
Importance of Variables Semantic in CNF Encoding of Cardinality Constraints

Anbulagan
NICTA & The Australian National University

Canberra, Australia
anbulagan@nicta.com.au

Alban Grastien
NICTA & The Australian National University

Canberra, Australia
alban.grastien@nicta.com.au

Abstract

In the satisfiability domain, it is well-known that a SAT al-
gorithm may solve a problem instance easily and another in-
stance hardly, whilst these two instances are equivalent CNF
encodings of the original problem. Moreover, different algo-
rithms may disagree on which encoding makes the problem
easier to solve. In this paper, we focus on the CNF encoding
of cardinality constraints, which states that exactlyk proposi-
tional variables in a given set are assigned totrue. We demon-
strate the importance of the semantics of the SAT variables in
the encoding of this constraint. We implement several vari-
ants of the CNF encoding in which the close semantic vari-
ables are grouped. We then examine these new encodings on
problems generated from diagnosis of discrete-event system.
Our results demonstrate that both stochastic and systematic
SAT algorithms can now solve most of the problem instances,
which were unreachable before (Grastienet al. 2007). These
results also indicate that, on average cases, there is an encod-
ing that suits well both SLS and DPLL algorithms.

Introduction
The fast growing research in propositional satisfiability
(SAT) has a positive impact on solving an increasing num-
ber of practical applications, including diagnosis, plan-
ning, scheduling, hardware and software verification, among
many others. Basically, an application problem will be en-
coded into a CNF formula, which will then be solved using a
SAT solver. It has been shown in SAT planning (Ernst, Mill-
stein, & Weld 1997) that the SAT encoding of a problem
can have huge impact on the runtime. This paper focuses on
CNF encodings of cardinality constraints, which state that
a given number of propositional variables within a specified
subset of the variables in the SAT problem is assigned to
true. The constraint is defined on a set of variables, and can
be encoded by several equivalent ways depending on the or-
der in which the variables are integrated in the constraint.
We show that this ordering has a huge impact on the runtime
of both SLS and DPLL algorithms.

We examine the encoding of cardinality constraints in
discrete-event system (DES) diagnosis problems, but the re-
sults can be generalized to other problems. DES diagno-
sis is the problem of determining whether the behavior of

Copyright c© 2009, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

a system is normal or faulty according to the observations
generated by this system. The use of SAT algorithms in bet-
ter solving the DES diagnosis problems was first proposed
in (Grastienet al. 2007), where the results demonstrated
that SAT algorithms outperformed the traditional diagnosis
algorithms. However, the SAT algorithms were still unable
to solve about 30% of the SAT-encoded instances exam-
ined in that study (within 1200 seconds each), particularly
the diagnosis problem under partially ordered observations.
Therefore, in this paper we propose several variants of CNF
encodings of cardinality constraints in which the close se-
mantic variables are grouped. Experimental results indicate
that both stochastic and systematic SAT algorithms can now
solve most of the problem instances, which were unreach-
able before (Grastienet al. 2007). Another important find-
ing is that, on average cases, there is an encoding that suits
well the SAT algorithms.

CNF Encoding of Cardinality Constraints
The cardinality constraint in a SAT problem is the following:
given a setS of n propositional variables, exactlyk variables
of S are assigned totrue, wherek ≤ n.

The following set of naive rules can be used to encode the
constraint into CNF form without auxiliary variables:

i) For any subset{v1, . . . , vk+1} of k + 1 variables ofS,
specify that at least one variable must be assigned tofalse:
¬v1 ∨ · · · ∨ ¬vk+1.

ii) For any subset{v1, . . . , vn−k+1} of n − k + 1 variables
of S, specify that at least one variable must be assigned to
true: v1 ∨ · · · ∨ vn−k+1.

However, it requires n!
(k+1)!×(n−k−1)! + n!

(k−1)!×(n−k+1)!

clauses which makes it impractical for anyk > 1. For the
special case wherek = 1, Marques-Silva and Lynce (2007)
proposed an encoding that is better than the naive one.

Another encoding method introduced by Bailleux and
Boufkhad (2003) and further studied by Sinz (2005) is the
one based on atotalizer (also called circuit). The totalizer
is a tree (see Figure 2) whose leaves are labeled with the
variables ofS. The nodes of the tree are labeled with aux-
iliary variables modeling a number; the constraints on the
totalizer ensure that this number equals the number of vari-
ables assigned totrue in the leaves of this node subtree. The
variables on the root are assigned to ensure the constraint.



To model an integer between0 and a maximum valueK
(for instanceK = k) at a node, the literature proposes the
binary and the unary encodings.

Binary Encoding A number is modeled with the usual
binary encoding as proposed in (Warners 1998). Let
a1, . . . , ai be the set of variables used to model the in-
tegera; the value ofa is Σj∈{1,...,i}(val(aj) × 2j−1)
whereval(aj) = 1 if aj is set totrue or v(aj) = 0 oth-
erwise. For instance, the assignement{a1 → true, a2 →
false , a3 → true, a4 → true} of the four variables of a
numbera corresponds to value1 + 0 + 4 + 8 = 13. This
encoding requiresdlog2(K)e variables.
The constrainta + b = c requiresdlog2(K)e − 1 in-
termediate variableszj representing the carry numbers
in the addition, and is modeled by alog2(K) clauses
representing the following Boolean constraints:zj ↔
(aj ∧ bj) ∨ (zj−1 ∧ (aj ∨ bj)) andcj ↔ aj ⊕ bj ⊕ zj−1.

