
2-C3: From Arc-Consistency to 2-Consistency

Marlene Arangú and Miguel A. Salido and Federico Barber
Instituto de Automática e Informática Industrial

Universidad Politécnica de Valencia.
Valencia, Spain

Abstract
Arc consistency algorithms are widely used to prune the
search space of Constraint Satisfaction Problems (CSPs).
Since many researchers associate arc consistency with binary
normalized CSPs, there is a confusion between the notion of
arc consistency and 2-consistency. 2-consistency guarantees
that any instantiation of a value to a variable can be consis-
tently extended to any second variable. Thus, 2-consistency
can be stronger than arc-consistency in binary CSPs. In
this paper, we present a new algorithm, called 2-C3, wich
achieves 2-consistency in binary and non-normalized CPSs.
This algorithm is a reformulation of the well-known AC3 al-
gorithm. The evaluation section shows that 2-C3 is able to
prune more search space than AC3 and AC4.

Introduction
Constraint programming is a software technology for the de-
scription and effective solving of large and complex prob-
lems (in many areas of the real life), particularly combina-
torial problems (Dechter 2003; Barták 1999). Many of these
problems can be modeled as constraint satisfaction prob-
lems (CSPs) and can be solved using constraint program-
ming techniques. The basic idea of CSP is to model the
problem as a set of variables with finite domains (the val-
ues for the variables) and a set of constraints that impose a
limitation on the values that a variable, or a combination of
variables, may be assigned. The task is to find an assignment
of values for the variables that satisfy all the constraints. In
general, the tasks posed in the CSP paradigm are computa-
tionally intractable (NP-Complete).

Some of the algorithms used to manage CSP are system-
atic search, constraint propagation and consistency tech-
niques. For reasons of brevity in this paper we only explain
the consistency techniques.

The consistency-enforcing algorithm performs any partial
solution of a small sub-network that is extensible to a sur-
rounding network. The number of possible combinations
can be huge, while only very few are consistent. By elim-
inating redundant values from the problem definition, the
size of the solution space decreases. If any domain becomes
empty as a result of reduction, then it is immediately known
that the problem has no solution (Ruttkay 1998). There exist

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

many levels of consistency depending on the number of vari-
ables involved: node-consistency involves only one variable;
arc-consistency involves two variables; path-consistency in-
volves three variables; and k-consistency involves k vari-
ables. More information can be seen in (Barták 2001;
Dechter 2003).

Arc-consistency algorithms are a major component of
many industrial and academic CSP solvers. Arc consistency
algorithms are based on the notion of support. These algo-
rithms ensure that each value in the domain of each variable
is supported by one o more values in the domain of each
variable by which it is constrained. Arc consistency algo-
rithms which lie at the heart of a CSP solver, are very-time
consuming. For this reason, arc consistency algorithms and
their time complexity are areas that have been heavily re-
searched (van Dongen, Dieker, and Sapozhnikov 2008).

Proposing efficient algorithms to enforce arc-consistency
has always been considered as a central question in the
constraint reasoning community. Thus, there are many
arc-consistency algorithms such as: AC1, AC2, and AC3
(Mackworth 1977); AC4 (Mohr and Henderson 1986); AC5
(Perlin 1992; Hentenryck, Deville, and Teng 1992); AC6
(Bessiere and Cordier 1993); AC7 (Bessiere, Freuder, and
Régin 1999); AC8 (Chmeiss and Jegou 1998); AC2001,
AC3.1 (Bessiere et al. 2005); and more. However, AC3
and AC4 are the ones most often used (Barták 2001).

Algorithms that perform arc-consistency have fo-
cused their improvements on time-complexity and space-
complexity. The main improvements have been achieved
by: changing the means of propagation from arcs to values,
(i.e., changing the granularity from coarse-grained to fine-
grained); appending new structures; performing bidirec-
tional searches (AC7); changing the support search: search-
ing for all supports (AC4) or searching for only the neces-
sary supports (AC6, AC7, AC8 and AC2001); improving the
propagation (i.e., AC7 and AC2001, which perform propa-
gation only when necessary); etc.

