at step s

• buildingRequirementsc,g: the units of good g required for con-
struction work in city c at time step s.

• totalLabours
c: labour at step s in city c

Fig. 3 shows a selection of constraints of the constraint
model of Settlers (Gregory & Rendl 2008). The maximum
number of steps, the amount of cities and building require-
ments are given as parameters.

The production of a particular material requires the prior
construction of the appropriate production site. For instance,
to produce ore at time s, a mine must have been built be-
fore s. We express these precondition constraints follow-
ing the standard approach from Equation (1); an example is

1 forall city:CITES . forall s:STEPS .

(production[s, city,ORE] > 0) ⇒
(buildingBuiltInCity[city,MINE] < s)

2 forall city:CITIES . forall s:STEPS .

(export[s,city,ORE] > 0) ⇒
(buildingBuiltInCity[city,MINE] < (s-1))

3 forall city:CITIES . forall good:GOODS . forall s:STEPS .

buildingRequirement[s, city, good] =

sum building:BUILDINGS .

(buildingBuiltInCity[city,building] = s) *
requirementTable[building,good]

+ houses[city] * houseRequirements[good] * (s=horizon)

4 forall s:STEPS . forall city:CITIES .

totalLabour[s,city] =

sum building:BUILDINGS .

(buildingBuiltInCity[city,building] = s)*
labour[building])

+ (sum good:GOODS .

production[s,city,good]*labour[good])

Figure 3: Selection constraints of the Settlers Model in ESSENCE′

given in constraint (1). Since export succeeds production,
we add similar precondition constraints for exporting a par-
ticular good (for an example see constraint (2)). For every
city and step, we constrain buildingRequirement to equal the
sum of goods needed to build construction sites and houses
(constraint (3)). We measure the quality of a plan for Set-
tlers by the amount of labour required. The total labour is
restricted by constraint (4).

Common Subexpressions in Settlers
There are two main sources of common subexpressions. The
first source results from a shared precondition of production
and export of a particular good at step s: the appropriate pro-
duction facility must have been built before s. Fig. 3 shows
the precondition constraint for production(1) and export(2)
concerning ore production. Both constraints share subex-
pressions of the form ‘buildingBuiltInCity[city,MINE]<s’ stat-
ing the precondition that a mine in city was built before step
s. This kind of common subexpression occurs for every city,
step and production facility (e.g. mine), thus c*s*5 times
where c is the number of cities, s the number of steps and 5
the number of production facilities.

The second source of common subexpressions arises be-
cause the construction of a building b in city c effects both
the requirement of goods in c and the amount of labour
for building b. Constraint (3) in Fig. 3 describes the
good requirements, constraint (4) the amount of labour
in each city. Both constraints share the subexpression
‘buildingBuiltInCity[c,b]=s’ stating that b was built in c at step
s. In each problem instance, there are 5*c*s common subex-
pressions of this form, where c is the number of cities, s the
number of steps and 5 the number of production facilities.

6. Case Study: Peg Solitaire
Peg Solitaire (see CSPLib 37) is played on a board with a
number of holes. In the English version of the game, the
board is in the shape of a cross with 33 holes. Pegs are
arranged on the board so that at least one hole remains.



Moves are draughts/checkers-like and are horizontal or ver-
tical. There are several variations of peg solitaire. We focus
on the classic reversal game in which an initial state with
just one peg missing is transformed into a state with a single
peg remaining in the same location as the initial hole (Fig. 4
shows a sample instance).

Constraint Models of Peg Solitaire
The action variables movess represent the particular move
(transition from one cell to another) chosen at step s. moves
ranges over the 76 possible moves. The state variables
boards

i represent the state of cell i at step s as a boolean
value: if true, the cell is occupied by a peg, if false it is
empty. It takes 31 steps to remove 31 pegs.

Based upon these variables, we consider two model vari-
ants (Fig. 5). The first is action-centric: for a given move
it describes the cells that change and those that stay the
same (1), which corresponds to the basic model represen-
tation from the Background section. The second is state-
centric: for each cell, it describes the moves that cause it
to change state and those that leave it unaffected (2), which
corresponds to the successor-state model. Both models share
initial/goal constraints and the implied constraint.