Unary Encoding This encoding was proposed by Bailleux
and Boufkhad (2003). Leta1, . . . , ai be the set of vari-
ables used to model the integera; val(a) ≥ p iff ap is set
to true. For instance, the assignement{a1 → true, a2 →
true, a3 → true, a4 → false} of the four variables of a
numbera corresponds to value3. This encoding requires
K variables.
The additiona+ b = c is modeled based on the following
properties: (a ≥ p) ∧ (b ≥ q) ⇒ (c ≥ p + q) and
(a < p + 1) ∧ (b < q + 1) ⇒ (c < p + q + 1). The
encoding of these properties requiresK2 ternary clauses
plusK2 binary clauses but no additional variables.

Diagnosis by SAT
This study takes place in the context ofdiscrete-event sys-
tem(DES) diagnosis (Lamperti & Zanella 2003). We briefly
present the diagnosis problem and show how it is related to
cardinality constraint in SAT encoding.

We consider a plant modeled by a DES, which is basically
a finite automaton where transitions are labeled by the events
that occur when the transition is triggered. The automaton
is represented in a symbolic manner: a state is modeled by
the assignment ofstate variablesand the transitions are de-
scribed byrules that indicate (i) what precondition the state
must satisfy to enable the transition; (ii) what effect the tran-
sition has on the valuation of the state variables; and (iii)
which events are associated with the transition. A sequence
of states and transitions on the DES is called a trajectory; it
models a behavior of the plant.

Some events are observable which means that an obser-
vation is emitted when they occur, for instance an alarm to
the supervisor. The supervisor compares the model with the
sequence of observations to retrieve what happened on the
plant, such as which parts of the system are broken.

Grastienet al. (2007) proposed to solve this problem us-
ing SAT algorithms. Basically, given a maximum lengthn
for the trajectory that models what actually happened on the
plant, propositional variablessi (resp. ei andri) are cre-
ated to represent the valuations = true of state variables
(resp. the occurrence of evente and the triggering of ruler)

at timestepi. The model of the system and the observations
define constraints on the variables, which are encoded into
CNF clauses.

Let {f1, . . . , fm} be the set ofm faulty events that can
possibly happen on the system. The approach consists in
finding a trajectory that minimizes the numberk of oc-
currences of faulty events. This cardinality constraint de-
notedQuek is expressed by ensuring that exactlyk variables
are set totrue in F = {f1, . . . , fm} × {1, . . . , n} where
〈fi, j〉 = f

j
i . In this paper, we focus on the various encod-

ings of the constraint.

New Encodings of Cardinality Constraints
We claim in this paper that the encoding of a totalizer re-
quires two parameters. The first parameter corresponds to
the node encoding. The second one, which to our best
knowledge was not clearly identified in the literature, is the
addition ordering: whether we should specify(a+ b)+ (c+
d) = k or ((a+ c)+d)+ b = k. We present several variants
of encodings based on the combination of these parameters.
We also propose two hybrid encodings.

The Three Node Encodings
The node encoding is the representation of the integer value
associated with each node of the totalizer. For the purpose of
this encoding, we use the binary (denotedB) and the unary
(denotedU) encodings presented above. Moreover, we pro-
pose a new unary-based encoding of the propertya + b = c
(denotedA). In this encoding, each variablebj of b is in-
terpreted as a number that equals to1 if the variable is set
to true and0 otherwise; the value ofb is the sum of these
numbers. Rather than computing directlyc = a + b, we
computec = ((a + b1) + b2) + · · · + bK . Let ci, encoded
by variablesci

1, c
i
2, . . . , denote the number corresponding to

the addition of firsti variables ofb to a. Thus,c0 = a. Since
ci + bi+1 = ci+1, thenci+1

j ↔ ci
j ∨ (ci

j−1 ∧ bi+1) where
ci
0 = true for all i. This is described in Figure 1, where each

box corresponds to a propositional variable. This figure rep-
resents the addition of a numbera in [0, . . . , 5] with a num-
ber b in [0, . . . , 3]. Sincebi → bi−1, the propertycj

i = ci
i

stands forj > i; thus, the variables represented in grey color
in the figure can be removed. If the maximum valueK is the
same for each number, this encoding requiresK×(K−1)

2 in-
termediate variables andK2 ternary clauses plusK2 binary
clauses.

1

b1

b2

b3

a1 a2 a3 a4 a5

c1

1 c1

2 c1

3 c1

4 c1

5 c1

6

c2

1 c2

2 c2

3 c2

4 c2

5 c2

6 c2

7

c3

1 c3

2 c3

3 c3

4 c3

5 c3

6 c3

7 c3

8

c0
= a

b

c1

c2

c3
= c

Figure 1: TheA modeling of the addition for unary encoding



d3 f2 d2 g1 h2 h1 f3 e1 e3 g3 g2 f1 e2 d1 h3

a. Addition orderingR (random on a balanced tree)

d1 d2 d3 e1 e2 e3 f1 f2 f3 g1 g2 g3 h1 h2 h3

b. Ordering based on variable groupingC with tree shapeF (CF)

d1 d2 d3 e1 e2 e3 f1 f2 f3 g1 g2 g3 h1 h2 h3

nd ne nf ng nh

c. Ordering based on variable groupingC with tree shapeI (CI).
Each dashed line groups variables of the same component.

d1 d2 d3 e1 e2 e3 f1 f2 f3 g1 g2 g3 h1 h2 h3

nd ne nf ng nh

d. Ordering based on variable groupingC with tree shapeG (CG).
Each dashed line groups variables of the same component.