The concept of consistency was generalized to k-
consistency by (Freuder 1978). Thus, 2-consistency is re-
lated to constraints that involve two variables. Furthermore,
many works on arc-consistency made the simplified assump-
tions that CSPs are binary (all constraints involve two vari-
ables) and normalized (two different constraints do not in-
volve exactly the same variables), these notations are very

simple and the new concepts are easy to present. In their
work (Rossi, Van Beek, and Walsh 2006) show a strange ef-
fect of associating arc-consistency with binary normalized
CSPs: the confusion between the notions of arc-consistency
and 2-consistency (2-consistency guarantees that any instan-
tiation of a value to a variable can be consistently extended
to any second variable). In binary CSPs, 2-consistency is at
least as strong as arc-consistency. When the CSP is binary
and normalized, arc-consistency and 2-consistency perform
the same pruning. However, this is not true in general. For
more details see (Rossi, Van Beek, and Walsh 2006).

Few works have been done to develop algorithms to
achieve 2-consistency in binary CSPs. Therefore, in the fol-
lowing section, we provide the necessary definitions to un-
derstand the rest of the paper, and we present an example to
clarify some important concepts. Later, we present our 2-
C3 algorithm. This algorithm is a reformulation of AC3 to
achieve 2-consistency in binary and non-normalized CSPs.
An evaluation is presented to compare the behavior of the
2-C3 algorithm against AC3 and AC4 algorithm. Finally,
some conclusions are presented.

Definitions
By following the standard notations and definitions in the
literature (Bessiere 2006; Barták 2001; Dechter 2003), we
have summarized the basic definitions that are used through-
out the paper.

Definition 1. Constraint Satisfaction Problem (CSP)
is a triple P = 〈X, D,R〉 where: X is the finite set of
variables {X1, X2, ..., Xn}; D is a set of domains D =
D1, D2, ..., Dn such that for each variable Xi ∈ X there
is a finite set of values that the variable can take; R is a finite
set of constraints R = {R1, R2, ..., Rm} which restrict the
values that the variables can take simultaneously.

Definition 2. Binary constraint. A constraint is binary
if it involves only two variables. A CSP is binary iff all
constraints are binary.

Definition 3. Block of constraints. A block of con-
straints Cij is a set of binary constraints that involve the
same variables Xi and Xj .

Definition 4. Normalized CSP. A CSP is normalized
iff two different constraints do not involve exactly the same
variables.

Definition 5. Instantiation. It is a pair 〈Xi, a〉, which
represents an assignment of the value a to the variable Xi,
and a is in the domain of Xi. We can use (Xi = a) ≡
〈Xi, a〉.

Definition 6. Constraint Satisfy: A constraint Rij is sat-
isfied if the instantiation of 〈Xi, a〉 and 〈Xj , b〉 is legal for
this constraint (〈Xi, a〉, 〈Xj , b〉) ∈ Rij .

Definition 7. Value arc-consistency. A value a ∈ Di

is arc-consistent relative to Xj , iff there exists a value b ∈
Dj such that (Xi, a) and (Xj , b) satisfy the constraint Rij

((Xi = a,Xj = b) ∈ Rij).
Definition 8. Variable arc-consistency: A variable Xi

is arc-consistent relative to Xj iff all values in Di are arc-
consistent.

Definition 9. CSP arc-consistency. A CSP is arc-
consistent iff all the variables are arc-consistent, e.g., all the

constraints Rij and Rji are arc-consistent. (Note: here we
are talking about full arc-consistency).

Definition 10. Value 2-consistency. A value a ∈ Di is
2-consistent relative to Xj , iff there exists a value b ∈ Dj

such that (Xi, a) and (Xj , b) satisfy all the constraints Rk
ij

(∀k : (Xi = a,Xj = b) ∈ Rk
ij).

Definition 11. Variable 2-consistency: A variable Xi

is 2-consistent relative to Xj iff all values in Di are 2-
consistent.

Definition 12. CSP 2-consistency. A CSP is 2-consistent
iff all the variables are 2-consistent, e.g., any instantiation
of a value to a variable can be consistently extended to any
second variable.