Common Subexpressions in Peg Solitaire
The representation of a state in Peg Solitaire is more com-
plex than for Sokoban, consisting as it does of 33 Boolean
variables per step. Since each move affects three cells on the
board (and leaves 30 unchanged), there is considerable over-
lap: The removal of a peg from a particular cell can result
from up to 8 different moves, i.e. it is a shared effect. Like-
wise, the reverse action, placing a peg into a hole, is shared
among up to 4 different moves. The biggest overlap occurs
in the frame axioms, as a particular cell is left unchanged
by up to 72 different actions. It is from this overlap that
the common subexpressions in the frame/effect/precondition
constraints stem.

In the action-centric model, we detect common subex-
pressions that result from effect constraints, as illustrated in
(case A) in Section 3. For instance, moves ‘36’ and ‘37’
both remove a peg from the centre hole(17), expressed in
the constraint (1) in Figure 5), so both actions share effects:

(movess= 36)⇒ (boards
17>boards+1

17 ∧ ...)
(movess= 37)⇒ (boards

17>boards+1
17 ∧ ...)

Specifically, a standard instance of the action-centric model
has 3,999 common subexpressions, which when eliminated,

Figure 4: Peg Solitaire start (left) and goal (right) board states:
black dots mark pegs and white dots mark empty cells.

given reversal:int

letting CELLS be domain int(1..33)

letting moveNumber, start, middle, end ... $ Lookup tables

find moves:matrix indexed by [int(0..30)] of int(1..76)

find board:matrix indexed by [int(0..31), CELLS] of bool
such that $ Initial & goal states

forall c: CELLS. (c != reversal) ⇒ (board[0,c] = true),

board[0,reversal] = false,

forall c: CELLS. (c != reversal) ⇒ (board[31,c] = false),

board[31,reversal] = true,

$ Implied: the number of pegs decreases every step

forall s : STEPS .

32-s = (sum i : FIELDS . bState[s,i])

1 $ Action-centric constraints (basic model)

forall s:int(0..30). forall c1,c2:CELLS.

(moves[s] = moveNumber[c1,c2]) ⇒
((board[s,c1] > board[s+1,c1]) ∧
(board[s,middle[c1,c2]] > board[s+1,middle[c1,c2]]) ∧
(board[s,c2] < board[s+1,c2]))

2 $ State-centric constraints (successor-state model)

forall s:int(0..30).forall c:CELLS.

(board[s,c] > board[s+1,c]) ⇔ $ peg removal

(exists c1,c2:CELLS.

(c1 != c2)∧
(moves[s] = moveNumber[c1,c2])∧
((c = start[c1,c2]) ∨ (c = middle[c1,c2]))

forall s:int(0..30).forall c:CELLS.

(board[s,c] < board[s+1,c]) ⇔ $ peg insertion

(exists c1,c2:CELLS.

(c1 != c2)∧
(moves[s] = moveNumber[c1,c2])∧
(c = end[c1,c2]))

forall step : int(0..noSteps-1) .

forall c : CELLS . $ frame axioms

(bState[step, c] = bState[step+1,c]) ⇔
(forall c1 : CELLS . (c != c1) =>

( (moves[step] != moveNumber[c,c1]) ∧
(moves[step] != moveNumber[c1,c]) ∧
forall c2 : CELLS .

((( moveNumber[c1,c2] != 0) ⇒
((c = middle[c1,c2] ⇒
(moves[step] !=moveNumber[c1,c2])

) ) ∧
(( moveNumber[c2,c1] != 0) ⇒
((c = middle[c2,c1] ⇒
(moves[step] != moveNumber[c2,c1])

))))),

Figure 5: Action-centric (1) and State-centric (2) constraint mod-
els of peg solitaire reversals in ESSENCE′.

save 75,857 auxiliary variables (i.e. reducing the number of
auxiliary variables from 80,104 to 5,425).

In the state-centric model, common subexpressions arise
in the successor-state constraints, illustrated as (case D) in
Section 3. As an example, consider the first two constraints
in (2) in Figure 5, describing the possible actions when a
peg is removed/inserted: for move ‘36’ (moving the centre
peg(17) to north) there are 2 occurrences of movess=36:

(boards
17>boards+1

17 )⇔ (movess = 36 ∨ ...)
(boards

17<boards+1
17 )⇔ (movess = 36 ∨ ...)

A typical instance of the state-centric model contains 5,890
common subexpressions, which when eliminated, save



Figure 6: Screenshot of Taito’s Plotting game.

30,039 auxiliary variables (reducing the number of auxiliary
variables from 38,750 to 8,711).