Figure 2: Examples of addition ordering in the totalizer forfive events and three timesteps



The Seven Addition Orderings
Given the setS of CNF variables for which the constraint
must be enforced, we now design a tree (the totalizer) where
every variable ofS is assigned to exactly one leaf. We pro-
pose7 addition orderings. We illustrate 4 out of the 7 order-
ings in Figure 2, by using a diagnosis problem withm = 5
faulty events{d, e, f, g, h}, andn = 3 timesteps{1, 2, 3}.

A balanced tree is generated with leaves assigned ran-
domly by CNF variables; this ordering is denotedR and
sketched in Figure 2a. The other six addition orderings are
defined as the combination of twovariable groupingsand
threetree shapes.

The variable grouping tends to assign the variables in the
tree in such a way as to put together the variables with close
semantic. Variables in the diagnosis problem have two pa-
rameters: on which component the event occurred and at
which timestep. We group the variables based on the same
component (C, Figures 2b–d) or the same timestep (T).

The tree shape indicates how the tree is built, given the
variable grouping. The three shapes we considered are:
F a balanced tree where the leaves are filled according to

the grouping method chosen (Figure 2b);

I incremental addition of subtrees, where each subtree cor-
responds to one group (Figure 2c);

G a balanced tree of subtrees, where each subtree corre-
sponds to one group (Figure 2d).

The Two Hybrid Modelings
In a sub-problem and for a given SAT solver, an encoding
Que1

k of the cardinality constraint may be easier to solve
than another encodingQue2

k, and conversely for another
sub-problem. Thus, the diagnosis problem can be mod-
eled by using several encodings of the cardinality constraint:
Que1

k ∪ · · · ∪ Quen
k . In case the SAT solver is able to de-

termine, thanks to its own heuristics, whichQuei
k encod-

ing is the most efficient, the SAT solver may reason only on
this encoding; when this constraint is solved, the variables in
the other encoding will be automatically fixed through unit
propagation. Such an approach would potentially take bene-
fit from both encodings. In this study, we present the hybrid
modelingsUCI—UTI (UCTI), andUCG—ACG (UACG)
that vary only one parameter of the encoding. In our initial
experiments, the other hybrid modelings showed the same
performance as the ones studied here.

The New Encodings
Table 1 lists the new encodings proposed in the study, where
α andβ represent the node encoding and the addition order-
ing respectively. We defined21 combinations of three node
encodings (B, U andA) with seven addition orderings (R,
CF, CI, CG, TF, TI andTG). We also defined two hybrid
modelings (UCTI andUACG).

Empirical Validation
Generating Various CNF-encoded Instances
We evaluated the 23 encodings presented in Table 1 on the
hardest satisfiable and unsatisfiable CNF-encoded diagnosis

β → R C T
α ↓ F I G F I G

B BR BCF BCI BCG BTF BTI BTG
U UR UCF UCI UCG UTF UTI UTG
A AR ACF ACI ACG ATF ATI ATG

hybrid UCI—UTI (UCTI) UCG—ACG(UACG)

Table 1: List of the23 encodings of cardinality constraint

problems examined in (Grastienet al. 2007):

• satisfiable problems:timed-hard-s, total-medium-s, total-
hard-s, partial-medium-s, partial-hard-s;

• unsatisfiable problems: timed-medium-u, timed-hard-
u, total-easy-u, total-medium-u, total-hard-u, partial-
medium-u, partial-hard-u.

For each problem, we generate 20 instances corresponding
to a number of faults ranging from1 to 20. The number of
variables, on which the cardinality constraint is defined, is
about 300 times the number of faults.

Variable Numbering based Encodings The CNF file that
encodes the SAT problem represents each variable by an in-
teger. We considered that a SAT solver may be influenced
by these numbers,e.g., a SAT solver may branch on the vari-
ables with a small number first. Thus, we proposed two
numberings of the variables: in the first case (denotednT ),
the first numbers are given for timestep0, then for timestep
1, etc. In the second case (denotednC), the first numbers
are given for the first component, then for the second com-
ponent, etc.

Hyper-resolution in Modeling We extend the encoding
of the diagnosis problem with hyper-resolution rule. This
extension, denoted +H, generates additional binary clauses
and appears when all the rules associated with a specific
event have the same effecta. Formally, we have the fol-
lowing clauses:¬e ∨ r1 ∨ · · · ∨ rk and∀i ∈ {1, . . . , k},
¬ri ∨ a, which implies¬e ∨ a. This feature has a very little
cost and increases the number of clauses by about 1%.

SAT Solver Selection

From a number of state-of-the-art SAT solvers, we selected
R+DDFW+ (Ishtaiwi et al. 2006) and MINI SAT v2 (Eén &
Sörensson 2004) to represent stochastic local search (SLS)
and DPLL-based systematic search, respectively. The idea
behind choosing both solvers is to observe whether they be-
have asymmetrically with respect to the various encodings.