We will focus our attention on binary and non-normalized
CSPs. Figure 1 left shows a binary CSP, which is presented
in (Rossi, Van Beek, and Walsh 2006) with two variables
X1 and X2, D1 = D2 = {1, 2, 3} and two constraints
R12 : X1 ≤ X2, R′12 : X1 6= X2. It can be observed
that this CSP is arc-consistent due to the fact that every
value of every variable has a support for constraints R12

and R′12. In this case, arc-consistency does not prune any
value of the domain of variables X1 and X2. However, as
(Rossi, Van Beek, and Walsh 2006) show, this CSP is not
2-consistent because the instantiation X1 = 3 can not be
extended to X2 and the instantiation X2 = 1 can not be
extended to X1. Thus, Figure 1 right presents the resultant
CSP filtered by arc-consistency and 2-consistency. It can
be observed that 2-consistency is at least as strong as arc-
consistency.

The Cost of Translating a non-normalized
CSP into a Normalized One

The only way to translate a non-normalized CSP into a nor-
malized one is by means of the extensional representation of
constraints. It is well known that a constraint can be repre-
sented intensionally (by an expression) or extensionally (by
the set of allowed or disallowed tuples). The vast majority
of constraints presented in real problems are modeled inten-
sionally. Some of these constraints are then extensionally
represented to be managed by CSP solvers, filtering tech-
niques, etc. However, this is a very hard task, particulary if
the domains are huge or impossible in continuous domains.
Actually, from the mathematical point of view, the exten-
sional and intensional representation are equal. From the
computation perspective, however, the intensional one is a
lot more compact and expressive than the extensional one.

For instance, for D1 = D2 = {0, 1, 2}, a con-
straint C12 with the intensional meaning R12 : X1 <
X2 could be defined extensionally by allowed tuples
R12 = {(0, 1), (0, 2), (1, 2)} or disallowed tuples R12 =
{(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2)}. In CSPs with
large domains, for instance, D1 = D2 = {1, 2, ..., 1000}, a
constraint C12 with the extensional representation generates
one million of tuples (D1xD2) to be labeled as allowed or
disallowed tuples. This task has a high temporal and spatial
complexity.

Once, all the constraints of the non-normalized CSP have
been translated into an extensional representation (allowed

Figure 1: Example of Binary CSP.

or disallowed tuple sets), the constraints that involve the
same variables must be grouped in order to select all inter-
sected tuples. For instance, if there exist two constraints that
involve variable i and j (Rij , R

′
ij), and Sij , S

′
ij are the sets

of allowed tuples respectively, then Cij = {(a, b)|(a, b) ∈
Sij ∧ (a, b) ∈ S′ij}

For instance, Figure 2 shows an example of non-
normalized CSP due to the fact that variables X1 and X2

are restricted by two different constraints (R12 and R′12).
The Cartesian Product of variable domains is D1xD2 =
{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.
The allowed tuples for the constraint R12 are
S12 = {(0, 0, (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)},
while the allowed tuples for the constraint R′12 are
S′12 = {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}; so that
C12 = S12 ∩ S′12 = {(0, 1), (0, 2), (1, 2)}. Thus, by ap-
plying arc-consistency we can achieve the reduced domains
D1 = {0, 1} and D2 = {1, 2}. Although this translation
technique is quite simple, its implementation consumes a
lot of time and requires the generation of structures that
consume memory.

In conclusion, the cost of translating a non-normalized
CSP into a normalized one is a prohibitive task in problems
with large domains. The main research carried out regarding
filtering techniques for constraint satisfaction has focused
attention on normalized CSPs or extensionally represented
constraints. However, real life problems are usually repre-
sented as CSPs with non-normalized CSPs with intension-
ally represented constraints. Therefore, the development of
filtering techniques to manage these problems is necessary.

Algorithm 2-C3
2-consistency guarantees that any instantiation of a value to
a variable can be consistently extended to any second vari-
able. While arc-consistency only checks the support hold
in the constraint, 2-consistency checks the support hold in
all constraints of the set. Therefore, 2-consistency can be
stronger than arc-consistency in binary CSPs.

Following, we present a new algorithm called 2-C3 that

achieves 2-consistency in binary and non-normalized CSPs.
This algorithm is a reformulation of the well-known AC3
algorithm. The main algorithm is a simple loop (see Algo-
rithm 2, lines 10-20) that selects and revises the block of
constraints stored in a queue Q (see Algorithm 1) until no
change occurs (Q is empty), or until the domain of a vari-
able becomes empty. The first case ensures that all values of
domains are consistent with all constraints, and the second
case returns that the problem has no solution.