7. Case Study: Plotting
Plotting is a puzzle game made by Taito in 1989, see Fig.
6. It is played on a 14x14 grid, where the perimeter is com-
posed of solid wall cells. The sub-grid on the bottom-right
of the play area contains an arrangement of blocks of one of
four types (for simplicity we exclude a fifth, wildcard, type
from the grid). The player avatar can move up and down
the first column. The avatar carries a single block of one
of the types. It can throw this block horizontally along the
row it occupies. At the start of the game, the avatar carries a
wildcard. The effects of throwing a block against a wall are:

• If it hits a wall as it is travelling right, it falls vertically
downwards. Additional walls are arranged to facilitate
hitting the blocks from above, as shown in the figure.
This arrangement varies with instances of the puzzle —
in harder instances wall cells are placed so as to prevent
throwing blocks along some rows and columns.

• If it falls onto a wall, it rebounds into the avatar’s hand.
A thrown wildcard transforms into the same type as the first
block it hits. For the other block types:
• If the first block a thrown block hits is of a different type

from itself it rebounds into the avatar’s hand.
• If a block A hits a block B of the same type, B is con-

sumed and A continues to travel in the same direction.
All blocks above B fall one grid cell each.

• If a thrown block A, having already consumed a block
of the same type, hits a block B of a different type, A
replaces B, and B rebounds into the avatar’s hand.

If, after making a throw, the block that rebounds into the
avatar’s hand is such that there is now no possible throw
that can further reduce the blocks, the player loses a life and
the block in the avatar’s hand is transformed into a wildcard
block. The game is over if the player has no lives remaining.
The aim of the game is to reduce the initial configuration of
blocks so that at most some specified number remain.

Plotting Constraint Model
Plotting can be seen as a planning problem. Our model
captures an attempt to find a mistake-free solution to an in-
stance, so moves leading to a loss of life will not be allowed.

The constraint model is very large, so we restrict our discus-
sion to the main features of the model.

A single action is possible at each step. We abstract away
the use of the wall cells, and assume simply that the avatar
throws a block either along one of the r rows or down one
of the k columns. This is modelled using the pair of action
variables:

• trows
i : the row along which a block is thrown (0..r)

• tcolsj the column along which a block is thrown (0..k)

The 0 value is used to record that no block was thrown along
a row (or column) at this time step. A simple constraint
ensures that exactly one of this pair of variables takes the
value one at each time step.

There are several variables representing the state:

• hands: the block in the avatar’s hand at step s; ranges over
the different block types (represented by integers)

• grids
i,j : the state of cell at row i and column j; ranges over

all block types, including 0 (empty)

An instance is obtained by instantiating the following pa-
rameters: the number of steps in the plan, the width k and
height r of the grid of blocks; the initial contents of the grid;
the number of steps allowed s; the goal number of blocks
remaining; and the number of block types (a generalisation
of the original problem).

The initial wildcard in the avatar’s hand is modelled sim-
ply by leaving hand at step 0 unconstrained. We constrain
each move to be useful (remove at least one block) by insist-
ing that the sum of each grids is less than that of grids−1.

Effects and frame axioms are modelled according to the
basic model in Section 2. The main effects are: grid cells
becoming empty or changing block type and changing the
block type in the hand. Frame axioms are: grid cells and the
hand remaining unchanged. Due to the extent of the con-
straint model we do not go into further detail1.

Common Subexpressions in Plotting
Plotting is the most complex of our case studies and has
the most common subexpressions, arising from precondition
effect and frame axiom constraints corresponding to (case
A,B) in Section 3. Important overlaps are:
• Cell status: many common subexpressions stem from the

shared condition that a cell is empty at step s. It is an
effect of hitting blocks, a precondition for hitting consec-
utive blocks, and also contained in the frame axiom that
an empty cell will always stay empty. Similarly, the op-
posite condition, that a cell contains a block at step s is
shared among effects and preconditions.

• Throwing blocks: the precondition that a block is thrown
from a (particular) row or column is shared among several
actions, such as aiming for a particular wall or block type.

• Frame axioms: many cells are unaffected by different
shots, another source of common subexpressions.

1The Plotting constraint model is available at: http://www.cs.st-
and.ac.uk/∼andrea/tailor



• Comparing block types: the precondition that the block in
the avatar’s hand is the same as a particular block in the
grid applies to different actions on the grid. The oppo-
site precondition, that the types differ, is also shared by
different actions.