DDFW+ is a clause weighting algorithm, which adapts
clause weights according to the degree of stagnation in the
search. The R+DDFW+ solver is an enhanced version of
DDFW+ by incorporating a resolution-based preprocessing,
which adds resolvents of length≤ 3 into the original for-
mula and then applies unit propagation to the formula. We
selected R+DDFW+ for its excellent performances shown
in (Ishtaiwiet al. 2006), where it outperforms the other best
SLS solvers over a range of random and structured bench-
mark problems.



Clause learning DPLL solvers are reputable in solving
CNF-encoded industrial problems, which can be large in
number of clauses and variables, and contain certain hard
structures. In this category, MINI SAT is well-known as one
of the best solvers. Therefore, in our study, we use MIN-
ISAT v2 featuring variable elimination style simplification,
as it outperforms the other versions in MINI SAT family.

Results and Analysis
The experiments were conducted on a cluster of 16 Intel Duo
Core processors running at 2.4 GHz with 4 GB of RAM, as
we had to run 31280 processes, which were allowed to use
1200 seconds each. In Table 2, we present the general total
of solvers runtime per modeling heuristic on all satisfiableor
all unsatisfiable problem instances. We then zoom in some
selected results in Figure 3 and Tables 3–4. In Tables 2–4,
the number of instances on which each solver failed is indi-
cated in brackets before the total runtime. Each unsolvable
instance contributes 1200 seconds to the total runtime.

From the Point of View of CNF Encodings

On Node Encodings Table 2 confirms the results pre-
sented in (Bailleux & Boufkhad 2003) that, while the binary
encoding (B*) creates fewer variables and clauses than the
unary encodings (U* and A*), the latter are easier to solve.
The runtime of R+DDFW+ increases by about 30% when
usingA* encodings rather thanU* encodings, while MIN-
ISAT has almost the same performances on both encodings.

On Addition Orderings Both Table 2 and Figure 3 show
that the random ordering (*R) is more difficult for MIN-
ISAT to solve. Figure 3a confirms that the runtime of MIN-
ISAT is improved at least by two orders of magnitude in
some cases, when comparingUR encoding with the other
U* ones. Our additional tests also show that MINI SAT can-
not solve most of theUR-encodedpartial-medium-uprob-
lem instances when allowed five hours per instance. A fur-
ther analysis of the results shows that the clauses learnt dur-
ing the search in case ofUR are approximately two times
longer than for the otherU* encodings.

It also clearly appears that the variable orderingC (*C*)
makes the problem easier for MINI SAT (see Table 4). Our
explanation is that the solver benefits from the fact that the
intermediate variables in the encoding of cardinality con-
straints have useful semantics. Indeed in a diagnosis prob-
lem at some point of the search, it is often known that a
given faultf did not occur between timestepi andj. Con-
sider that faulte did not occur: the nodene, in the totalizer
of Figure 2d, can be automatically assigned tofalseby unit
propagation; while with the random totalizer, nothing can
be propagated. We observe that the improvement achieved
by the DPLL solver from the variable ordering *R to *CG
is more important than the improvement achieved from the
encoding of numbersB* to U* or A*.

On the other hand, as shown in Figure 3b, R+DDFW+

performs almost equally for most of the encodings. There is
however an interesting counter example in *TI. Using tree
shapeI can generate long chains of dependencies. This

Solver Heuristic nT nC nT +H nC+H
BR (23) 42 960 (17) 39 471 (15) 26 248 (15) 25 435
BCG (23) 43 446 (18) 37 881 (14) 25 982 (13) 23 805
BCI (22) 41 601 (19) 40 638 (16) 25 073 (17) 26 660
BCF (19) 41 238 (16) 38 538 (16) 27 570 (16) 25 943
BTG (20) 40 383 (19) 37 174 (16) 25 643 (16) 26 355
BTI (33) 53 574 (32) 54 793 (21) 35 902 (18) 35 024
BTF (18) 37 732 (21) 38 722 (18) 27 072 (13) 24 751
Total B (158) 300 934 (142) 287 217 (116) 193 490 (108) 187 973

R+DDFW+ UR (1) 14 311 (3) 14 144 7 643 7 151
on 5 SAT UCG (1) 14 012 (2) 12 782 10 019 (1) 9 380
problems UCI (1) 14 165 (1) 14 139 (1) 9 859 (3) 11 016
with 100 UCF (2) 17 330 (2) 14 970 (1) 10 325 (1) 9 861
instances UTG (1) 11 208 11 050 (1) 9 916 (2) 10 245

UTI (1) 14 813 (2) 15 267 (2) 11 478 (1) 10 453
UTF (2) 12 993 (1) 10 567 8 151 (1) 9 728
Total U (9) 98 832 (11) 92 919 (5) 67 391 (9) 67 834
AR (3) 17 241 16 973 (1) 10 819 (2) 12 399
ACG (5) 17 858 (3) 16 844 (3) 14 003 12 257
ACI (4) 18 341 (2) 16 952 (4) 14 831 (2) 13 204
ACF (4) 21 349 (1) 16 022 (2) 13 660 (1) 13 150
ATG (1) 16 128 15 427 10 810 (3) 12 958
ATI (5) 24 930 (5) 23 903 (5) 15 492 (5) 16 691
ATF (1) 14 708 (2) 15 060 (3) 12 857 (1) 11 888
Total A (23) 130 555 (13) 121 181 (18) 92 472 (14) 92 547
UCTI (3) 19 267 (2) 15 518 (2) 12 578 10 151
UACG (6) 24 550 (6) 24 142 (5) 17 292 (4) 16 705