Algorithm 1 Revise procedure
Input: A CSP P ′ defined by two variables X = (Xi, Xj),
domains Di and Dj , and constraint set Cij .
Output: Di, such that Xi is 2-consistent relative Xj and the
boolean variable change

1: change ← false
2: for each a ∈ Di do
3: if @b ∈ Dj such that (Xi = a,Xj = b) ∈ Cij then
4: remove a from Di

5: change ← true
6: end if
7: end for
8: return change

The Revise procedure of 2-C3 is very close to the Revise
procedure of AC3. The only difference is that the instanti-
ation (Xi = a,Xj = b) must be checked with the block
of constraints Cij instead of with only one constraint. This
set of constraints Cij could also be ordered in order to avoid
unnecessary checks. If we order this set from the tightest
constraint to the loosest constraint, the constraint checking
will find inconsistency constraints sooner, in which case no
further constraint checks must be carried out.

For the example shown in Figure 2, Q initially stores
the constraints Q = {C02, C

′
20, C12, C

′
21}. This table also

shows the corresponding constraints (Figure 2, right).
Table 1 shows how the 2-C3 procedure evaluates each

constraint for this example. In loops 1 and 2, sets C02 and
C ′02 have only one constraint: R02 and R′02,respectively.

Figure 2: Example of Binary non-normalized CSP. The arc-consistency algorithms do not perform any pruning, unless normal-
ization is performed on the restrictions.

Algorithm 2 2-C3 procedure
Input: A CSP, P = 〈X, D,R〉
Output: true and P ′ (which is 2-consistent) or false and
P ′ (which is 2-inconsistent because some domain remains
empty)

1: for every i, j do
2: Cij = ∅
3: end for
4: for every arc Rij ∈ R do
5: Cij ← Cij ∪Rij

6: end for
7: for every set Cij do
8: Q ← Q ∪ {Cij , Cji}
9: end for

10: while Q 6= ∅ do
11: select and delete Cij from queue Q
12: if Revise(Cij) = true then
13: if Di 6= ∅ then
14: Q ← Q ∪ {(Cki | k 6= i, k 6= j}
15: else
16: return false /*empty domain*/
17: end if
18: end if
19: end while
20: return true

Thus, their checks are equivalent to AC3, however, in loops
3 and 4, each set has two constraints, so 2-C3 checks that
both values hold with all the constraints of the set. Thus,
in loop 3, where C12 is processed, it is verified whether or
not value 0 of D1 has support with value 0 of D2. This is
true for R12; however, when the same values are checked
with the next constraint of set (R′12), this constraint is not
satisfied. For this reason, the next value in D2 (value 1) is
sought, and both constraints (R12, R

′
12) are satisfied with

values X1 = 0 and X2 = 1. We denote the set that must
be re-evaluated (C02) using dotted lines. This set constraint
was added to the queue Q (See Table 1, loop 4).

In the above example to achieve 2-consistency, 2-C3 per-
forms 3 prunes of domain values, carries out 37 constraint
checkings (Cc), and carries out 1 propagation (Np) in Q.

AC3 and AC4 do not prune any value nor do they carry out
any propagation. AC3 carries out 29 constraint checkings,
and AC4 carries out 54 constraint checkings.

Table 1: Loops carried out by 2-C3 for the example shown
in Figure 2.

Set val val Prune Add
Loop Cij a b Rij hold change Xi Q

1 C02

0 0 R02 yes

1 0 R02 no
1 R02 yes

2
0 R02 no
1 R02 no
2 R02 yes false

2 C′20

0 0 R′20 yes

1 0 R′20 no
1 R′20 yes

2
0 R′20 no
1 R′20 no
2 R′20 yes false

3 C12

0
0 R12 yes

R12′ no

1 R12 yes
R12′ yes

1

0 R12 no

1 R12 yes
R12′ no

2 R12 yes
R12′ yes

2

0 R12 no
1 R12 no

2 R12 yes
R12′ no true 〈X1, 2〉

4 C′21

0 0 R′21 yes
R′21′ no

1 R′21 no true 〈X2, 0〉
1 0 R′21 yes

R′21′ yes

2 0 R′21 yes
R′21′ yes C02

5 C02

0 1 R02 no
2 R02 no true 〈X2, 0〉

1 1 R02 yes

2 1 R02 no
2 R02 yes

Experimental Results
In this section, we compare the behavior of the arc-
consistency algorithms AC3 and AC4 and our proposed
2-consistency algorithm (2-C3). Furthermore, we imple-
mented the most efficient versions of AC3 and AC4 with
the improvement shown in (Mackworth 1977; Dechter 2003;
Bessiere 2006; Barták 2001), in order to remove ambiguity
and improving efficiency.