• Shared conjunctions of conditions: there are several con-
junctions of the above mentioned conditions that form an-
other big group of common subexpressions. For instance,
the conjunction of “cell (1,4) is not empty” and “cell(4,1)
has the same block type as the hand” is shared among
the action “shoot from row 4 at cell(4,1)” and the action
“shoot from column 1 at cell(4,1)”.

8. Experimental Results
We formulated each model in the solver-independent mod-
elling language ESSENCE′ and used Tailor v0.2 (Gent,
Miguel & Rendl 2007) to flatten each instance for input
to the constraint solver Minion v0.7.0 (Gent, Jefferson &
Miguel 2006). Tailor provides optional common subex-
pression elimination, hence for every problem instance, we
generate one file with common subexpression elimination
and one without. This translation process takes the same
amount of time in both cases since common subexpression
elimination is a particularily cheap enhancement technique.
We solve both instances with the same branching heuris-
tic(action variables before state variables) and same search
heuristic on the same machine (dual-Xeon 5430, 2.66GHz,
8GB RAM, Linux 2.6.18-92.1.13.el5).

First, we compare runtimes (summarised in Fig. 7). We
see significant run time improvements in the Plotting prob-
lem and both models of Peg Solitaire. Each of these families
can give a 10× or better speedup. The speedups generally
improve with problem difficulty. Benefits are slight on the
Sokoban instances, ranging from no improvement to only
a 7% speedup, although the speedup did improve slightly
as problems got harder. For Settlers we saw mixed results:
while we did get up to a 15% speedup, a few instances ran
up to 6% slower when elimination was used. This slight
slowdown may be due to fluctuations in performance from
run to run, or detailed features of Minion performing differ-
ently on the different instances. Speedups are mostly due to
reduction in work for the same nodecount. Most instances
took the same number of search nodes with and without
elimination. The exceptions were the state model of Peg
Solitaire, and Plotting. For those Solitaire instances, nodes
searched was reduced by about 2.5 times, so even here we
see the runtime reduction was greater than the nodecount. A
small number of Plotting instances showed a tiny reduction
in search. This reduction in nodes searched due to common
subexpression elimination has been noted and explained be-
fore (Gent, Miguel, & Rendl 2008).

Second, we compare the size of problem instances with
and without common subexpression elimination. Results in
Fig. 8 show that we always use fewer auxiliary variables this
way. The smallest factor is 1.03, i.e. a 3% improvement,
and the largest represents a factor of 12.5× fewer auxiliary
variables. It is particularly interesting that the reduction in
each family is very consistent across problem size. We ob-
tained similar results (not illustrated) when we looked at the

number of constraints in each instance. Again results were
consistent in each family, the maximum factor being 9.4×.
We observe that there is, as we expected, a strong correla-
tion between families for which we obtain large reductions
in the size of problems, and for which we obtain good run-
time improvements.

9. Discussion & Conclusions
We discuss the general sources of common subexpressions
in constraint models of AI planning problems. For illus-
tration, we consider four case studies of different complex-
ity, in which we formulate constraint models using standard
techniques and highlight the sources of common subexpres-
sions. Our empirical analysis demonstrates the potential
benefits of eliminating common subexpressions, a compu-
tationally cheap procedure. For the problems that exhibited
the greatest overlap, Peg Solitaire and Plotting, the reduction
in solving time when common subexpressions were elimi-
nated was dramatic and reached up to a 18× speedup.

(Barták & Toropila 2008) suggest the use of table
constraints to express preconditions/effects/frame axioms.
While this would eliminate many common subexpressions,
it is not always feasible. Consider the Plotting problem. The
number of state variables involved in, for example, action
preconditions would mean that the table constraints required
would have a very high arity and would therefore be very
cumbersome to specify and to propagate.
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Figure 7: Solving time speed up. The (logarithmic) x-axis represents the solving time with elimination. The y-axis gives the
factor to multiply this by to obtain the solving time without elimination. As an example, typical Peg Solitaire Action instances
are solved 8× faster with common subexpression elimination. Points above y = 1 represent instances which is solved faster
with elimination than without. Flattening time is excluded but is usually similar with or without elimination.
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Figure 8: Reduction of Auxiliary Variables. The x-axis represents the number of auxiliary variables introduced with common
subexpression elimination, and the y-axis the factor reduction over not using elimination. As an example, Plotting instances
with common subexpression elimination have only 1

6 of the number of auxiliary variables than Plotting instances without. All
points are above y = 1, so we always use less variables when using elimination. Peg Solitaire instances only differ in the
starting hole, so they all have the same number of auxiliary variables.