BR (51) 68 229 (52) 67 177 (50) 65 518 (50) 67 963
BCG (15) 25 312 (16) 24 319 (16) 24 884 (14) 24 039
BCI (18) 25 162 (16) 23 981 (18) 25 560 (14) 22 948
BCF (17) 25 445 (17) 25 976 (18) 26 059 (16) 25 574
BTG (24) 32 910 (23) 31 875 (24) 33 742 (23) 32 936
BTI (23) 31 460 (23) 32 128 (23) 32 155 (23) 31 865
BTF (24) 33 489 (25) 32 371 (26) 33 402 (24) 32 232
Total B (172) 242 007 (172) 237 827 (175) 241 320 (164) 237 557

M INISAT UR (38) 51 706 (42) 55 159 (40) 53 515 (42) 54 407
on 5 SAT UCG (8) 14 421 (7) 14 287 (8) 14 482 (8) 14 534
problems UCI (7) 13 980 (9) 15 002 (9) 15 620 (8) 15 303
with 100 UCF (9) 16 186 (9) 15 534 (8) 15 228 (7) 15 361
instances UTG (14) 22 337 (12) 20 459 (13) 20 113 (13) 20 013

UTI (17) 24 595 (15) 24 507 (15) 24 163 (15) 23 228
UTF (15) 22 791 (17) 24 679 (17) 24 018 (15) 24 818
Total U (108) 166 016 (111) 169 627 (110) 167 139 (108) 167 664
AR (40) 52 215 (42) 53 683 (36) 48 631 (40) 52 262
ACG (9) 16 209 (9) 15 874 (9) 16 037 (9) 15 824
ACI (11) 16 624 (8) 15 588 (10) 16 370 (10) 15 814
ACF (9) 17 098 (10) 16 989 (10) 17 561 (10) 17 943
ATG (17) 25 235 (13) 24 188 (17) 24 247 (14) 21 654
ATI (16) 23 522 (15) 24 393 (16) 23 931 (17) 24 891
ATF (16) 23 962 (16) 23 999 (17) 24 972 (18) 24 407
Total A (118) 174 865 (113) 174 714 (115) 171 749 (118) 172 795
UCTI (11) 18 835 (11) 17 239 (10) 17 474 (9) 17 495
UACG (8) 17 143 (10) 16 454 (9) 17 499 (8) 16 559

BR (66) 87 739 (67) 87 505 (65) 86 273 (65) 86 590
BCG (15) 23 853 (14) 23 828 (13) 23 411 (13) 23 283
BCI (13) 21 615 (13) 21 987 (14) 23 882 (15) 24 023
BCF (15) 24 867 (14) 23 638 (14) 24 889 (12) 23 492
BTG (26) 34 367 (25) 33 285 (26) 33 947 (26) 34 635
BTI (26) 34 257 (23) 32 920 (26) 33 740 (23) 33 034
BTF (26) 34 458 (27) 35 374 (27) 35 979 (26) 34 910
Total B (187) 261 156 (183) 258 537 (185) 262 121 (180) 259 967

M INISAT UR (60) 79 666 (59) 79 510 (59) 79 204 (59) 79 900
on 7 UNSAT UCG (8) 13 234 (8) 13 698 (7) 13 693 (6) 13 331
problems UCI (8) 14 818 (7) 13 376 (7) 14 551 (8) 13 844
with 140 UCF (7) 14 401 (9) 14 349 (7) 14 960 (9) 15 086
instances UTG (16) 22 859 (16) 23 406 (17) 24 433 (16) 23 029

UTI (15) 24 327 (17) 24 731 (17) 24 650 (15) 23 238
UTF (16) 25 234 (19) 26 699 (19) 27 011 (17) 25 436
Total U (130) 194 539 (135) 195 769 (133) 198 502 (130) 193 864
AR (62) 82 713 (64) 82 574 (62) 82 885 (60) 81 965
ACG (9) 15 358 (8) 15 200 (8) 15 574 (8) 14 356
ACI (8) 15 134 (9) 15 479 (8) 15 729 (8) 15 526
ACF (9) 17 206 (8) 15 786 (9) 16 635 (9) 16 508
ATG (19) 27 189 (19) 26 035 (17) 26 177 (18) 28 117
ATF (18) 26 578 (17) 25 343 (18) 25 089 (17) 24 842
ATF (18) 27 965 (19) 27 088 (18) 26 738 (20) 27 913
Total A (143) 212 143 (144) 207 505 (140) 208 827 (140) 209 227
UCTI (10) 19 070 (9) 15 788 (9) 16 171 (10) 18 306
UACG (7) 15 527 (8) 14 368 (7) 14 651 (9) 15 638

Table 2: Summary of SAT solvers’ performance, after vari-
ous modeling, on diagnosis problems. Each data represents
the total runtime (in seconds) of 100 runs for satisfiable
problems or of 140 runs for unsatisfiable problems.Total
α represents the general total of runtime, per node encoding
α and per variable numbering encoding (nT , nC, nT +H or
nC+H). The best result based onα is represented in bold.