Table 2: Number of pruning and constraint checks by using
AC3, AC4 and 2-C3 in problems < n, 20, 800, 2 >.

Arc-consistency 2-consistency
value AC AC3 AC4 2-C3

n pruning checks checks pruning checks
50 331 351565 642314 627 496202
70 303 339410 660984 582 546119
90 289 324385 671040 566 512247
110 240 317697 681837 559 475114
130 255 295527 682225 554 462976
150 254 267646 684949 548 411415

The experiments were performed on random instances.
A random CSP instance was characterized by the 4-tuple
< n, d, m, c >, where n was the number of variables, d
the domain size, m the total number of binary constraints
and c the number of constraints in each block. The con-
straints were in the form Xi op Xj , where Xi, Xj ∈ X and
op ∈ {<,≤, =, 6=, >,≥}. We randomly generated binary
and non-normalized problems. All the variables maintained
the same domain size. The problems were randomly gener-
ated by modifying these parameters. We evaluated 50 test
cases for each type of problem.

Thus, Tables 2 and 3 fixed three of the parameters and var-
ied the other one in order to evaluate the algorithm perfor-
mance when this parameter was increased. Performance was
measured in terms of number of values pruned. All algo-
rithms were written in C. The experiments were conducted
on a PC Pentium IV (3.0 GHz processor and 1 GB RAM).

Table 2 shows the number of constraint checks and prunes
using AC3, AC4 and 2-C3: the number of variables was in-
creased from 50 to 150; the domain size was set to 20; the
number of constraints was set to 800; and the number of
blocks of constraints was set to 2 (< n, 20, 800, 2 >). The
results show that the number of prunes was lower in both
AC3 and AC4 than in 2-C3 in all cases. This is due to the
fact that the problems start with same domain size (from 1
to 20) and they have constraints with operators (=, 6=,≤,
or ≥). Therefore, AC3 and AC4 did not prune any value
by analyzing the constraints individually. However, 2-C3
analyzed the blocks of constraints that had a mix of these
operators, and it was able to prune more search space.

Furthermore, the ratio between checks and prunes of 2-
C3 was better than both AC3 and AC4 (845 checks/pruning
for 2-C3; 1141 checks/pruning for AC3; and 2403
checks/pruning for AC4). Thus, the large number of checks
for 2-C3 was offset by a greater amount of pruning. Table 2
also shows that the number of constraint checks and pruned
values was reduced since the number of variables increased
in AC3, AC4, and 2-C3. Arc-consistency is reached sooner
because the number of variables increased and the number of
constraints remained constant. Thus, the random problems
were loose.

Table 3 presents the number of constraint checks, where
the number of constraints was increased from 50 to 700
and the number of variables, the domain size, and block
of constraints were set at 50, 20, and 2, respectively (

Table 3: Number of pruning and constraint checks by using
AC3, AC4 and 2-C3 in problems < 50, 20,m, 2 >.

Arc-consistency 2-consistency
value AC AC3 AC4 2-C3

m pruning checks checks pruning checks
50 17 11559 43449 34 13455
100 34 25245 86475 70 37422
150 53 46410 130053 106 65060
200 61 56745 172084 140 99430
300 104 111268 255652 217 166531
450 172 178341 376226 330 283190
600 218 240995 496307 447 396326
700 285 297126 567492 535 451253

< 50, 20,m, 2 >). As in the above evaluation, the re-
sults were similar. 2-C3 was able to carry out more prun-
ing (> 50%) than AC3 and AC4. In this case, the number
of constraint checks increased as the number of constraints
increased. Since the random problems maintained the same
number of variables but the number of constraints increased,
the random problems were tight.

Table 4: Number of pruning and constraint checks by
using AC3, AC4 and 2-C3 in inconsistent problems <
n, 20, 1200, 2 >.