0 2 4 6 8 10 12 14 16 18 20

10
−1

10
0

10
1

10
2

10
3

instances

ru
nt

im
e 

in
 s

ec
on

ds

 

 

UR
UCG
UCI
UCF
UTG
UTI
UTF

0 2 4 6 8 10 12 14 16 18 20

10
−1

10
0

10
1

10
2

10
3

instances

ru
nt

im
e 

in
 s

ec
on

ds

 

 

UR
UCG
UCI
UCF
UTG
UTI
UTF

0 2 4 6 8 10 12 14 16 18 20

10
−1

10
0

10
1

10
2

10
3

instances

ru
nt

im
e 

in
 s

ec
on

ds

 

 

UCG
UCG+H
UR
UR+H

a. MINISAT on total-hard-safterU* (nC+H) b. R+DDFW+ on partial-medium-safterU* (nT ) c. R+DDFW+ on total-hard-safterU* (nC)

Figure 3: SAT solvers’ runtime on selected diagnosis problems, after variousU* encoding

is not the case for *CI as the number of components is
only 20: the size of the chain is 20. However, for *TI,
the length of the chain is the number of timesteps, which
reaches up to 300 (20 faults × ∼ 8 observations/fault×2
timesteps/observation) in the worst cases of the instances
(see Figure 2c). This corroborates Wei and Selman (2002),
and Prestwich (2007) conjectures that long chains make the
SAT problem hard for SLS.

On Variable Numbering: Timestep vs Component
Without considering hyper-resolution during modeling,
timestep-based variable numbering approach is slightly bet-
ter than the component-based variable numbering approach.
But, the reverse phenomenon is shown when we run hyper-
resolution during modeling. Variable numbering has little
impact on the performances of the SAT solvers in general.

On the Impact of Hyper-resolution in Modeling The
additional clauses generated by the hyper-resolution rule,
about 1% of original problem, do not impact the perfor-
mance of MINI SAT, but they contribute to an important re-
duction of about 30% of the R+DDFW+ solver’s runtime.
The results can be explained as following. The simple res-
olution preprocessor integrated in R+DDFW+ reduces the
size of the original problem by 30% in average case, as the
effect of running hyper-resolution when modeling. While
the preprocessor integrated in MINI SAT gives almost no re-
action to the additional clauses, as shown by the results
presented in Table 2. Figure 3c shows the performance of
R+DDFW+ on total-hard-sproblem, which are encoded us-
ing URandUCG, with or without hyper-resolution.

On Hybrid Modeling We expected the hybrid modeling
instances to be easier to solve than the best original one.
However, in general our experiments show the opposite ten-
dency, except for R+DDFW+ solver onUCTI(nC+H) en-
coding.

From the Point of View of SAT Solving

On Solvers’ Performance Table 3 presents the runtime of
M INI SAT and R+DDFW+ on various satisfiable problems.
The results show that MINI SAT has a better performance
than R+DDFW+ on thetimed-*andtotal-* problems, while

R+DDFW+ is better on thepartial-* problems. We observe
that MINI SAT ’s runtime evolves more quickly than that of
R+DDFW+. With certain encodings, R+DDFW+ is even
able to solve the hardest satisfiable problems.

Problem M INISAT R+DDFW+

UCI(nT ) UTF(nT +H) UCI(nT ) UTF(nT +H)

timed-hard-s 105 95 1 117 178

total-medium-s 42 59 1 253 881

total-hard-s 139 121 2 868 581

partial-medium-s 2 792 (7) 10 142 3 500 2 991

partial-hard-s (7) 10 902 (10) 13 601 (1) 5 427 3 520

Table 3: Solvers’ runtime comparison when problem hard-
ness increases

Problem UR(nT ) UCG(nT ) UCF(nT ) UTG(nT ) UTF(nT )

timed-medium-u (2) 3 990 30 30 34 36

timed-hard-u (7) 10 075 100 85 115 149

total-easy-u (4) 5 891 18 22 24 22

total-medium-u (4) 6 542 50 51 57 59

total-hard-u (11) 14 155 117 133 172 185

partial-medium-u (16) 19 354 2 019 2 086 (7) 10 465 (7) 12 269

partial-hard-u (16) 19 659 (8) 10 900 (7) 11 994 (9) 11 992 (9) 12 514

Table 4: MINI SAT runtime on unsatisfiable problem, based
on someU* encodings

On Solving Unsatisfiable Problems Table 4 presents
M INI SAT ’s runtime on unsatisfiable problems based on
some selected encodings. The results show the same evo-
lution as for the satisfiable problems whereUC* and UT*
encoded instances are significantly easier than theURones.
With some encodings, MINI SAT is now able to prove the
unsatisfiability of most problems except the hardestpartial-
hard-u problem instances. The results also show that the
main difference betweenUC* andUT* encodings for MIN-
ISAT appears in thepartial-medium-uproblem instances,
which are difficult under the latter encoding.

On Solving the Hardest Problem Instances We now
present the results of solving the hardest instances ofpartial-
hard-sandpartial-hard-uproblems under someU* encod-
ings. We allocate 5 hours for solving each instance by a



given solver. Table 5 presents solvers’ runtime (in seconds)
underUCG on partial-hard-s for the highest values ofk,
which are the hardest satisfiable problem instances in the
study. The results show that both solvers are able to solve
these instances and the solver R+DDFW+ persists when the
hardness of problem instance increases.

Instance M INISAT R+DDFW+

UCG(nC) UCG(nC+H) UCG(nC) UCG(nC+H)

18 faults 5 773 4 118 1 439 1 799

19 faults 7 790 8 078 984 690

20 faults 13 542 7 465 1 936 819

Table 5: Solvers’ runtime onpartial-hard-sproblems for a
given number of faults, usingUCGencoding

Instance UR(nC) UCG(nC)

#Vars/#Cls Time #Vars/#Cls Time

13 faults 164326/803514 >180 000 164354/803598 918

14 faults 180345/890920 >180 000 180351/890938 4 201

15 faults 178170/889037 >180 000 178194/889109 1 625

16 faults 209887/1057748 >180 000 209889/1057754 1 706

17 faults 220554/1122352 >180 000 220554/1122352 3 352

18 faults 235147/1208987 >180 000 235153/1209005 2 686

19 faults 254060/1319555 >180 000 254086/1319633 4 574

20 faults 265910/1394987 >180 000 265949/1395104 4 369

Table 6: Runtime of MINI SAT on partial-hard-uproblems
for a given number of faults, usingURandUCGencodings

Table 6 compares MINI SAT ’s runtime (in seconds) under
UR andUCG encodings onpartial-hard-uproblem for the
highest values ofk, which are the hardest unsatisfiable prob-
lem instances. MINI SAT was given 50 hours for solving
each problem instance. The results show that the instances
of UR encoding are significantly harder for MINI SAT than
the ones ofUCG, despite the fact that their sizes are almost
the same. We observe that the hardness comes from the na-
ture of the problem, where the length of the clauses learnt
underUR encoding increases faster than that ofUCG en-
coding, which usually differenciates the random from the
structured SAT problems solving by clause learning SAT
solvers. The results also confirm the importance of con-
sidering problem semantic in CNF encoding of cardinality
constraints, particularly for the clause learning SAT solvers.

Solver partial-medium-s total-hard-s

UR(nT ) UCG(nT ) UR(nT ) UCG(nT )

M INISAT (12) 46 034 3 909 (6) 29 561 90

RSat (5) 21 361 5 996 1 454 184

marchks (18) 64 817 (10) 43 160 (15) 54 541 9 118

R+DDFW+ 3 022 5 336 1 914 2 072

R+RSAPS (15) 54 529 (16) 57 606 (15) 54 029 (14) 50 860

Table 7: Runtime of DPLL and SLS solvers on satisfiable
problems in comparingUR(nT ) to UCG(nT ) encodings

On Encodings versus Solvers In order to show the benefit
of the semantic-based encoding, we run more experiments

Solver partial-medium-u total-hard-u

UR(nT ) UCG(nT ) UR(nT ) UCG(nT )

M INISAT (16) 57 939 2 608 (9) 33 354 131

RSat (15) 57 490 6 781 (8) 33 286 207

marchks (17) 61 305 (8) 48 402 (14) 51 131 8 372

Table 8: Runtime of DPLL solvers on unsatisfiable problems
in comparingUR(nT ) to UCG(nT ) encodings

on partial-mediumand total-hard problems withUR(nT )
and UCG(nT ) encodings, by using DPLL (RSat (Pi-
patsrisawat & Darwiche 2007) and marchks1) and SLS
(R+RSAPS2 and R+adaptg2wsat03) solvers. We allocate
one hour (3600 seconds) for solving each instance by a given
solver. MINI SAT and R+DDFW+ were re-run with this time
limit. Tables 7 and 8 present the results, where the number
of unsolvable instances is indicated in brackets.

The RSat solver was run without the SatElite simplifier.
With the simplifier, the performance of RSat degrades on
total-hard-sproblem withUR(nT ) encoding, where it can-
not solve one of the instances in the given time limit. The
partial-medium-sand total-hard-sproblems are very chal-
lenging for R+adaptg2wsat0 solver, which cannot solve any
instance of the problems. In general, the results in aver-
age case show that DPLL solvers significantly benefit from
the present of semantic-based encoding, which gives only a
small impact to the SLS solvers.

0 10 20 30 40 50 60 70 80 90 100

10−1

100

101

102

instances

ru
nt

im
e 

in
 s

ec
on

ds

 

 

timed−hard−s
total−hard−s
timed−hard−u

0 10 20 30 40 50 60 70 80 90 100

10−1

100

101

102

103

104

instances

ru
nt

im
e 

in
 s

ec
on

ds

 

 

timed−hard−s
total−hard−s

a. MINISAT ’s performance b. R+DDFW+’s performance

Figure 4: SAT solvers’ runtime when the hardness increases
on a given problem, usingUCG(nC+H) encoding

On Problem Hardness by Increasing Number of Faults
Figure 4 shows that the difficulty of solving the problem in-
stances between 1 fault and 20 faults increases drastically.
Here, we study the difficulty of solving problem instances
encoded byUCG, when the number of faults increases one
by one until 100 faults. We present the results of running
M INI SAT on timed-hard-s, total-hard-sand timed-hard-u
problems in Figure 4a. We also present the results of run-
ning R+DDFW+ on timed-hard-sandtotal-hard-sproblems
in Figure 4b. The results show that after 20 faults, the diffi-
culty of solving a problem instance increases linearly.