Arc-consistency 2-consistency
value AC3 AC4 2-C3

n pruning checks pruning checks pruning checks

50 1447 143166 712 728983 1179 166639
70 1896 150560 927 748371 1763 125626
90 2396 169577 1146 796207 1083 134138
110 712 180873 1429 817588 642 142184
130 927 217657 1638 856362 716 170743
150 1170 237029 1665 865837 1063 115141

Table 5: Number of pruning and constraint checks by
using AC3, AC4 and 2-C3 in inconsistent problems <
50, 20,m, 2 >.

Arc-consistency 2-consistency
value AC3 AC4 2-C3

m pruning checks pruning checks pruning checks

150 863 104619 323 119852 605 29756
300 904 85368 611 224419 647 44464
450 881 90910 722 321714 485 48963
600 893 98802 708 410981 521 69526
750 712 100136 709 482775 463 83646
900 711 114720 711 566505 669 115648
1050 697 129463 697 649768 563 131904
1200 719 142499 719 728237 556 141429

Tables 4 and 5 show the number of constraint checkings
and propagations in inconsistent instances where the num-
ber of variables (n) or the number of constraints increased
(m), respectively. 2-C3 carried out fewer prunes and fewer
checkings than AC3 and AC4, 2-C3 was more efficient in
detecting inconsistencies.

Conclusions
Filtering techniques are widely used to prune the search
space of CSPs. AC3 is one of the best known arc consis-
tency algorithms, and different versions have improved the
efficiency of the original one. Since many researchers as-
sociate arc consistency with binary normalized CSPs, there
is a confusion between the notion of arc consistency and 2-
consistency. In this paper, we have presented a reformu-
lation of AC3 to achieve 2-consistency in binary and non-
normalized CPSs. The evaluation section shows that 2-C3
achieves 2-consistency and is therefore able to prune more
search space than both AC3 and AC4. This filtering algo-
rithm could be very appropriate in search tools to manage
non-normalized problems.

References
Barták, R. 1999. Constraint programming: In pursuit of
the holy grail. In MatFyzPress., ed., Proceedings of the
Week of Doctoral Students (WDS99), Part IV.
Barták, R. 2001. Theory and practice of constraint propa-
gation. In Figwer, J., ed., Proceedings of the 3rd Workshop
on Constraint Programming in Decision and Control.
Bessiere, C., and Cordier, M. 1993. Arc-consistency and
arc-consistency again. In Proc. of the AAAI’93, 108–113.
Bessiere, C.; Régin, J. C.; Yap, R.; and Zhang, Y. 2005.
An optimal coarse-grained arc-consistency algorithm. Ar-
tificial Intelligence 165:165–185.
Bessiere, C.; Freuder, E.; and Régin, J. C. 1999. Using
constraint metaknowledge to reduce arc consistency com-
putation. Artificial Intelligence 107:125–148.
Bessiere, C. 2006. Constraint propagation. Technical re-
port, CNRS/University of Montpellier.
Chmeiss, A., and Jegou, P. 1998. Efficient path-
consistency propagation. International Journal on Artifi-
cial Intelligence Tools 7:121–142.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Freuder, E. 1978. Synthesizing constraint expressions.
Commun ACM 21:958–966.
Hentenryck, P. V.; Deville, Y.; and Teng, C. M. 1992. A
generic arc-consistency algorithm and its specializations.
Artificial Intelligence 57:291–321.
Mackworth, A. K. 1977. Consistency in networks of rela-
tions. Artificial Intelligence 8:99–118.
Mohr, R., and Henderson, T. 1986. Arc and path consis-
tency revised. Artificial Intelligence 28:225–233.
Perlin, M. 1992. Arc consistency for factorable relations.
Artificial Intelligence 53:329–342.
Rossi, F.; Van Beek, P.; and Walsh, T. 2006. Handbook of
constraint programming. Elsevier.
Ruttkay, Z. 1998. Constraint Satisfaction - a Survey. CWI
Quarterly 11(2&3):123–162.
van Dongen, M.; Dieker, A.; and Sapozhnikov, A. 2008.
The expected value and the variance of the checks required

by revision algorithms. Constraint Programming Letters
2:55–77.