1Available from http://www.st.ewi.tudelft.nl/sat/download.php
2RSAPS is part of UBCSAT 1.1, which is available from

http://www.satlib.org/ubcsat/
3adaptg2wsat0 is available from http://www.laria.u-

picardie.fr/∼cli/EnglishPage.html



Summary The new variants of encoding enable DPLL
and SLS algorithms to solve better most of the diagnosis
problems. The results demonstrate that the best encoding of
cardinality constraint is based on the unary representation
(U* andA*). SLS algorithms may use any variable ordering
in the totalizer as long as it does not generate a long chain
of variable dependencies, while the *CG or *CF orderings
should be used for DPLL algorithms. We propose to use the
UCG encoding as it suits well the SAT algorithms. More
generally we stressed, based on the solvers’ runtime, that
the addition ordering in cardinality constraints is important.

Application to Other Problem Domains
Semantic-based CNF encodings of cardinality constraints
have a significant impact on the time spent to solve diagnosis
problems. The results presented in this paper show several
orders of magnitude of improvement. A legitimate question
is whether equivalent results can be obtained for other prob-
lems that require cardinality constraints. We present several
such problems in the following.

The resolution of Pseudo-Boolean (PB) constraints with
a SAT approach is presented among many others in (Eén &
Sörensson 2006). In general, this problem does not provide
the semantics of the variables: the PB constraints input sim-
ply declares the variables by a characterx followed by a
number. Still, it might be more efficient to group variables
that appear together in many constraints.

Bailleux & Boufkhad (2003) used the discrete tomogra-
phy problem to validate the unary encoding of numbers.
Here the semantics attached to each variable is known but
there is no other constraint apart from the cardinality con-
straints. Moreover, no two variables appear together twice
in the same constraint. Thus, using semantic-based encod-
ing of the constraint seems to have little impact.

The cardinality constraint can also appear in SAT-
planning (Büttner & Rintanen 2005) and SAT-scheduling
problems. As for diagnosis, the goal of the problems is to
find a minimal sequence of actions/events. We speculate that
our approach on these problems can have the same benefit
as the diagnosis problem studied in this paper.

Conclusion and Perspective
We presented several variants of semantic-based CNF en-
codings of cardinality constraints, based on the totalizer. We
then examined how the encoding of each node and the addi-
tion ordering impact the runtime of the DPLL and the SLS
SAT algorithms. The results demonstrate that the problem
is easier to solve when using an unary encoding. On the one
hand the performance of the enhanced DPLL algorithms is
boosted when the variables are adequately grouped; our case
study on diagnosis of discrete-event systems shows more
than two orders of magnitude improvement when ordering
the variables by component compared to a random ordering.
On the other hand the SLS algorithm runtime is reduced by
ensuring a balanced tree while the order of the variable has
no impact.

The encodings proposed in this study can be applied
to other domains’ problems that contain cardinality con-

straints, such as in classical planning and circuit verifica-
tion problems. They can also be extended to more general
arithmetic constraints. In general, our results emphasizethat
encoding a problem is as critical as solving the problem.

Finally, this study can also be a complementary to the
study realized by Marques-Silva and Lynce (2007) in terms
of using semantical knowledge of a problem for better
choosing decision variables in SAT solving.

Acknowledgments
NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

References
Bailleux, O., and Boufkhad, Y. 2003. Efficient CNF En-
coding of Boolean Cardinality Constraints. InProc. of the
9th CP, 108–122.
Büttner, M., and Rintanen, J. 2005. Satisfiability planning
with constraints on the number of actions. InProc. of the
15th ICAPS, 292–299.
Eén, N., and Sörensson, N. 2004. An Extensible SAT-
solver. InProc. of 6th SAT, volume LNCS 2919, 502–518.
Eén, N., and Sörensson, N. 2006. Translating Pseudo-
Boolean Constraints into SAT.Journal on Satisfiability,
Boolean Modeling and Computation (JSAT)2:1–26.
Ernst, M.; Millstein, T.; and Weld, D. 1997. Automatic
SAT-Compilation of Planning Problems. InProc. of the
15th IJCAI, 1169–1177.
Grastien, A.; Anbulagan; Rintanen, J.; and Kelareva, E.
2007. Diagnosis of Discrete-Event Systems using Satisfia-
bility Algorithms. In Proc. of the 22nd AAAI, 305–310.
Ishtaiwi, A.; Thornton, J.; Anbulagan; Sattar, A.; and
Pham, D. N. 2006. Adaptive Clause Weight Redistribu-
tion. In Proc. of the 12th CP, 229–243.
Lamperti, G., and Zanella, M. 2003.Diagnosis of Active
Systems. Kluwer Academic Publishers.
Marques-Silva, J., and Lynce, I. 2007. Towards Robust
CNF Encodings of Cardinality Constraints. InProc. of the
13th CP, 483–497.
Pipatsrisawat, K., and Darwiche, A. 2007. Rsat 2.0: Sat
solver description. Technical Report D–153, Automated
Reasoning Group, Computer Science Department, UCLA.
Prestwich, S. 2007. Variable Dependency in Local Search:
Prevention is Better than Cure. InProc. of the 10th SAT,
volume LNCS 4501, 107–120.
Sinz, C. 2005. Towards an Optimal CNF Encoding of
Boolean Cardinality Constraints. InProc. of the 11th CP,
827–831.
Warners, J. 1998. A Linear-time Transformation of Linear
Inequalities into Conjunctive Normal Form.Information
Processing Letters68:63–69.
Wei, W., and Selman, B. 2002. Accelerating Random
Walks. InProc. of the 8th CP, 216–232.


